ROOTS OF SEISMIC Z-TRANSFORMS

Bert Jacobs

Abstract

The z-transform of a seismic trace can be factored, each factor
yielding a single root. These roots can, in theory, be used in the

deconvolution of seismic data.

Introduction

Predictive deconvolution constructs @ minimum phase dnverse from
the power spectrum of a seismic trace. This may not be a good way in
which to construct an estimate of the inverse wavelet. One reason for
this 1s that the physical waveform may not have a minimum phase inverse.
Another 1is that predictive deconvolution is applicable only when dealing

with datasets which are wide-sense stationary.

Various nonlinear, iterative schemes have been proposed as a way of
overcoming the Timitations of predictive deconvolution. In particular,
the wavelet estimate 1is not constrained to be minimum delay. The prob-
lem with these methods is that they are unstabie when applied to some
datasets. They also tend to pay too much attention to big spikes in the

input time series.

If the locations of the roots of a seismic traces could be found
accurately and quickly then an inverse wavelet could be constructed from

the roots shared by all the traces. Alternatively, and less
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ambitiously, 1f one had a minimum phase inverse from a predictive decon-
volution program and could factor it, then it would be possible to vary
the phase spectrum while keeping the power spectrum constant by

appropriately adjusting root positions.

Traces, Wavelets, and Their Roots

If noise is not too serious a problem, then the Z-transform convo-
lution thereom guarantees that the roots corresponding to the shot

waveform will appear in the factorization of a seismic reflection trace.

Seismic traces are time series. A typical series can be represented

by the sequence of real numbers: .
Yo o Yy o Yoo Y T e Yy

This sequence has a Z-transform

We choose to factor the roots of the product of this transform with zNy

Ny _
Y(z) = 2 ykzNy k

k=0

Each trace Yy of a common-shot gather can be considered to be the convo-
lution of a waveform b with a reflectivity series X where i is the
trace index. When we take Z-transforms, these convolutions change to

products. This yields N equations - one for each seismic trace.

Yi(z) X1(Z) B(z)

(z—xil) (z—xiz)...(z-xiNx) (Z_bi)"'(z—bNb)
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where the x1j are the Nx roots of the ith reflectivity series and the bj
are the Nb roots of the shot waveform. Both sets of roots come in com-
plex conjugated pairs since the trace, reflectivity series, and shot
waveform are all real time series. When written in this way 1t 1s easy
to see why the waveform factors can be found from the set of trace fac-
torizations. If the roots from all N traces are listed then the wavelet

can be identified with those roots which reoccur.

This simple model is complicated by the presence of additive noise.

The effect of noise on roots 1s considered next.

The Condition and Distribution of Seismic Trace Roots

Noise enters this scheme in two forms. The first is the familiar
additive noise. The other source of noise is the truncation at the far

end of the trace.

The effect of noise is not as serious as one might think. This is
because the zeros of a random polynomial are well conditioned. To help
substantiate this claim it is useful to consider three thereoms from the

literature on polynomial factorization.

Thereom 1: If we consider a zero x of a polynomial f(z) and
perturb this polynomial by the addition of a polynomial
e-g{z), then x will be perturbed by a number of size
(e<Imia(x31/LF ()TN /™
f(z) evaluated at z = x and m 1s the multiplicity of the =zero

where fm(x) is the mth derivative of

at x.

Thereom 2: Consider a polynomial f(z) = ao +.. .+ anzn Let Nab

denote the nhumber of roots within the angular sector between
® =3 and 8 = b, 0sa<bsZx. Then

b-a
In o Nab] < 16 |n log T
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Thereom 3: If g(z) = 1+b,z+...+bnzn+... has the unit <circle

as a circle of convergence, then every point of this circle is
a cluster point of zeros of the partial sums
s{z) = 1+b.z+...+bnzn. For an arbitrary e, we have an infin-

ite sequence of indices nv

n
a > (1-d)"
v
n1 < n, 4
We also have Ian] <1 + ez)n for sufficiently large n. The

number of roots of sn (z) outside the annulus l-e < |z]| < l+e
1 4
is less than 7 en'.

The first thereom is due to Wilkinsen. It says that isolated roots
are well conditioned. Multiple roots or near-multiple roots can be
expected to be ill-conditioned.

The second thereom is the work of Erdos and Turan. It says that
the roots of polynomials are more or less evenly distributed around the
origin. This means that a random polynomial with a suitably large first
and last coefficient will not have many multiple roots. We will soon
consider a real example which suggests that most random polynomials have

this even distribution of roots.

The third thereom was proved by R. Jentzsch and G. Szego. It says
that the roots of a random polynomial tend to be found within an annular
region about the unit circle. This will be true when our seismic traces
are properly gained. This fact is important because the zeros which T1ie
far away from the unit circle are the ones most affected by aliasing.
Amohg the roots of unit multiplicity, these are also the roots which one

expects to be most affected by the presence of noise.

From these three thereoms one can draw the conclusion that random

polynomials will have roots which are, 1n general, insensitive to hoise,
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evenly distributed angularly, and close to the unit circle,.

Examples of Factorizations

With this theoretical background, a plot of the roots of a seismic
trace will make more sense. In the following few diagrams, the root
locations in the complex Z-plane will be represented by crosses. The
Fourier transform 1is the value of the Z-transform on the unit circle,
with the frequency axis 1laid out angularly along that circle. DC
appears at (1,0), 1/2 Nyquist at (0,1), and Nyquist at (-1,0) in the

complex Z-plane.

Figure 1 shows a trace of 256 time points with a 4 mil sampling
rate and 1its power spectrum. The polynomial formed from the first 105
coefficients was factored, and the corresponding 104 roots plotted. The
root-finding program now inh use cannot handle polynomials of much higher

degree without a marked decrease in accuracy.

Note that the first coefficient of the time series 1s small and
that this did not ruin the even distribution of zeros about the origin
that was expected. It is alsoc worth noticing that the root distribution
is especially even in the left half-plane of the complex Z-plane. This
corresponds to frequencies between half-Nyquist and the Nyquist fre-
quency which have almost been filtered out. Presumably the regularity
of the root distribution in this region reflects the fact that the fre-

gquencies involved are completely made up of uncorrelated noise.

The full set of 256 time points was used to construct a minimum
phase wavelet. The construction was done in the frequency domain so the
result will probably not be identical to the wavelet that a predictive
deconvolution algorithm would have constructed with the same data. The
results are in figure 2. Only the first 105 time points are plotted -

the remaining samples were almost all zero.

The root pattern corresponding to the polynomial formed out of the
first 105 time points from the wavelet has some interesting features.

The first is that all of 1ts roots 1lie within the unit circle - a
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FIG. 1. Top: Seismic trace of 256 samples. Middle: Power spectrum.
Bottom: Root distribution for the first 106 coefficients from the
trace.
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FIG. 2. Minimum phase wavelet and its root distribution. The roots are
all 1inside the unit circle because the wavelet is minimum delay. The
roots come in compiex conjugate pairs because the wavelet is real.
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FIG. 3. Minimum delay inverse filter and root distribution.
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coroltary to the minimum delay property. The second 1s that the root
patterns 1in figures 1 and 2 have points 1in common 1in the frequency range
between 1/8 and 1/2 Nyquist. Finally, many of the waveform roots are
not found in figure 1. This is because their real waveform is probably
not minimum phase and the seismogram is too short to include all the
wavelet roots. Roots at high frequencies and very low frequencies are

the most likely to be missed.

The inverse wavelet corresponding to the time series of figure 2
was constructed 1in the frequency domain in such a way as to guarantee
that it too will be minimum delay. This filter and its root pattern are
in figure 3.

The convelution of this inverse wavelet with the input time series
is 1n figure 4. It 1s hard to say whether there has been any improve-
ment though some marked changes were made. The root pattern far the
polynomial formed from +the first 96 coefficients is also displayed.
Many of the roots in the original seismic trace are still there - an
encouraging sign. Only 96 coefficients were used because the program
failed to accurately determine the roots near Nyquist when fed a 105-

sample deconvolved time series.

A Root Stack Attempt

Since the wavelet is 1invariant from trace to trace within a common
shot gather, its roots will occur in the factorizations of each of the
traces of such a gather. On the other hand, the reflectivity series of
one trace may bear 1ittle resemblance to that of a neighboring trace, so
the roots of adjacent reflectivity series poiynomials will probably not
be the same. It follows from the convolution theorem that if one is
given the roots from all of the traces of a common-shot gather, then the
wavelet roots can be identified by looking for redundancies from trace

to trace.

To identify such recurring roots it 1s convenient to sort the roots
of the traces of a seismic gather into bins 1in the complex plane. This

is because the redundancies will only be approximate since noise,
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algorithmic and additive, will perturb the root locations. The result
of this sorting is called a root stack. Wavelet roots are associated

with the bins which are filled to overflowing with roots.

The next figure is a stab at making a root stack. A 1long seismic
trace was chopped into ten segments, each 101 samples long. Each seg-
ment was factored and the roots obtained sorted into bins 1in the complex
plane. Each bin was a square with edges parallel to the axes and of
width 0.025. The non-zero bin counts are plotted in figure 5, each

count appearing at its bin location in the complex plane.

Though there are a number of peaks in the bin counts there are at
least two vreasons for suspecting them. First, the effect of all the
truncations may be drastic - there is not much reason to suspect that
much of the phase spectrum remains intact. Second, bin sorting is not
smooth - so peaks between bins would tend to be divided into two pieces
and disappear. An improved sorting scheme is possible by using a pyram-
idal weighting scheme to assign root counts to grid points. The disad-
vantage with this scheme is that the grid points will then have nonin-

tegral numbers of ruots associated with them.

Putting the Phase Back 1n the Minimum Phase Wavelet

Root stacking may never work, but root finding algorithms may still
prove useful in deconvolution. In particular, it may be possible to take
a minimum phase wavelet from a predictive deconvolution program, iden-
tify its roots, and shift root locations until an optimum phase spectrum

is achieved.

Suppose we were given an autocorrelation B(1/Z)B(Z) and we pro-
ceeded to examine its roots. The root pattern would be found to possess
a fourfold symmetry. 1If Z0 is a root of B(1/Z)B(Z) then so is Z: .1/20'
and 1/23. The minimum phase wavelet with this autocorrelation can be
formed by gathering together all of the roots within the unit circle and

doing the requisite polynomial multiplications.
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If the physical waveform 1s not minimum phase, it simply means that
we should substitute a root from outside the unit circle for one inside.
Given a set of minimum delay wavelet roots there are only a finite
number of possible root locations outside the unit circle to choose from

- those obtained by taking the reciprocal of the minimum delay roots.

Thus, to adjust the phase spectrum of a minimum delay wavelet, one
can simply proceed to exchange complex conjugate root pairs from within
the unit circle for reciprocal pairs outside. After exchanging roots
and recalculating a wavelet estimate, the new wavelet can be applied to
a segment of data. Using some spikiness statistic, an optimum root pat-

tern can be picked from among the possible candidates.

A Short Note on Algorithms

The root finding algorithm used in getting the results for this
article 1is a modification of the three-stage, variable-shift Jenkins-
Traub algorithm published in ACM/TOMS. The modifications invelve a res-
caling of the polynomial before each deflation and a few lines which
identify rare divergent iterations. It takes the modified algorithm
about one minute to find 100 roots. Execution time goes up roughly as

the square of the number of roots found.

Steiglitz and Dickinson at Princeton report that they have an algo-
rithm which factors 255 degree polynomials in 4.3 seconds on an IBM
360/91 machine. The speed, accuracy, and stability of this variant of
Newton-Raphson is probably obtained by not deflating the polynomial
whenever a zero is found (the author knows of another group that used
Newton-Raphson with deflation, achieving results 1nferior to that
gbtained with the modified Jenkins-Traub algorithm). The preprint in
which this algorithm is mentioned 1is probably for IEEE Trans. on

Acoust. Speech and Signal Processing.
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