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The classical Gurson model for ductile porous media is extended to incorporate the surface/
interface stresses effect at the nano-scale. For capillary forces, the yield surface is shown to
be obtained by a mere translation of Gurson one. For interface stresses obeying a von Mises
criterion, the parametric equations of the yield surface are derived. The magnitude of the
interface effect is proved to be controlled by a non dimensional parameter depending on
the voids characteristic size.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, size-dependent effects in nanomaterials including materials containing nano-voids have focused the
attention of many researchers. Early works have tried to model the transition zone between the nano-inclusion and the sur-
rounding matrix as a thin but still three-dimensional layer [13,17]. An alternative approach consists in adopting an interface
description which is two-dimensional in nature. Progress has been gained in the understanding of inclusion size effects on
the effective elastic properties. Classical homogenization schemes as well as first order bounds in the theory of elastic het-
erogeneous media have been extended in order to incorporate interface and interface stresses (see e.g. [4,15,6]).

In contrast, it seems that few attention has been paid so far to the question of the effective strength of nanomaterials with
account for interface effects. In the context of the ductile failure of porous materials, the Gurson model [12] is well known to
provide a efficient approach of the strength reduction due to the porosity. The purpose of the present paper is to extend this
model in order to capture the influence of interface stresses.

To begin with, in view of subsequent extensions, the basic features of the classical Gurson approach are recalled. Then, the
mechanical model of interface stress is introduced. It is first illustrated by the capillary forces and their influence on the
effective strength. Finally, the case of interface stresses obeying a von Mises failure criterion is considered.

2. Ductile failure of porous media and Gurson model

Let us consider a r.e.v. X of a porous material with porosity f. The solid domain is Xs � X. The average on X (resp. Xs) of a
field aðzÞ is denoted by �a (resp. �as):
. All rights reserved.
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Sci. (2
�a ¼ 1
jXj

Z
X

aðzÞdV ; �as ¼ 1
jXsj

Z
Xs

aðzÞdV ð1Þ
The derivation of the Gurson model presented below is based on the rigorous framework of Limit Analysis which can be
found in [1,8,16]. The textbooks [9,10] also introduced the main concepts of this theory for the derivation of the macroscopic
strength of ductile porous media. Let R and D respectively denote the macroscopic stress and strain rate tensors. VðDÞ is the
set of microscopic velocity fields, vðzÞ being kinematically admissible with D. The latter are defined by uniform strain bound-
ary conditions:
VðDÞ ¼ fv; ð8z 2 @XÞvðzÞ ¼ D � zg ð2Þ
Let us consider a microscopic stress field rðzÞ in equilibrium with R in the sense of the average rule R ¼ r. Hill’s lemma states
that:
R : D ¼ 1
jXj

Z
X

r : ddV ð3Þ
The strength of the solid phase is characterized by the convex set Gs of admissible stress states, which in turn is defined by a
convex strength criterion f sðrÞ:
Gs ¼ fr; f sðrÞ 6 0g ð4Þ
The dual definition of the strength criterion consists in introducing the support function psðdÞ of Gs, which is defined on the
set of symmetric second order tensors d and is convex w.r.t. d:
psðdÞ ¼ supðr : d;r 2 GsÞ ð5Þ
psðdÞ represents the maximum ‘‘plastic” dissipation capacity the material can afford. In the absence of interface effect, the
macroscopic counterpart of psðdÞ is defined as:
PhomðDÞ ¼ ð1� f Þ inf
v2VðDÞ

psðdÞs with d ¼ 1
2
ðgradvþtgradvÞ ð6Þ
Using Eq. (3) together with the definition equation (6), it can be shown that Phom is the support function of the domain Ghom

of macroscopic admissible stresses:
PhomðDÞ ¼ supðR : D;R 2 GhomÞ ð7Þ
The limit stress states at the macroscopic scale are shown to be of the form R ¼ @Phom=@D.
Starting from this general framework, the classical Gurson approach devoted to porous media deals with the case of a von

Mises solid phase:
f sðrÞ ¼ 3
2

rd : rd � r2
o ð8Þ
where rd is the deviatoric part of r. The support function psðdÞ accordingly reads:
trd ¼ 0 : psðdÞ ¼ rodeq with deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 d : d

q
trd–0 : psðdÞ ¼ þ1

ð9Þ
The Gurson model introduces two simplifications. It first consists in representing the morphology of the porous material by a
hollow sphere instead of the r.e.v.. Let Re (resp. Ri) denote the external (resp. cavity) radius. The volume fraction of the cavity
in the sphere is equal to the porosity f ¼ ðRi=ReÞ3. Then, instead of seeking the infimum in Eq. (6), PhomðDÞ is estimated by a
particular microscopic velocity field vðzÞ. In the solid, the latter is defined as the sum of a linear part involving a second order
tensor A and of the solution to an isotropic expansion in an incompressible medium. In spherical coordinates, it thus reads:
vGðzÞ ¼ A � zþ a
R3

i

r2 er ð10Þ
In the pore, the strain rate is defined from the velocity at the cavity wall:
dI ¼ Aþ a1 ð11Þ
The local condition trd ¼ 0 has to be satisfied in the case of a von Mises material (see equation (9)). This implies that A is a
deviatoric tensor: trA ¼ 0. Furthermore, the boundary condition Eq. (2) at r ¼ Re yields:
D ¼ Aþ af 1 ð12Þ
which reveals that A is the deviatoric part Dd of D, while a is related to its spherical part:
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A ¼ Dd; a ¼ 1
3f

trD ð13Þ
The combination of Eqs. (11)and (13) also yields:
dI ¼ Dd þ
trD
3f

1 ð14Þ
Recalling Eq. (6), the use of vG (giving strain rate dG) provides an upper bound of Phom:
PhomðDÞ 6 ð1� f ÞpsðdGÞs ð15Þ
Using Eq. (9), the derivation of the right hand side in Eq. (15) requires to determine the average of deq over Xs. In order to
obtain an analytical expression, it is convenient to apply the following inequality to G ¼ d : d ¼ 3d2

eq=2 [12]:
Z
Xs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr; h;uÞ

p
dV 6 4p

Z Re

Ri

r2 hGiSðrÞ
� �1=2

dr ð16Þ
where SðrÞ is the sphere of radius r and hGiSðrÞ is the average of Gðr; h;uÞ over all the orientations:
hGiSðrÞ ¼
1

4p

Z
SðrÞ

Gðr; h;uÞdS ð17Þ
This eventually yields the following upper bound of PhomðDÞ:
Phom
G ðDÞ ¼ rofDeq n arcsinhðnÞ � arcsinhðfnÞð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2n2

q
f

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q0
@

1
A ð18Þ
with Deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dd : Dd=3

p
and n ¼ 2a=Deq. In this standard case (no interface effect), it is emphasized that the pore size Ri does

not matter by itself since only the ratio Ri=Re ¼ f 1=3 intervenes in the expression Eq. (18).
The last step is the derivation of the limit states R ¼ @Phom

G =@D. It is first observed that Phom
G ðDÞ is in fact a function of D

through a and Deq:
R ¼ @P
hom
G

@a
@a
@D
þ @P

hom
G

@Deq

@Deq

@D
ð19Þ
where
@a
@D
¼ 1

3f
1;

@Deq

@D
¼ 2

3Deq
Dd ð20Þ
The combination of Eqs. (19) and (20) also yields:
trR ¼ 1
f
@Phom

G

@a
; Req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Rd : Rd=2

p
¼ @P

hom
G

@Deq
ð21Þ
In turn, Eq. (18) leads to:
trR ¼ 2roðarcsinhðnÞ � arcsinhðfnÞÞ

Req ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2n2

q
� f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p� � ð22Þ
Eliminating n between the spherical and deviatoric parts of R eventually leads to the well known Gurson strength criterion:
R2
eq

r2
o
þ 2f cosh

trR
2ro

� �
� 1� f 2 ¼ 0 ð23Þ
This equation characterizes the boundary of the domain Ghom
G which support function is Phom

G . This domain is in fact an upper
bound of the exact domain Ghom of macroscopic admissible stresses, that is, Ghom � Ghom

G .

3. Interfaces and interface stresses

The recent literature devoted to nanocomposites has extensively presented the concepts of interface and interface stres-
ses [2,14,3,15,5]. In fact, these concepts are already present in the modelling of capillary forces [7]. The interface itself is a
mathematical model for a thin layer between two phases across which the traction vector undergoes a discontinuity. In con-
trast, the displacement and the tangential strain components are continuous (see [4]). Introducing the local unit normal vec-
tor n to the interface S, the stress discontinuity ½r� � n is related to the interface stresses s by the generalized Laplace
equations which physically represent the condition for the mechanical equilibrium of the interface [20]:
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n � ½r� � n ¼ �s : j

P � n ¼ �rS � s
ð24Þ
whererS� denotes the divergence operator defined on the interface S;P ¼ 1� n� n and j is the curvature tensor. The stress
state s locally meets the plane stress conditions w.r.t. the tangent plane to the interface. We herein consider that the pore/
solid boundary is such an interface.

The interface stresses also manifest themselves by a specific contribution to the energy W developed by the internal
forces in the strain rate field d:
W ¼
Z

X
r : ddV ¼

Z
Xs

r : ddV þ
Z

S
s : ddS ð25Þ
From a mathematical point of view, Eq. (25) amounts to saying that the internal forces can be represented by the sum of a
standard Cauchy stress field r in the solid and by a Dirac distribution s of stresses of support S. Hence, the integral in the left-
hand side of Eq. (25) must be understood in the sense of the distribution theory.

Since the interface stress state is a plane stress one, the work it develops in the strain rate d only depends on the projec-
tion dint of d on the local tangent plane, which is defined as [6]:
dint ¼ T : d withT ¼ P � P ð26Þ
with A�Bijkl ¼ ðAikBjl þ AilBjlÞ=2.
The surface integral in the expression of W has a counterpart in the homogenized support function PhomðDÞ which now

reads:
Phom
int ðDÞ ¼ inf

v2VðDÞ
ð1� f ÞpsðdÞs þ 1

jXj

Z
S
pintðT : dÞdS

� �
ð27Þ
pint denotes the support function of the domain Gint of admissible surface stresses (see also Eq. (5)):
pintðT : dÞ ¼ supðs : T : d; s 2 GintÞ ð28Þ
It is emphasized that the latter meet the local plane stress conditions.
The extension of the Gurson model to interface effects simply consists in estimating the support function PhomðDÞ by the

upper bound obtained for the velocity field vG introduced in Eq. (10):
Phom
G;intðDÞ ¼ Phom

G ðDÞ þ 1
jXj

Z
S
pintðT : dGÞdS ð29Þ
Clearly, we are left with the determination of the interface correcting term, which has to be added to the standard expression
Eq. (18).

4. Influence of capillary forces

When the pore space of the rev is filled by a fluid, capillary effects develop in the solid/fluid interface. In particular, intro-
ducing the surface tension csf at the solid/fluid boundary, interface stresses of the form s ¼ csf P must be considered. Using
this expression in the work of internal forces Eq. (25), Hill’s lemma Eq. (3) now reads:
R : D ¼ 1
jXj

Z
Xs

r : ddV þ csf
Z

S
P : ddS

� �
ð30Þ
Let us now return to the Gurson framework in which the pore/solid interface S is a sphere of radius Ri. However, as opposed
to the classical formulation of the model in which only the ratio Ri=Re matters, the internal radius Ri is not arbitrary since it is
equal to the pore radius: Ri ¼ Rp. The external radius Re is still related to the porosity by Re ¼ Rif�1=3. As regards the surface
integral in Eq. (30), the strain rate d can be replaced by dI given from Eq. (11). Recalling the identity
Z

S
PdS ¼

8pR2
p

3
1 ð31Þ
and that f ¼ R3
p=R3

e , one obtains
R� 2csp

Rp
1

� �
: D ¼ 1

jXj

Z
Xs

r : dGdV
� �

ð32Þ
Considering an admissible macroscopic stress state R 2 Ghom, Eq. (32) provides an upper bound of the macroscopic work
ðR� ð2csp=RpÞ1Þ : D, in the form:
ð8R 2 GhomÞ R� 2csp

Rp
1

� �
: D 6 Phom

G ðDÞ ð33Þ
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Eq. (33) states that Phom
G ðDÞ is an upper bound of the support function of the image of Ghom by the translation

t! t� ð2csp=RpÞ1. This conclusion is in agreement with the result of the modified secant method applied to partially satu-
rated porous media [11]. With the same approximation as done in the Gurson model, we can conclude from Eq. (23) that the
boundary of Ghom can be estimated by
Please
Sci. (2
R2
eq

r2
o
þ 2f cos h

trR� 6csp=Rp

2ro

� �
� 1� f 2 ¼ 0 ð34Þ
Note that this boundary is non symmetric w.r.t. the trR ¼ 0 axis since it is translated (to the right) w.r.t. the classical Gurson
yield surface. Another derivation of Eq. (34) consists in observing that the capillary tension is a very particular case where
there is only one admissible surface stress so that Gint reduces to the stress state s ¼ csf P. Accordingly, it is readily seen that
the corresponding support function is pintðT : dÞ ¼ csf P : d which can be introduced into Eq. (29), so that Eq. (34) is retrieved.

Taking the air–water surface tension as an order of magnitude for the solid–gas surface tension csp, say 70J=m2, it is inter-
esting to determine the range of pore radii Rp for which the contribution of the surface tension in Eq. (34) becomes significant
with respect to the matrix strength ro. For metals, assuming ro � 200 MPa, it is found that the critical radius is of about
50nm which is typically the order of magnitude of nanopores size. Interestingly, assuming a brittle failure mechanism at
the local scale, [18,19] also derive a non symmetric failure surface at the macroscopic scale.

5. Extension of the Gurson model: the von Mises interface:

We now assume that the strength of the interface can be described by a von Mises criterion
3
2

sd : sd � k2
int 6 0 ð35Þ
in plane stress condition, where sd denotes the deviatoric part of the interface stress s. The strength of the interface is then
similar in nature to that of the matrix, up to the fact that it has a bidimensional character. In the local tangent plane which
unit normal vector is n ¼ er , the support function of the domain Gint then reads (see [8]):
pðT : dÞ ¼ 2kint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

d2
hh þ d2

uu þ d2
uh þ dhhduu

� �r
ð36Þ
where kint has the physical dimension of a membrane stress, that is, a force per unit length. The tensor d whose components
appear in Eq. (36) is the pore strain rate dI given in Eq. (14), which is then projected on the tangent plane by the operator T.
The projection operator Tðh;uÞ depends on the location on the spherical cavity wall (see Eq. (26)):
T ¼ P�P with P ¼ 1� er � er ð37Þ
The components of the strain rate tensor appearing in Eq. (36) are then given by
dab ¼ ea�
s

eb : T : dI ð38Þ
with a; b ¼ h ou u, that is:
dab ¼ Tab : dI ð39Þ
Fig. 1. (1) classical Gurson model; (2) extended Gurson model with f ¼ 0:1 and C ¼ 0:2; (3) parabola of Eq. (48); (4) parabola of Eq. (49).
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with Tab ¼ ea�
s

eb : T. It is therefore convenient to introduce the fourth-order tensor M:
Please
Sci. (2
M ¼ Tuu � Tuu þ Thh � Thh þ Tuh � Tuh þ Tuu � Thh ð40Þ
such that
pintðT : dÞ ¼ 2kint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

dI
: M : dI

r
ð41Þ
In order to determine the contribution Pint of the interface to PhomðDÞ (see Eq. (27)), we are left with the integration over the
spherical interface:
Pint ¼ 2kint

jXj

Z
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

dI
: M : dI

r
dS ð42Þ
As in the classical derivation of the Gurson criterion, we have to replace Pint by an upper bound in order to obtain an ana-
lytical expression:
Pint
6

2kintR
2
p

jXj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p
3

Z
So

dI
: M : dI dr

s
ð43Þ
where So is the (boundary of the) unit sphere. Since dI is a constant, the right hand side in Eq. (43) can be put in the form:
Pint
6

2kintR
2
p

jXj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p
3

dI
:

Z
So

Mðh;/Þdr
� �

: dI

s
ð44Þ
Noting from Eq. (40) that:
Z
So

Mdr ¼ p 6
5

Kþ 4J

� �
ð45Þ
the contribution of the interface to PhomðDÞ can be estimated by the following upper bound:
Pint
6 6f

kint

Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dI

:
1

10
Kþ 1

3
J

� �
: dI

s
¼ 3f

kint

Rp
Deq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 3

5

r
with n ¼ 2a=Deq ð46Þ
This term is to be added to Eq. (18) in view of the derivation of the strength criterion. The comparison of the respective con-
tributions of the solid Eq. (18) and of the interface Eq. (46) is controlled by the non dimensional parameter C ¼ kint=ðRproÞ
which is pore size-dependent. The smaller the pores the greater the influence of the interface effects on the strength.We note
that Eqs. (19) and (21) are still valid provided that Phom

G is replaced by Phom
G;int ¼ Phom

G þPint . This leads to the parametric
equations
trR ¼ ro 2 arcsinhðnÞ � arcsinhðfnÞð Þ þ C 6nffiffiffiffiffiffiffiffiffiffiffi
n2þ3=5
p

� �

Req ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2n2

q
� f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
þ C 9f

5
ffiffiffiffiffiffiffiffiffiffiffi
n2þ3=5
p

� � ð47Þ
Note that this boundary is symmetric w.r.t. the trR ¼ 0 axis. Fig. 1 shows a representation of the yield surfaces with and
without (the Gurson model) interface stresses effect. In order to get a closer insight into the influence of the interface on
the effective strength, it is useful to provide an analytical approximation of the boundary of the domain defined by Eq.
(47) in the form FðReq; tr;RÞ ¼ 0. This can be done by means of expansions of Eq. (47) in the vicinity of n ¼ 0 and n ¼ 1.
First, in the vicinity of the maximum deviatoric strength (n ¼ 0, low stress triaxiality), the boundary can be approximated
by a parabola in the ðtrR;ReqÞ plane:
Req

ro
¼ 1� f þ C

9fffiffiffiffiffiffi
15
p � f

8 1� f þ C
ffiffiffiffiffiffi
15
p� � trR

r2
o

� �2

ð48Þ
In turn, in the vicinity of the pure isotropic tensile/compression loading ðn ¼ �1Þ, the boundary can be approximated by
another parabola:
R2
eq

r2
o
¼ 3

2
1� f 2 þ 18

5
Cf 2

� �
�2

3
log f þ 2C� trR

3ro

� �
ð49Þ
The yield surface associated to these two formula are also represented on Fig. 1.
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6. Isotropic tensile/compressive strength

In the framework of the geometrical model of hollow sphere, the classical Gurson model (no interface stress) is known to
provide an exact result as regards the isotropic tensile/compressive strength. With Req ¼ 0, the solutions to Eq. (23) are the
isotropic stress tensors �Rþ1 with Rþ ¼ �2ro log f=3. As a matter of fact, the Gurson approach shows that an admissible iso-
tropic macroscopic stress state R ¼ R1 is subjected to the condition jRj 6 Rþ. Conversely, let us consider the microscopic
stress state defined in the solid in spherical coordinates by:
Please
Sci. (2
r ¼ � 3Rþ

2 log f
2 log

Ri

r
1� P

� �
with � ¼ �1 ð50Þ
It is readily seen that the latter is in equilibrium with the macroscopic stress state �Rþ1 since it satisfies the momentum
balance condition divr ¼ 0 and the boundary conditions r � er ¼ 0 at r ¼ Ri and r � er ¼ �Rþer at r ¼ Re. Furthermore, it meets
the von Mises criterion Eq. (8). This proves that such a macroscopic stress state is admissible and furthermore, that Rþ is
indeed the isotropic tensile/compressive strength.

Let us now examine the effect of interface stresses on the isotropic tensile/compressive strength. Consider the case of the
von Mises interface. According to the extended Gurson model Eq. (49), the necessary condition for an isotropic macroscopic
stress state R ¼ R1 to be admissible reads jRj 6 Rþ þ 2Cro. Conversely, let us consider the microscopic stress state defined in
the solid in spherical coordinates by:
r ¼ � 3Rþ

2 log f
2 log

Ri

r
1� P

� �
þ 2Cro1

� �
with � ¼ �1 ð51Þ
and on the interface S by s ¼ �kintP (recall that kint ¼ CroRp and Rp ¼ Ri). It satisfies the momentum balance equation divr ¼ 0
and the boundary condition r � er ¼ �ðRþ þ 2CroÞer at r ¼ Re. It also satisfies the generalized Laplace equations Eq. (24). Fur-
thermore, it meets the von Mises interface criterion Eq. (35). This establishes that Rþ þ 2Cro is the isotropic tensile/com-
pressive strength.

In the case of capillary interface stresses, the extended Gurson model predicts a translation of the yield surface (Eq. (34)).
Accordingly, the necessary condition for an isotropic macroscopic stress state R1 to be admissible reads jR� 2csp=Rpj 6 Rþ.
Conversely, the microscopic stress field defined in the solid by
r ¼ � 3Rþ

2 log f
2 log

Ri

r
1� P

� �
þ 2

csp

Rp
1 with � ¼ �1 ð52Þ
and by s ¼ cspP in the interface S proves to be in equilibrium with the macroscopic stress state ð�Rþ þ 2csp=RpÞ1. The capillary
interface thus increases the isotropic tensile strength to Rþ þ 2csp=Rp and reduces the isotropic compressive strength to
Rþ � 2csp=Rp.

References

[1] P. de Buhan, A fundamental approach to the yield design of reinforced soil structures – Chap. 2: yield design homogenization theory for periodic media,
Ph.D. Thesis, Univ. Paris VI, 1986.

[2] E. Orowan, Surface energy and surface tension in solids and liquids, Proc. Roy. Soc. A 316 (1970) 473–491.
[3] F. Spaepen, Interfaces and stresses in thin films, Acta Mater. 48 (2000) 31–42.
[4] H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface

stress, J. Mech. Phys. Solids 53 (2005) 1574–1596.
[5] H.L. Duan, J. Wang, Z.P. Huang, Z.Y. Luo, Stress-concentration tensors of inhomogeneities with interface effects, Mech. Mater 37 (2005) 723–736.
[6] H.L. Quang, K.C. He, Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mech. Mater. 40 (2008)

865–884.
[7] J.N. Israelachvili, Intermolecular and surface forces, Academic Press, London, 1992.
[8] J. Salençon, Calcul à la rupture et analyse limite, Presses de l’ENPC, 1983.
[9] J.-B. Leblond, Mécanique de la rupture fragile et ductile, Hermes, 2003.

[10] L. Dormieux, D. Kondo, F.J. Ulm, Microporomechanics, Wiley, 2006.
[11] L. Dormieux, J. Sanahuja, S. Maghous, Influence on capillary effects on strength of non saturated porous media, C.R. Mecanique t.334 (2006) 19–24.
[12] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I, yield criteria and flow rules for porous ductile media, J. Eng.

Mater. Technol. 99 (1977) 2–15.
[13] L.J. Walpole, Coated inclusions in an elastic medium, Math. Proc. Cambridge Philos. Soc. 83 (2000) 495–506.
[14] M.E. Gurtin, A.I. Murdoch, Continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975) 291–323.
[15] P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface, J. Appl. Mech. 71 (2004) 663–671.
[16] P. Suquet, Homogenization techniques for composite media, in: E. Sanchez-Palencia (Ed.), Chapter Elements of homogenization for inelastic solid

mechanics, Springer Verlag, 1985, pp. 193–278.
[17] V. Marcadon, E. Hervé, A. Zaoui, Micromechanical modelling of packing and size effects in particulate composites, Int. J. Solids. Struct. 44 (2007) 8213–

8228.
[18] W.X. Zhang, T.J. Wang, Effect of surface energy on the yield strength of nanoporous materials, Appl. Phys. Lett. 90 (2007).
[19] W.X. Zhang, T.J. Wang, X. Chen, Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites, Int. J. Plast ,

in press, doi:10.1016/j.ijplas.2009.12.002.
[20] Y.Z. Povstenko, Theoretical investigation of phenomena caused by heterogeneous surface tension in solids, J. Mech. Phys. Solids 41 (1993) 1499–1514.
cite this article in press as: L. Dormieux, D. Kondo, An extension of Gurson model incorporating interface stresses effects, Int. J. Eng.
010), doi:10.1016/j.ijengsci.2010.01.004

http://dx.doi.org/10.1016/j.ijplas.2009.12.002
http://dx.doi.org/10.1016/j.ijengsci.2010.01.004

	An extension of Gurson model incorporating interface stresses effects
	Introduction
	Ductile failure of porous media and Gurson model
	Interfaces and interface stresses
	Influence of capillary forces
	Extension of the Gurson model: the von Mises interface:
	Isotropic tensile/compressive strength
	References


