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Basic linearized acoustic equations in lossless, isotropic, non

flowing media

Linearized - Linear for small perturbation on a static state.
Lossless - Material parameters are independent of time.
Isotropic - Material response independent of direction.
Non flowing - No material derivative

Equation of motion
pOrvi + Oip = f;

(three equations for three components)

Acoustic stress-strain relationship
pOtp + Ojvi = q

(a pressure-rate strain-rate relation)



Fields

p = p(x,t) pressure
vi = vj(x,t) 1— component of velocity

Sources

= g(x,t) volume injection rate

g=gq
=1 i — component of external force

Medium Parameters

Kk = K(x) compressibility
p = p(x) density



Wave Equation
Solve equations (1) and (2) for pressure
pdip~t0ip — prOzp = pdip~ ' f; — pdyq,

or

0%p — prdip = pdip~tf; — pdeq + p~ 0ipd;p.

Thus in a constant density and sourceless medium
812[) - C_28§,D = 07

with wave velocity ¢ = ¢(x) = \/kp, k = K(X), p = po.



Finite Differences

Derivation of finite difference stencils for 22(*)

Expand F(s + As) in Taylor series
F(s+As)=F(s) + 1, a F(s AS+Z ZOIF(s) {As)

Express 8’5—(55) as a function of ...

0.F(s) = —{F(5+As i,l s){As}
i=2

this is a forward finite difference stencil.

(6)

(7)



Expand F(s + As) and F(s — As) in Taylor series

Fls-+ As) = F(s) + S0.F(9hs + 3 SoiF(s) (Ash (9)
' i=2

F(s — As) = F(s) — %asF(s)As - i ,.—1,6‘;'F (s){-As}  (9)
' =2
(s)

Substract equations (9) from (8), express ag as a function of ..

o0

OsF(s) = 5 A {F(s+ As) — F(s — As)} — Zﬁamw( s){As}?
1

1=

(10)

this is a centered finite difference stencil.



or last, OsF(s) in a backward finite difference stencil from equation
(9) as

85F(s):i{F() F(s— As)} — Z SOLF(s) {as) (1)



Derivation of finite difference stencils for 92 F(s)

Add equation (9) and (8), express 92F(s) as a function of ...

1

652F(s) = (D)

{F(s —As) —2F(s) + F(s + As)} +

> eyt R s @)

iI=

This is a centered finite difference. Forward and backward finite
difference stencils for 92F(s) can be obtained from combinations
of Taylor series for F(s + As) and F(s + 2As), or F(s — As) and
F(s — 2As) respectively.



Finite Difference Solution of WE

Wave equation, FD 2"-order in space

Ah= Ay = Ah
1 1 +1
2 2 2
P(x,t) — P(x,t) = 1] —2[+1|Py(t) -
V (th) C2(X)at (Xat) (Ah)2 + + (t)
+1
(13)
Laplacian, FD 4-order in space
-1
1 1 +16
2 2
P(x,t) — Px,t) = ——— | —1 16 | =30 16 | —1
VP(x,t) c2(x)8t (x, 1) (AR +16 | =30 | +
+16
-1
1 5
————0; P«(t) (14)

c(x)



Laplacian, FD 4t"-order in space, isotropic

—1
) +16
VP(x,t) = ——— | 1| +16 [ =30 | +16 | —1 | P(t) +
a 12(Ah) 16
-1
—1 —1
) +16 +16
—_— -30 P(t)
2
B 12(Ah) +16 +16
—1 —1
(15)

6:1_7a,forexample: a=1-p=0a=1/2—3=1/40r

a=2/3—p3=1/6.



Wave equation, FD 2"-order time stepping
O?P(x,t) — A(x)V?P(x,t) = ﬁ P:(x) — c?(x)V2P:(x)
(16)
Solve for Pyi1(x)
Piy1(x) = 2P(x) — Pr_1(x) + At?c?(x) V2 Py(x) (17)
Wave equation, FD 4t"-order time stepping

Include the 4t"-order derivative from equation (12), by substituting
the wave equation (Dablain, 1986), as

8?P(x, t) = afﬁfP(x, t) = (9?c2(x)V2P(x7 t) (18)



Pseudospectral (Fourier) methods

» Laplacian computed using FFTs:

2 (x) V2P, (x) ~ ¢2 (x) FFT ! {— ‘/}' ‘2 FFT [P, (x)]}

» Wave equation, FD 2"-order time stepping and
pseudospectral Laplacian:
Pri1(x) =

2P; (x) — Pe_1 (x) + At?c? (x) FFT {— \/?)2 FET [P (X)]}



Stability and accuracy of explicit methods

. — CmaXAt H
» Courant number : Cour = (A Ay A7) where cpax is the

maximum velocity.

» Courant-Friedrichs-Lewy (CFL) condition : Cour <1 it is
a necessary, but not sufficient condition for a stable explicit
extrapolator.

» Numerical dispersion causes cp # ¢, where cp = w/ | k| is
the effective phase velocity of numerically propagated waves



Stability and accuracy analysis of pseudospectral methods

» Substitute a generic plane wave solution:

oo i (R +t)]

. . . 25in’1(:|:CA;|k|)
» Dispersion relation: w = ———~

At
2sin71<:t7CA;‘E|)
» Phase velocity: cp = &% = ——1 4
|| At k|
oer s At|k
» For stability it must be < 2| | <1:

» 1D: Maximum k equal to Nyquist wavenumber knyq = 7/Ax
stability requires Cour < 2/7 ~ 0.636

> 2D: kpax = ﬁkNyq stability requires Cour < \/§/W ~ 0.45
> 3D: kmax = V/3knyq Stability requires Cour < 2/v/37 ~ 0.367



Stability and accuracy of 2"-order in time and space

» Substitute a generic plane wave solution:

oo | (R -+ t)]

» Dispersion relation: w =

2sin~ [CAAt\/sm (kxAX)Jrsm (szz)}

At

» Phase velocity (worst case at k, =0 or k, = 0):
 2sin 5Bt a2

Atky

Ccp =

e

1

» For stability the argument of sin”" must be between -1

and 1:
» 1D: Cour <1

» 2D: Worst case at k, = k, = knyq: Cour < /2/2 ~ 0.707



Observations

» Stability
» Stability constraint becomes more stringent with higher
dimensions
» FD "more stable” than pseudospectral because errors in the
spatial derivatives slows down high frequencies.

» Dispersion
» Pseudospectral

> High frequencies (wavenumbers) arrive before low frequencies
(wavenumbers).
> Dispersion gets worse as the Courant number increases.

» FD

> High frequencies (wavenumbers) "tend” to arrive after low
frequencies (wavenumbers).
> Dispersion gets better as the Courant number increases.



Frequency dispersion with finite-differences schemes
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Frequency dispersion with finite-differences schemes
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Frequency dispersion with finite-differences schemes

0

sepnyrdury

I
T 2nd grder — X: 100 order

90—2°1—




Frequency dispersion with finite-differences schemes
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Frequency dispersion with pseudspectral Laplacian
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Wavelength dispersion with finite-differences schemes
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Wavelength dispersion with finite-differences schemes
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Wavelength dispersion with finite-differences schemes
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Wavelength dispersion with finite-differences schemes
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Wavelength dispersion with pseudspectral Laplacian
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Green’s function

Introduce Green's function for a constant density and sourceless
medium equation (5) by a point source term acting at t = 0 and
X = Xs

2G — 207G = —5(x — x5)d(1), (19)
where G = G(x,Xs, t) is the Green's function.

The solution for pressure to another forcing function for example
s = sx, t can be represented as

p(x,t) = — /7{ G(x,x',t — t')s(x', t')dx'dt’ (20)



Perturbation Representation

Represent the medium velocity as a background velocity and a
perturbation
¢ (x) = ¢, 2(%) [1 + a(x)] (21)

Substitution into equation (19) gives

D?G(x, xs, t) — c;z(x)c’)fG(x, Xs, t) = (22)
—d(x — x5)d(t) + a(x)cb_2(x)8?G(x, Xs, t),



Introducing Gp(x, Xs, t) as a solution to
92 Gp(x, Xs, t) — cb_2(x)8?Gb(x, Xs, t) = —0(x — x5)d(t),

we see that is we represent the full solution as a sum of the
background solution plus a perturbed solution as

G(X,Xs, t) = Gp(X, Xs, t) + Gp(x, X, t).

(23)

(24)



Equation (22) can be thus written as

92 Gp(x, x5, t) — ¢ 2(X)02Gp(x, X5, t) = a(x)c, 2(X)0 G(x, Xs, t).
(25)
Note the forcing function dependent on medium parameter «.

Thus using a representation as (20) for Gp(x, X, t) we find for
G(x,xs, t)

G(x,xs,t) = Gp(x,Xs,t) — (26)
/7{ Gp(x, X', t — t')a(x’)cb_z(x')ﬁfG(x', xs, t')dx'dt’



Born Approximation

The Born approximation is made in the perturbation representation
by substituting the total field under the integral for the background
field.

G(x,xs,t) = Gp(x,xs,t) — (27)
/]{ Gp(x, X, t — t")a(X)c, 2(X)02 Gp(X', xs, t')dX'dt’

This is an explicit representation for G(x, xs, t).

The perturbation can represent a (single additional) scattered
wavefield as

(x,xs,t) = d(x,xs, t) =

/% Gp(x, X', t — t')a(X)c, 2(X)97Gp(X, xs, t')dX'dt’.  (28)



