Acoustic Wave Equation

Sjoerd de Ridder (most of the slides) & Biondo Biondi

January 16th 2011

K ロ X - K 제공 X 제공 X 제공 및 및 X - K 이익(N)

Table of Topics

AD A REAKEN E YOUR

- \blacktriangleright Basic Acoustic Equations
- \triangleright Wave Equation
- \blacktriangleright Finite Differences
- \blacktriangleright Finite Difference Solution
- \blacktriangleright Pseudospectral Solution
- \triangleright Stability and Accuracy
- \blacktriangleright Green's function
- \blacktriangleright Perturbation Representation
- \blacktriangleright Born Approximation

Basic linearized acoustic equations in lossless, isotropic, non flowing media

Linearized - Linear for small perturbation on a static state. Lossless - Material parameters are independent of time. Isotropic - Material response independent of direction. Non flowing - No material derivative

Equation of motion

$$
\rho \partial_t v_i + \partial_i p = f_i \tag{1}
$$

(three equations for three components)

Acoustic stress-strain relationship

$$
\rho \partial_t p + \partial_i v_i = q \tag{2}
$$

4 D > 4 P > 4 E > 4 E > E + 9 Q O

(a pressure-rate strain-rate relation)

Fields

$$
p = p(\mathbf{x}, t) \quad \text{pressure}
$$

$$
v_i = v_i(\mathbf{x}, t) \quad \text{i}-\text{component of velocity}
$$

Sources

$$
q = q(\mathbf{x}, t)
$$
 volume injection rate
\n $f_i = f_i$ i – component of external force

K ロ > K 레 > K 함 > K 함 > 1 홈 → O Q Q +

Medium Parameters

$$
\kappa = \kappa(\mathbf{x})
$$
 compressibility

$$
\rho = \rho(\mathbf{x})
$$
 density

Wave Equation

Solve equations [\(1\)](#page-2-0) and [\(2\)](#page-2-1) for pressure

$$
\rho \partial_i \rho^{-1} \partial_i p - \rho \kappa \partial_t^2 p = \rho \partial_i \rho^{-1} f_i - \rho \partial_t q, \tag{3}
$$

or

$$
\partial_i^2 \rho - \rho \kappa \partial_t^2 \rho = \rho \partial_i \rho^{-1} f_i - \rho \partial_t q + \rho^{-1} \partial_i \rho \partial_i \rho. \tag{4}
$$

Thus in a constant density and sourceless medium

$$
\partial_t^2 p - c^{-2} \partial_t^2 p = 0, \qquad (5)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ _ 할 | 2000

with wave velocity $c = c(\mathbf{x}) = \sqrt{\kappa \rho}$, $\kappa = \kappa(\mathbf{x})$, $\rho = \rho_0$.

Finite Differences

Derivation of finite difference stencils for $\frac{\partial F(s)}{\partial s}$

Expand $F(s + \Delta s)$ in Taylor series

$$
F(s + \Delta s) = F(s) + \frac{1}{1!} \partial_s F(s) \Delta s + \sum_{i=2}^{\infty} \frac{1}{i!} \partial_s^{i} F(s) \left\{ \Delta s \right\}^{i} \tag{6}
$$

Express $\frac{\partial F(s)}{\partial s}$ as a function of ...

$$
\partial_s F(s) = \frac{1}{\Delta s} \left\{ F(s + \Delta s) - F(s) \right\} - \sum_{i=2}^{\infty} \frac{1}{i!} \partial_s^i F(s) \left\{ \Delta s \right\}^{i-1} \quad (7)
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 900

this is a forward finite difference stencil.

Expand $F(s + \Delta s)$ and $F(s - \Delta s)$ in Taylor series

$$
F(s+\Delta s) = F(s) + \frac{1}{1!} \partial_s F(s) \Delta s + \sum_{i=2}^{\infty} \frac{1}{i!} \partial_s^i F(s) \left\{ \Delta s \right\}^i \tag{8}
$$

$$
F(s - \Delta s) = F(s) - \frac{1}{1!} \partial_s F(s) \Delta s + \sum_{i=2}^{\infty} \frac{1}{i!} \partial_s^i F(s) \{-\Delta s\}^i \qquad (9)
$$

Substract equations [\(9\)](#page-6-0) from [\(8\)](#page-6-1), express $\frac{\partial F(s)}{\partial s}$ as a function of ...

$$
\partial_s F(s) = \frac{1}{2\Delta s} \left\{ F(s + \Delta s) - F(s - \Delta s) \right\} - \sum_{i=1}^{\infty} \frac{1}{(1+2i)!} \partial_s^{1+2i} F(s) \left\{ \Delta s \right\}^{2i}
$$
\n(10)

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 900

this is a centered finite difference stencil.

or last, $\partial_s F(s)$ in a backward finite difference stencil from equation [\(9\)](#page-6-0) as

$$
\partial_s F(s) = \frac{1}{\Delta s} \left\{ F(s) - F(s - \Delta s) \right\} - \sum_{i=2}^{\infty} \frac{1}{i!} \partial_s^i F(s) \left\{ \Delta s \right\}^{i-1} \tag{11}
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 기로 및 X 이익(N

Derivation of finite difference stencils for $\partial_s^2 F(s)$

Add equation [\(9\)](#page-6-0) and [\(8\)](#page-6-1), express $\partial_s^2 F(s)$ as a function of ...

$$
\partial_s^2 F(s) = \frac{1}{(\Delta s)^2} \left\{ F(s - \Delta s) - 2F(s) + F(s + \Delta s) \right\} + \sum_{i=1}^{\infty} \frac{1}{(2 + 2i)!} \partial_s^{2 + 2i} F(s) \left\{ \Delta s \right\}^{2i} \tag{12}
$$

This is a centered finite difference. Forward and backward finite difference stencils for $\partial_s^2 F(s)$ can be obtained from combinations of Taylor series for $F(s + \Delta s)$ and $F(s + 2\Delta s)$, or $F(s - \Delta s)$ and $F(s - 2\Delta s)$ respectively.

Finite Difference Solution of WE

Wave equation, FD 2nd-order in space
\n
$$
\Delta h = \Delta y = \Delta h
$$
\n
$$
\nabla^2 P(x, t) - \frac{1}{c^2(x)} \partial_t^2 P(x, t) = \frac{1}{(\Delta h)^2} \frac{+1}{+1} \frac{+1}{-2 + 1} P_x(t) - \frac{1}{c^2(x)} \partial_t^2 P_x(t)
$$
\n(13)

Laplacian, FD 4th-order in space

−1 +16 1 ^t ^P(x,t) = ¹ ∇2P(x,t) − 2 ∂ −1 +16 −30 +16 −1 P^x (t) c ²(x) 12(∆h) 2 +16 −1 1 2 − ∂ ^t P^x (t) (14)²(x) c

Laplacian, FD 4th-order in space, isotropic

 $\beta = \frac{1-\alpha}{2}$ $\frac{-\alpha}{2}$, for example: $\alpha = 1 \rightarrow \beta = 0$, $\alpha = 1/2 \rightarrow \beta = 1/4$ or $\alpha = 2/3 \rightarrow \beta = 1/6.$

AD A REAKEN E YOUR

Wave equation, FD 2^{nd} -order time stepping

$$
\partial_t^2 P(x,t) - c^2(x) \nabla^2 P(x,t) = \frac{1}{\Delta t^2} \left[\frac{1}{1} \right] - 2 \left[\frac{1}{1} \right] P_t(x) - c^2(x) \nabla^2 P_t(x) \tag{16}
$$

Solve for $P_{t+1}(x)$

$$
P_{t+1}(x) = 2P_t(x) - P_{t-1}(x) + \Delta t^2 c^2(x) \nabla^2 P_t(x)
$$
 (17)

Wave equation, FD 4^{th} -order time stepping

Include the 4^{th} -order derivative from equation [\(12\)](#page-8-0), by substituting the wave equation (Dablain, 1986), as

$$
\partial_t^4 P(x,t) = \partial_t^2 \partial_t^2 P(x,t) = \partial_t^2 c^2(x) \nabla^2 P(x,t)
$$
 (18)

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 900

Pseudospectral (Fourier) methods

 \blacktriangleright Laplacian computed using FFTs: $c^{2}(x) \nabla^{2} P_{t}(x) \approx c^{2}(x) FFT^{-1} \left\{-\right\}$ \vec{k} $\left\{ \text{FFT}\left[P_{t}\left(x\right) \right] \right\}$

 \triangleright Wave equation, FD 2nd-order time stepping and pseudospectral Laplacian:

$$
P_{t+1}(x) =
$$

2P_t(x) – P_{t-1}(x) + $\Delta t^2 c^2$ (x) FFT⁻¹ $\left\{-\left|\vec{k}\right|^2 \text{FFT}[P_t(x)]\right\}$

AD A REAKEN E YOUR

Stability and accuracy of explicit methods

► Courant number : $\text{Cour} = \frac{c_{\text{max}}\Delta t}{\text{min}(\Delta x, \Delta y, \Delta z)}$ where c_{max} is the maximum velocity.

▶ Courant-Friedrichs-Lewy (CFL) condition : $\text{Cour} \leq 1$ it is a necessary, but not sufficient condition for a stable explicit extrapolator.

Numerical dispersion causes $c_P \neq c$, where $c_P = \omega / |k|$ is the effective phase velocity of numerically propagated waves

Stability and accuracy analysis of pseudospectral methods

 \triangleright Substitute a generic plane wave solution: $\exp\left[i\left(\vec{k}x + \omega t\right)\right]$

► Disperson relation:
$$
\omega = \frac{2\sin^{-1}\left(\pm \frac{c\Delta t |\vec{k}|}{2}\right)}{\Delta t}
$$

$$
\blacktriangleright \text{ Phase velocity: } c_P = \frac{\omega}{|\vec{k}|} = \frac{2 \sin^{-1} \left(\pm \frac{c \Delta t |\vec{k}|}{2} \right)}{\Delta t |\vec{k}|}
$$

- ► For stability it must be $\frac{c\Delta t|\vec{k}|}{2} \leq 1$:
	- ► 1D: Maximum k equal to Nyquist wavenumber $k_{\text{Nvc}} = \pi/\Delta x$ stability requires Cour $\leq 2/\pi \approx 0.636$
	- \blacktriangleright 2D: $k_{\max} =$ √ 2 $k_{\rm Nyq}$ stability requires ${\rm Cour} \leq$ √ $2/\pi \approx 0.45$
	- \blacktriangleright 3D: $k_{\max} =$ √ $3k_\mathrm{Nyq}$ stability requires $\mathrm{Cour} \leq 2/3$ √ $3\pi \approx 0.367$

Stability and accuracy of 2nd-order in time and space

 \triangleright Substitute a generic plane wave solution: $\exp\left[i\left(\vec{k}x + \omega t\right)\right]$

$$
\blacktriangleright \text{ Disperson relation: } \omega = \frac{2 \sin^{-1}\left[\frac{c\Delta t}{\Delta x}\sqrt{\sin^2\left(\frac{k_x\Delta x}{2}\right)+\sin^2\left(\frac{k_z\Delta z}{2}\right)}\right]}{\Delta t}
$$

- **Phase velocity (worst case at** $k_x = 0$ or $k_z = 0$): $c_P = \frac{\omega}{k}$ $\frac{\omega}{k_{\mathsf{x}}}=\frac{2\sin^{-1}\left[\frac{c\Delta t}{\Delta \mathsf{x}}\sin\left(\frac{k_{\mathsf{x}}\Delta \mathsf{x}}{2}\right)\right]}{\Delta t k_{\mathsf{x}}}$ $\Delta t k_{x}$
- ► For stability the argument of sin^{-1} must be between -1 and 1:
	- \triangleright 1D: Cour ≤ 1
	- ▶ 2D: Worst case at $k_x = k_z = k_\mathrm{Nyq}$: $\mathrm{Cour} \leq$ √ $2/2 \approx 0.707$

4 D > 4 P > 4 E > 4 E > E + 9 Q O

Observations

\blacktriangleright Stability

- \triangleright Stability constraint becomes more stringent with higher dimensions
- \blacktriangleright FD "more stable" than pseudospectral because errors in the spatial derivatives slows down high frequencies.

\blacktriangleright Dispersion

- \blacktriangleright Pseudospectral
	- \blacktriangleright High frequencies (wavenumbers) arrive before low frequencies (wavenumbers).
	- \triangleright Dispersion gets worse as the Courant number increases.
- \triangleright FD
	- \blacktriangleright High frequencies (wavenumbers) "tend" to arrive after low frequencies (wavenumbers).

AD A REAKEN E YOUR

 \triangleright Dispersion gets better as the Courant number increases.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Frequency dispersion with pseudspectral Laplacian

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロメ K 御 X K 君 X K 君 X

 \Rightarrow

K ロメ K 御 X K 君 X K 君 X

一番

メロメ メ都 メメ きょ メモメ

一番

K ロメ K 御 X K 君 X K 君 X

一番

Wavelength dispersion with pseudspectral Laplacian

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

G.

Green's function

Introduce Green's function for a constant density and sourceless medium equation [\(5\)](#page-4-0) by a point source term acting at $t = 0$ and $x = x_s$

$$
\partial_i^2 G - c^{-2} \partial_t^2 G = -\delta(\mathbf{x} - \mathbf{x}_s) \delta(t), \tag{19}
$$

where $G=G(\mathbf{x},\mathbf{x}_{s},t)$ is the Green's function.

The solution for pressure to another forcing function for example $s = s\mathbf{x}$, t can be represented as

$$
p(\mathbf{x},t) = -\int \oint G(\mathbf{x}, \mathbf{x}', t - t')s(\mathbf{x}', t') \mathrm{d}\mathbf{x}' \mathrm{d}t'
$$
 (20)

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 900

Perturbation Representation

Represent the medium velocity as a background velocity and a perturbation

$$
c^{-2}(\mathbf{x}) = c_b^{-2}(\mathbf{x}) [1 + \alpha(\mathbf{x})]
$$
 (21)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ _ 할 | 2000

Substitution into equation [\(19\)](#page-27-0) gives

$$
\partial_i^2 G(\mathbf{x}, \mathbf{x}_s, t) - c_b^{-2}(\mathbf{x}) \partial_t^2 G(\mathbf{x}, \mathbf{x}_s, t) = -\delta(\mathbf{x} - \mathbf{x}_s) \delta(t) + \alpha(\mathbf{x}) c_b^{-2}(\mathbf{x}) \partial_t^2 G(\mathbf{x}, \mathbf{x}_s, t),
$$
\n(22)

Introducing $\mathsf{G}_b(\mathsf{x},\mathsf{x}_{\mathsf{s}},t)$ as a solution to

$$
\partial_i^2 G_b(\mathbf{x}, \mathbf{x}_s, t) - c_b^{-2}(\mathbf{x}) \partial_t^2 G_b(\mathbf{x}, \mathbf{x}_s, t) = -\delta(\mathbf{x} - \mathbf{x}_s) \delta(t), \quad (23)
$$

we see that is we represent the full solution as a sum of the background solution plus a perturbed solution as

$$
G(\mathbf{x}, \mathbf{x}_s, t) = G_b(\mathbf{x}, \mathbf{x}_s, t) + G_p(\mathbf{x}, \mathbf{x}_s, t). \tag{24}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Equation [\(22\)](#page-28-0) can be thus written as

$$
\partial_i^2 G_p(\mathbf{x}, \mathbf{x}_s, t) - c_b^{-2}(\mathbf{x}) \partial_t^2 G_p(\mathbf{x}, \mathbf{x}_s, t) = \alpha(\mathbf{x}) c_b^{-2}(\mathbf{x}) \partial_t^2 G(\mathbf{x}, \mathbf{x}_s, t).
$$
\n(25)

Note the forcing function dependent on medium parameter α . Thus using a representation as [\(20\)](#page-27-1) for $\mathsf{G}_p(\mathsf{x},\mathsf{x}_{\mathsf{s}},t)$ we find for $G(\mathbf{x}, \mathbf{x}_s, t)$

$$
G(\mathbf{x}, \mathbf{x}_s, t) = G_b(\mathbf{x}, \mathbf{x}_s, t) -
$$

$$
\int \oint G_b(\mathbf{x}, \mathbf{x}', t - t') \alpha(\mathbf{x}') c_b^{-2}(\mathbf{x}') \partial_t^2 G(\mathbf{x}', \mathbf{x}_s, t') d\mathbf{x}' dt'
$$
 (26)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

Born Approximation

The Born approximation is made in the perturbation representation by substituting the total field under the integral for the background field.

$$
G(\mathbf{x}, \mathbf{x}_s, t) = G_b(\mathbf{x}, \mathbf{x}_s, t) -
$$

$$
\int \oint G_b(\mathbf{x}, \mathbf{x}', t - t') \alpha(\mathbf{x}') c_b^{-2}(\mathbf{x}') \partial_t^2 G_b(\mathbf{x}', \mathbf{x}_s, t') d\mathbf{x}' dt'
$$
 (27)

This is an explicit representation for $G(\mathbf{x},\mathbf{x}_{s},t)$.

The perturbation can represent a (single additional) scattered wavefield as

$$
G_{s}(\mathbf{x}, \mathbf{x}_{s}, t) = d(\mathbf{x}, \mathbf{x}_{s}, t) =
$$

$$
-\int \oint G_{b}(\mathbf{x}, \mathbf{x}', t - t') \alpha(\mathbf{x}') c_{b}^{-2}(\mathbf{x}') \partial_{t}^{2} G_{b}(\mathbf{x}', \mathbf{x}_{s}, t') d\mathbf{x}' dt'. \quad (28)
$$

4 D > 4 P > 4 E > 4 E > E + 9 Q O