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SUMMARY

Because predictive decon fails on the Ricker wavelet, ear-
lier we devised an extension to non-minimum phase wavelets
(Yang et al, 2011). It showed remarkable clarity of seismo-
gram polarity. Here we improve our method by a log spectral
parameterization. Another innovation here is correctly han-
dling time-variable gain. Since filtering does not commute
with TV gain, gain is now done after decon (not before). Re-
sults at two survey locations confirm the utility of both im-
provements. An intriguing theoretical aspect shows that log
spectral parameterization links penalty functions to crosscor-
relation statistics of outputs.

LOG SPACE, SPARSITY, AND GAIN

In the long-standing problem of blind deconvolution we re-
place the traditional unknown filter coefficients by lag coeffi-
cients ut in the log spectrum of the deconvolution filter. Given
data D(ω), the deconvolved output is

rt = FT−1 D(ω) exp

 X
t

utZt

!
(1)

where Z = eiω . The log variables ut transform the linear least
squares (`2) problem to a non-linear one that requires iteration.
Losing the linearity is potentially a big loss, but we lost that at
the outset when we first realized we needed to deal with the
non-minimum phase Ricker wavelet. We find convergence is
typically quite rapid.

The source wavelet, inverse to the decon filter above, corre-
sponds to −ut . The positive lag coefficients in ut correspond
to a causal minimum phase wavelet. The negative lag coeffi-
cients correspond to an anticausal filter.

We introduce the complication that seismic data is non-stationary
requiring a time variable gain gt . The deconvolved data is the
residual rt . The gained residual qt = gtrt is “sparsified” (Li et
al, 2012) by minimizing

P
t H(qt) where

qt = gt rt (2)

H(qt) =
q

q2
t +1−1 (3)

dH
dq

= H ′(q) =
qp

q2 +1
= softclip(q) (4)

Our prefered penalty function H(q) used for finding ut is the
hyperbolic (or hybrid) penalty function (equation (3)). The
output qt best senses sparsity when gain is such that the typical
penalty H(qt) value is found near the transition level between
`1 and `2 norms, namely, when typical |qt | ≈ 1.

MINIMUM PHASE EXTENSION

A minimum phase wavelet can be made from any causal wavelet
by taking it to Fourier space, and exponentiating. The proof is
straightforward: Let U(Z) = 1 + u1Z + u2Z2 + · · · be the Z
transform (Z = eiω ) of any causal function ut . Consider eU(Z).
Although we would always do this calculation in the Fourier
domain, the easy proof is in the time domain. The power se-
ries for an exponential eU = 1+U +U2/2!+U3/3!+ · · · has
no powers of 1/Z (because U has no such powers), and it al-
ways converges because of the powerful influence of the de-
nominator factorials. Likewise e−U , the inverse of eU , always
converges and is causal. Thus both the filter and its inverse are
causal. This is the essense of minimum phase.

We seek to find two functions, one strictly causal the other
strictly anticausal.

U+ = u1Z +u2Z2 + · · · (5)

U− = u−1/Z +u−2/Z2 + · · · (6)

Notice U , U2, etc do not contain Z0. Thus the coefficient of
Z0 in eU = 1+U +U2/2!+ · · · is unity. Thus a0 = b0 = 1.

eU+
= A = 1+a1Z +a2Z2 + · · · (7)

eU−
= B = 1+b1/Z +b2/Z2 + · · · (8)

Define U = U− +U+. The decon filter is AB = eU and the
source waveform is its inverse e−U .

Consider U(ω) = lnAB the log spectrum of the filter. We will
be adjusting the various ut , all of them but not u0 which is the
average of the log spectrum. The other ut cannot change the
average; they merely cause the log spectrum to oscillate.

THE GRADIENT

Having data dt , having chosen gain gt , and having a starting
log filter, say ut = 0, let us see how to update ut to find a gained
output qt = gtrt with better hyperbolicity. Our forward mod-
eling operation with model parameters ut acting upon data dt
(in the Fourier domain D(Z) where Z = eiω ) produces decon-
volved data rt (the residual).

rt = FT−1 D(Z) e···+u2Z2+u3Z3+u4Z4+··· (9)
drt

duτ

= FT−1 D(Z) Zτ e···+u2Z2+u3Z3+u4Z4+··· (10)

drt

duτ

= rt+τ (11)

This follows because Zτ shifts the data D(Z) by τ units which
shifts the residual the same. Output formerly at time t moves
to time t + τ . This is not the familiar result that the derivative
of an output with respect to a filter coefficient at lag τ is the
shifted input dt+τ . Here we have the output rt+τ . This differ-
ence leads to remarkable consequences below.



It is the gained residual qt = gtrt that we are trying to sparsify.
So we need its derivative by the model parameters uτ .

qt = gt rt = rt gt (12)
dqt

duτ

=
drt

duτ

gt = rt+τ gt (13)

Recall u0 = 0 and hence ∆u0 = 0. To find the update direction
at nonzero lags ∆u = (∆ut) take the derivative of the hyper-
bolic penalty function

P
t H(qt) by uτ .

∆u =
X

t

dH(qt)
duτ

τ 6= 0 (14)

=
X

t

dqt

duτ

dH(qt)
dqt

(15)

∆u =
X

t
(rt+τ )

`
gtH ′(qt)

´
τ 6= 0 (16)

This says to crosscorrelate the physical residual rt with the
statistical residual gtH ′(qt). Notice in reflection seismology
the physical residual rt generally decreases with time while
the gain gt generally increases to keep the statistical variable
qt roughly constant, so gtH ′(qt) grows in time(!)

In the frequency domain the crosscorrelation (16) is:

∆U = FT(rt) FT(gt softclip(qt)) (17)

Equation (17) is wrong at t = 0. It should be brought into the
time domain and have ∆u0 set to zero. More simply, the mean
can be removed in the Fourier domain.

Causal least squares theory in a stationary world says the sig-
nal output rt is white (Claerbout, GEE); the autocorrelation of
the signal output is a delta function. Noncausal sparseness the-
ory (other penalty functions) in a world of echos (nonstation-
ary gain) says the crosscorrelation of the signal output with
its gained softclip is also a delta function (equation (16) upon
convergence).

TAKING THE STEP

We adopt the convention that components of a vector u range
over the values of (ut), likewise for other vectors. Given the
gradient direction ∆u we need to know the residual change ∆r
and a distance α to go: α∆r and α∆u.

A two-term example demonstrates a required linearization.

eα∆U = eα(∆u1Z+∆u2Z2) (18)

eα∆U = 1+α(∆u1Z +∆u2Z2)+α
2(· · ·) (19)

FT−1 eα∆U = (1,α∆u1,α∆u2)+α
2(· · ·) (20)

FT−1 eα∆U = (1,α∆u)+α
2(· · ·) (21)

With that background, neglecting α2, and knowing the gradi-
ent ∆u, let us work out the forward operator to find ∆q. Let

“∗” denote convolution.

r+α∆r = FT−1(DeU+α∆U ) (22)

= FT−1(DeU eα∆U ) (23)

= FT−1(DeU )∗FT−1(eα∆U ) (24)

= r∗ (1,α∆u) (25)

= r+α r∗∆u (26)

∆r = r ∗ ∆u (27)

∆qt = gt ∆rt (28)

It is pleasing that ∆r is proportional to r. This might mean we
can deal with a wide dynamic range within rt . The convolu-
tion, a physical process, occurs in the physical domain which
is only later gained to the statistical domain qt . Naturally, the
convolution may be done as a product in the frequency domain.

To minimize H ′(r+α∆r) express it as a Taylor series approx-
imation to quadratic order. Minimizing yields

α = −
X

t
∆qtH ′

t /
X

t
(∆qt)2H ′′

t (29)

Update r = r+α∆r. Update u = u+α∆u. Optionally iterate
to overcome the quadratic truncation (i.e. Newton method).

ALGORITHM

Pseudo code below finds the best single filter for a group of
seismograms. Notice g(t,x) could contain mute patterns, etc.

Lower case letters are used for variables in time and space like
d = d(t,x), g = g(t,x), q = q(t,x), dq = ∆q(t,x). while upper
case for functions of frequency D= D(ω,x), R= R(ω,x), dR=
∆R(ω,x), U= U(ω), dU= ∆U(ω). Asterisk ∗ means multiply
within an implied loop on t or ω .

D = FT(d)

U=0

iteration {

dU = 0

for all x

r = IFT( D * exp(U))

q = g * r

dU = dU + conjg(FT(r)) * FT(g*softclip(q))

remove the mean from dU(omega)

for all x

dR = FT(r) * dU

dq = g * IFT(dR)

alpha = Newton line search ( H( q+alpha*dq ))

u = u + alpha * du

U = FT(u)

}

UNIQUENESS

As the figures show, our results are excellent, amazing even,
but we’ve had a continuing problem with uniqueness. We
find our present solution can spike any of the three lobes of
the Ricker wavelet defining the sea floor. This is particularly
annoying as it amounts to apparent time shifts and polarity



changes. For about a year we have ascribed this difficulty to
descent in a nonlinear problem. Now it looks like something
else is responsible.

First we tried as a starting guess various approximations to
the inverse of the Ricker wavelet, an inverse that would spike
at the middle lobe of the Ricker wavelet. These didn’t work.
Then we tried various preconditionings, such as changing vari-
ables so the dependent variable would be the industry standard
predictive decon. That made things worse. We tried various
regularizations

P
t wtu2

t , but they didn’t seem to help. We
tried different ways of truncating u(t) at negative times, but
that didn’t work. Then we returned to addressing again the ini-
tial conditions. Although U=0 often worked, it was not wholly
reliable. Then we realized the initialization U = − log(|D|)
amounts to starting with a standard but symmetrical deconvo-
lution R = D/

√
D∗D. That begins us with a symmetrical spik-

ing wavelet much nearer our goal than U = 0, namely R = D.
We were dismayed to find although iteration seemed to con-
verge rapidly, iteration being allowed to continue, the spiking
might switch to first or third lobes of the Ricker wavelet with
their accompanying polarity change. To make matters worse,
only slight changes in the gain function gt would determine the
selection of which final lobe. Arrg!

These studies led us to conclude that we are not facing a prob-
lem with the non-linear descent. Instead, our hyperbolic penalty
function has not the power to choose the lobe. Data spiked on
other lobes is also well spiked. Thus we need some kind of
regularization to make that choice. In the days preceding this
abstract deadline, we came up with ideas for that, but had in-
sufficient time to test them adequately. Come to our talk to find
out if we have overcome this perplexing aspect.

GOALS

A long range goal is to successfully integrate the reflectivity to
get the log impedance. This requires good low frequency han-
dling. Recording equipment often suppresses low frequencies
for various practical reasons whose validity is likely location
dependent. Our decon is pulling back some of these low fre-
quencies but should be stopping before pulling up noise. Fig-
ure 2 demonstrates doing gain after non-minimum phase decon
makes a valuable first step. To find impedance may require the
additional statistical assumption of sparseness, but by solving
the physical problem correctly, we have reduced the need for
that.
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Figure 1: Gulf of Mexico. Decon produces plain white reflec-
tions from hard boundaries, and plain black boundaries from
soft ones. WB= Water Bottom (white), TS= Top Salt (white),
BS= Bottom Salt (black), ME= Mystery Event (black), soft
reflector could be rugose salt solution of a former salt layer.

Figure 2: Wavelet from Cabo data. Although causality is
not imposed, the estimated shot waveform is near causal (dis-
counting the leading lobe of the Ricker wavelet). The impor-
tance of gain (here t2) after deconvolution instead of before
is shown by the lower two traces. There is much less noise
when we gain AFTER decon, not BEFORE. Notice also that
gain before decon estimates a slightly larger bubble (which is
wrong).



Figure 3: Cabo data. One filter on all traces. Bubble (at about
0.9s) removed. Enhanced high frequency at 1.1s. Gained-input
method gave low frequency event precursors especially clear
above the event at 1.2s but also visible above the water bot-
tom. The problem is overcome by the gained-output method.
(Guitton)

Figure 4: The Gulf of Mexico data produces a very different
bubble but the same conclusions as Figure 2. The lack of sym-
metry in the Ricker wavelet may be related to the unresolved
uniqueness issue. (Awaits better regularization.)


