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Front matter

It is not that I’m so smart. But I stay with the questions much longer. –A.E.

0.1 PREFACE

After what in 2014 was to be my final book, Geophysical Image Estimation by Example1,
(GIEE) I stumbled on an approach to a large amount of geophysical data model fitting that
is much simpler than traditional approaches. Even better, it avoids the often unreasonable
academic presumption of stationarity (i.e., time and space invariant statistics). I could not
resist embarking on this tutorial.

My previous book GIEE is freely available at http://sep.stanford.edu/sep/prof/
or in paper for a small price at many booksellers, or at the printer, Lulu.com. It is widely
referenced herein.

For teachers: I recommend covering material in this order: (1) GIEE Chapter 1 on
adjoints, (2) this tutorial on PEFs, (3) GIEE conjugate gradients with diverse applications.

The most recent version of this manuscript should be at the website Jon Claerbout’s
classroom. Check here: http://sep.stanford.edu/sep/prof/. The manuscript you are
now reading was formed November 28, 2019.

I am now ready to share further development with any and all. I’d like someone to
teach me to learn how to use Git to make the book publicly available. Any participant is
welcome to contribute illustrations (and ideas)—perhaps becoming a coauthor, even taking
over this manuscript. The first priority now is more examples. Ultimately, all the examples
should be presented in reader rebuildable form. Being 81 years old I’d like to retire to the
role of back-seat driver.

Early beta versions of this tutorial will fail to provide rebuildable illustrations. I am no
longer coding myself, so if there are ever to be rebuildable illustrations, I need coauthors. I
set for myself the goal to take this tutorial out from beta when 50% of the illustrations can
be destroyed and rebuilt by readers.

1 Claerbout, J., 2014, Geophysical Image Estimation by Example: Lulu.com.

i
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0.2 INTRODUCTION

The word nonstationary is commonly defined in the world of time signals. Signals become
nonstationary when their mean or their variance changes. More interestingly, and the focus
herein, signals become nonstationary when their spectrum (frequency content) changes.

The word nonstationary is also taken to apply to images, such as earth images, and also
to wavefields seen with clusters of instruments. Wavefields are nonstationary when their
arrival direction changes with time or location. They are nonstationary when their 2-D
(two-dimensional) spectrum changes.

Herein the word nonstationary also refers to sampling irregularity. All signal recording
instruments cost money; and in the world we study, we never have enough. Further, we
are often limited in the locations we can place data recorders. In Chapter 6, the word
nonstationary refers to our inability on the earth surface to acquire adequate numbers of
uniformly spaced signals.

We require uniformly spaced signals for four reasons: (1) to enable pleasing displays
of them, (2) to allow Fourier transformation, (3) to accommodate the equations of physics
with finite differences, and (4) spectral shaping the residual—the difference between real
data and modeled data.

Since spatial sampling uniformity is rarely achievable with real data, this tutorial ex-
plains how observed data on a nonuniform grid can be used to make pseudo data that is
on a uniform grid; and further, linear interpolation of the pseudo data yields the observed
data.

0.2.1 What can you do with these methods?

1. Build models to fit data with nonstationary statistics.

2. Perform blind deconvolution (estimate and remove a source wavelet).

3. Fill data gaps. Interpolate beyond aliasing (sometimes).

4. Transform residuals to IID (Independent, Identically Distributed) while fitting.

5. Swap easily among `1, `2, hyperbolic, and inequality penalties.

6. Stretch a signal unevenly to match another. Images too.

7. Predict price based on diverse aspects.

8. Remove crosstalk in multichannel signals (vector data).

9. Model robustly (i.e., multivariate median versus the mean).

10. Shave models with Occam’s razor outdoing the `1 norm.

11. Bring randomly positioned data to a uniform Cartesian grid.

12. Join the world of BIG DATA by grasping multiple aspects of back projection.
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0.2.2 How does it work?

This tutorial is novel by attacking data what is nonstationary, meaning that its statistical
characterization is not constant in time and space. The methodology herein works by
including a new data value to a previously solved regression. The newly arrived data value
requires us to make a small adjustment to the previous solution. Then we continue with all
the other data values.

The traditional fitting path is: residual→penalty function→gradient→solver. Herein
the simpler path is: modeling→residual into adjoint→epsilon jump.

The simpler path enables this tutorial to cover a wide variety of applications in a small
number of pages while yet being more explicit about how coding proceeds.

Although we begin here narrowly with a single 1-D scalar signal yt, we soon expand
broadly with yt(x, y, z) representing multidimensional data (images and voxels) and then
multicomponent (vector-valued) signals ~yt.

Many researchers dealing with physical continua use “inverse theory” (data model fit-
ting) with little grasp of how to supply the “inverse covariance matrix.” The needed algo-
rithms including pseudo code are here.

0.3 PREDICTION ERROR FILTER = PEF

Knowledge of an autocorrelation is equivalent to knowledge of a spectrum. Less well known
is that knowledge of either is equivalent to knowledge of a Prediction Error Filter (PEF).

Partial Differential Equations (PDEs) model the world, while PEFs help us uncover it.

PDE PEF
differencing star input output
white noise (source) input output
colored signal output input

0.3.1 PEF history

The name “Prediction Error Filter” appears first in the petroleum exploration industry
although the idea emerges initially in the British market forecasting industry in the 1920s
as the Yule-Walker equations (a.k.a. autoregression). The same equations next appear in
1949 in a book by Norbert Wiener in an appendix by Norman Levinson. Soon after, Enders
Robinson extended the PEF idea to multichannel (vector-valued) signals. Meanwhile, as the
petroleum exploration industry became computerized it found a physical model for scalar-
valued PEFs. They found a lot of oil with it; and they pursued PEFs vigorously until about
1970 when their main focus shifted (to where it remains today) to image estimation. My
friends John Burg and John Sherwood understood a 2-D extension to the PEF idea but
it went unused until I discovered the helix interpretation of it (in about 1998) and used it
extensively in my 2014 book Geophysical Image Estimation by Example (GIEE). Beyond
2-D, the PEF idea naturally extends to any number of dimensions. (Exploration industry
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data exists in a 5-D space, time plus two Earth surface geographical coordinates (x, y) for
each energy source plus another two for each signal receiver.)

From an application perspective, the weakness of autocorrelation, spectrum, and clas-
sic PEF is the lack of a natural extension to nonstationarity. Like autocorrelation and
spectrum, the PEF theory became clumsy when applied to real-world data in which the
statistics varied with time and space. Luckily, the nonstationary method is easy to code,
promises quick results, and looks like fun! Although I recently turned 81, I cannot stop
thinking about it.

In addition to all the old-time activities that are beginning to get easier and better,
progress will be rapid and fun for even more reasons. The emerging field of Machine
Learning2 shares strong similarities and differences with us. Both fields are based on many
flavors of back projection. Herein find about twelve back-projection pseudo codes all based
on the (x, y, z, t) metric. Machine learning back projections are not limited to that metric,
however they can be slow, and they can be spectacularly fragile. Never-the-less, the Machine
Learning community brings a young, rapidly-growing, energetic community to the table, and
that is another reason we will make progress and have fun. When this young community
gets themselves up to speed, they will be looking for real world problems. Many such
problems lurk here.

0.4 CREDITS AND THANKS

I was thrilled to have Antoine Guitton join me in the final month before first printing.
By his efforts we now see the theory demonstrated on a test case (Marmousi) that has
been studied by dozens of previous researchers. Sergey Fomel triggered this direction of
research when he solved the nonstationarity problem that I had posed but could not solve.
Bob Clapp ran an inspiring summer research group. Stewart Levin generously welcomes
my incomplete thoughts on many topics. He page edited and provided a vastly cleaner
1-D whiteness proof. He did the computations and wrote Chapter 4. John Burg set me
on the track for understanding the 2-D PEF. Kaiwen Wang worked with me and made
all the illustrations in the multichannel chapter. Joseph Jennings provided the field-data
debubble example and commented on early versions of the multichannel chapter. Jason
Chang assisted me with LaTeX. Anne Cain did page editing.

Finally, my unbounded gratitude goes to my beloved wife Diane, who accepted to live
with a kind of an alien. Without her continuous love and support over half a century, none
of my books could have existed.

2 See https://www.youtube.com/watch?v=oJNHXPs0XDk for an 8-minute introduction by Steve Brun-
ton.



Chapter 1

Nonstationary scalar signals

1.0.1 Mathematical setting

Regression defined

Statisticians use the term “regression” for a collection of overdetermined simultaneous linear
equations. Given a model m, a data set d, a matrix operator F, the regression defines a
residual r(m) = d− Fm. We set out to minimize it 0 ≈ r(m).

Regression updating

In the stationary world (the world that assumes statistics are time invariant) there are many
solution methods for regressions, both analytic and iterative. In the nonstationary world
we presume there is a natural ordering for the regression equations—for the ordering of the
components of d with their rows in M. Basically, we begin from a satisfactory solution to
a regression set. Then an additional regression equation arrives. Call it the new bottom
row. We want an updated solution to the updated regression set. This is an old problem in
algebra with a well-known solution that assumes the new regression equation should have
the same weight as all the old ones. However, we wish to assert that the new row is more
valuable than old rows. In this way our solutions have the possibility to evolve along with
the evolution of the nature of the incoming data.

For model update we put a residual into an adjoint.

The traditional model fitting path is: residual→penalty function→gradient→solver.

Herein the simpler path is: modeling→residual into adjoint→epsilon jump.

Besides addressing the stationarity issue, this simpler path puts draft codes in your hands
for the vast array of issues that commonly arise. Results are broadly equivalent1.

1 The quadratic form you are minimizing is r · r = (d−m∗F∗)(d−Fm) with the derivative by m∗ being
−F∗r for the step ∆m = −εF∗r.

1
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The special case of filtering

Not for logical reasons, but for the tutorial reason of being specific, we now leave behind
the general matrix F until Chapter 3. Meanwhile, we mostly specialize F to filtering. This
because the Cartesian metric is so central to our geophysical work.

1.0.2 Spectral shaping the residual

We learn by subtracting modeled data from observed data. That difference we call the
residual. The residual reveals the limitations of our modeling. Understanding those lim-
itations leads towards discoveries. Before residuals are to be minimized to learn the best
fitting model, a principle of statistics says residuals should be scaled to uniform strength.
Formally, Statistics says the residuals should be Independent and Identically Distributed
(IID). In practice this means the residuals should have been scaled up to come out easily
visible everywhere in both physical space and Fourier space so that all aspects of the data
have been probed.

Suppose after fitting your model parameters you find some region in physical space or
in Fourier space where the residuals are tiny. This region is where your data is contributing
nothing to your model. Unless you accept that your data is worthless there, you had better
scale up those residuals and try fitting again.

There is one region of Fourier space where signals are usually worthless. That is near
the Nyquist frequency on the time axis. Why worthless? Because we habitually sample
the time axis overly densely to assure that difference equations provide a good mimic of
differential equations.

Scaling in physical space is easy, so that’s not the topic here. It is because data frequency
and dip content varies in physical space that we need Prediction Error Filters (PEFs). They
come next. (Stationary theory has a “chicken and egg” problem (commonly ignored) that
weights and filters should be constant during iterative solving while they are supposed to
end out IID.)

1.0.3 Prediction-error filtering (deconvolution)

Start with a channel of data (a signal of many thousands of values). We denote these data
numbers by y = (y0, y1, y2, · · ·). A little patch of numbers that we call a “filter” is denoted
by a = (a0, a1, a2, · · · , anτ ). In pseudo code these filter numbers are denoted by a(0),
a(1),...,a(ntau). Likewise code for the data.

The filter numbers slide across the data numbers with the leader being a(0). An
equation for sliding the filter numbers across the data numbers obtaining the output rt
is rt =

∑nτ
τ=0 aτyt−τ . In a stationary world, the filter values are constants. In our nonsta-

tionary world, the filter values change a tiny bit after the arrival of each new data value.

Several computer languages allow the calculation x← x+ y to be represented by x+=y.
We use this notation herein, likewise x-=y for subtraction. Pseudo code for finding r(t) is:
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# CODE = STATIONARY CONVOLUTION

r(....) = 0.

for all t {

do tau = 0, ntau

r(t) += a(tau) * y(t-tau)

}

This code multiplies the vector a(tau) into the matrix y(t-tau).

With each step in time we prepare to change the filter a(tau) a tiny bit. To specify the
change, we define the filter outputs r(t) to be residuals and we set the goal for residuals
to have minimum energy. To prevent the filter a from becoming all zeros, we constrain the
first filter coefficient to be unity.

a = [ 1, a1, a2, a3, · · ·] (1.1)

To contend with the initial unit “1.0” outputting an input data value, the remaining filter
coefficients try to destroy that data value. They must attempt to predict the input value’s
negative. The filter output rt is the residual of the attempted prediction. The name of the
filter itself is the Prediction-Error Filter (PEF). PEFs are slightly misnamed because their
prediction portion predicts the negative of the data.

The PEF output tends to whiteness. Whiteness means flatness in Fourier space. If
the prediction is doing a good job, in the residual there should remain nothing periodic to
predict. This is rigorously explained in the appendix in Chapter 7.

1.0.4 Code for prediction error = deconvolution = autoregression

Below is the code that does “deconvolution,” also known as “autoregression.” In the
#forward loop it defines the residual r(t). In the #adjoint loop it puts that residual
r(t) into the same matrix y(t-tau) to find the filter update da(tau) = ∆a. Both loops
are matrix multiplies, but one takes tau space to t space, while the other takes t space to
tau space. Thus one matrix multiply is actually the transpose of the other.

Not only does this code live in a nonstationary world, but it is much simpler than
comparable codes that live in a stationary world. Hooray!

r(...) = 0. # CODE = NONSTATIONARY PREDICTION ERROR

a(...) = 0.

a( 0 ) = 1.0

do over time t { # r(t) = nonstationary prediction error.

do tau= 0, ntau

da(tau) = 0

r(t) += a(tau) * y(t-tau) # forward

do tau= 0, ntau

da(tau) += r(t) * y(t-tau) # adjoint

da(0) = 0. # constraint

do tau= 0, ntau

a(tau) -= da(tau) * epsilon

}

The line da(0)=0 is a constraint to prevent changing the a(0)=1 maintaining the definition
of r(t) as a residual. The last tau loop updates the PEF.
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What we have done in the code is to apply the classroom fundamental: Put the residual
into the adjoint2 (transpose) to get the gradient; then go down. What remains is to confirm
that the code really does reduce the residual.

1.0.5 The heart of nonstationary PEF with no calculus

Magic is coming: At any moment in time, in other words, at the newly arrived bottom
regression equation, the old PEF gives an error residual rt =

∑
τ aτyt−τ . Call this bottom

row b = yt−τ . b is a bit of backward data. The residual there is rt = a · b. The filter
update in the preceding code amounts to:

da(tau) -= epsilon * r(t) * y(t-tau) (1.2)
∆a = − ε rt yt−τ (1.3)
∆a = − ε rt b (1.4)

The filter output is rt = a · b. The updated output is

rt = (a + ∆a) · b = a · b− ε rt(b · b) = (a · b)(1− ε(b · b)) (1.5)

This updated output diminishes the output residual provided that 0 < ε < 1/(b · b).
Hooray! In volatile circumstances we might choose ε = 1/(b ·b). Because new data is more
valuable than old we usually choose 1/N < ε� 1/(b · b).

The magic paragraph above encapsulates hard-won knowledge. It exemplifies the basic
idea that we may solve nonstationary regressions merely by putting a residual into an
adjoint. This approach is used in this tutorial to solve a wide variety of such problems. I
was really surprised to see Equation (1.3) fall out of a simple code after I (with much help
from Sergey Fomel) had derived it using a good deal of calculus and algebra some of which
is in Appendix 5.2. And, all that analysis did not even yield the upper limit on epsilon
apparent from Equation (1.5).

1.0.6 Whiteness

Intuitively, PEF output has sucked all the predictability from its input. Appendix 5.1.1 Why
1-D PEFs have white output shows that the PEF output tends to be spectrally white—to
be a uniform function of frequency. The longer the filter, the whiter the output. The name
deconvolution came about from a hypothetical model that the original sources were random
impulses, but the received signal became spectrally colored (convolved) by reasons such as
wave propagation. Thus, a PEF should return the data to its original impulses. It should
deconvolve.

PEFs try to deconvolve, but they cannot restore delays. (This attribute is often called
“minimum delay” or “minimum phase.”) They cannot restore delays because the PEF is
causal, meaning it has only knowledge of the past. This because [· · · , a−2, a−1] = 0.
Prediction-error filtering is sometimes called blind deconvolution—stressing that a is esti-
mated as well as applied.

2If coding adjoints is new to you, I recommend Chapter 1 in GIEE (Claerbout, 2014). It is free on the
internet.
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1.0.7 Scaling components of gradients

The thing that really matters about a gradient is the polarity of each component. While
preserving the polarity of any component, you may shrink or stretch that component ar-
bitrarily. This amounts to a variable change in the penalty function. Later we investigate
polarity preserving nonlinear axis stretching to achieve behavior like that of the `1-norm.

1.0.8 Fluctuations

In a stationary world the gradient is ∆a = Y∗r. The rows of Y∗ contain the fitting
functions where, for example, the 9-th row contains the fitting function y9 = yt−9. In a
steady-state (stationary world) the solution is found when ∆a = 0. But in a non-stationary
world we will not find exact vanishing of da(tau)=y(t-tau)*r(t) for all tau>0. Instead,
during iteration da(tau) becomes small and then bounces around. The fluctuation in
size of |∆a| is not simply epsilon, but the fluctuations diminish as the residual becomes
more and more orthogonal to all the fitting functions. We are too new at this game to
know precisely how to choose ε, how much bouncing around to expect, or really how to
characterize nonstationarity; but, we will come up with a good starting guess for ε. While
theorizing, there is much we can learn from experience.

1.1 PREDICTION ERROR FILTER = PEF

Knowledge of an autocorrelation is equivalent to knowledge of a spectrum. Less well known
is that knowledge of either is equivalent to knowledge of a Prediction Error Filter (PEF).
Additionally, by being causal the PEF includes phase information. Partial differential
equations (PDEs) model the world, while PEFs help us uncover it.

PDE PEF
differencing star input output
white noise (source) input output
colored signal output input

Chapter 2 shows the white noise, the colored signal, and the PEF being multidimensional
(being images), while Chapter 5 shows them being vector-valued (multichannel signals).

1.1.1 The outside world—real estate

The regression updating approach introduced here is not limited to convolution matrices. It
applies to all regression equations. For each new regression row, subtract from the solution
a tiny suitably scaled copy of the new row. Move along; keep doing it. When you run out of
equations, you can recycle the old ones. By cycling around a vast number of times with an
epsilon tending to zero, you converge to the stationary solution. This updating procedure
should be some long-known principle in mathematics. I have stumbled upon something
called the Widrow-Hoff learning rule, which feels just like this updating.
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For example, imagine a stack of records of home sales. The i-th member of the stack
is like the t-th time of a signal. The data column contains the recorded sales prices. The
first matrix column might contain the square footages, the next column might contain the
number of bathrooms, etc. Because many of these variables have all positive elements, we
should allow for removing their collective means by including a column of all “ones.” In the
signal application, the i-th column contains the signal at the i-th lag. Columns containing
all positive numbers might be replaced by their logarithms. The previously shown code finds
ai coefficients to predict (negatively) the signal. Associating lags with real-estate aspects,
the code would predict (the negative and possibly the logarithm of) the sales price. You
have made the first step towards “machine learning”.

1.2 FINDING TOGETHER MISSING DATA AND ITS PEF

One of the smartest guys I have known came up with a new general-purpose nonlinear
solver for our lab. He asked us all to contribute simple test cases. I suggested, “How about
simultaneous estimation of PEF and missing data?”

“That is too tough,” he replied.

We do it easily now by appending three lines to the preceding code. The #forward line
is the usual computation of the prediction error. At the code’s bottom are the three lines
for missing-data updating.

# CODE = ESTIMATING TOGETHER MISSING DATA WITH ITS PEF

# y( t) is data.

# miss(t) = "true" where y( miss(t)) is missing (but zero)

r(...) = 0; # prediction error

a(...) = 0; a(0) = 1. # PEF

do t = ntau, infinity {

do tau= 0,ntau

r(t) += y(t-tau) * a(tau) # forward

do tau= 0,ntau

if( tau > 0)

a(tau) -= epsilonA * r(t) * y(t-tau) # adjointA

do tau= 0,ntau

if( miss(t-tau))

y(t-tau) -= epsilonY * r(t) * a(tau) # adjointY

}

The data update may not be easy to understand, but it is a logical update because a residual
is passed into an adjoint. The #forward code line takes (t-tau) space to (t) space, while
the #adjointY line takes (t) space, to (t-tau) space. (I hope I have the correct sign on
epsilonY!

We are not computing missing data so much as we are updating missing data. It must
begin off having some value (such as zero). The forward line uses it. The final code line
updates it. All data needs to pass through the program many times. It may also need to
pass through backwards too. (Practice will tell us whether going backwards is essential.)

PEF estimation proceeds quickly on early parts of a data volume. Filling missing data
is not so easy. You may need to run the above code over all the data many times. To
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maintain continuity on both sides of large gaps, you could run the time loop backward on
alternate passes. (Simply time reverse both y and r after each pass.) To speed the code,
one might capture the t values that are affected by missing data, thereafter iterating only
on those.

Perhaps because I am a doddering 81-year-old, I have not been able to convince students
around here to play with it. Lucky for us, a former student Stewart A. Levin in helping a
student prepared the wonderful examples you will see in Chapter 4.

1.2.1 Further progress will require some fun play

Finding missing data with its PEF is a non-linear problem. Code above should work easily
so long as a small percentage of data values are missing. On the other hand, with enough
missing data the non-linearity might produce good results with some initializations but
bizarre results with others.

Few examples are available in the nonstationary world, but examples from the stationary
world are strongly suggestive. A result of economic value is found in Chapter 2 (images)
Figure 2.1. Another example from the stationary world is the intriguing result in Figure 1.1.
It shows four known data values and eleven missing ones. The conclusion to draw is that

Figure 1.1: Top is given data, taken
to be zeros off the ends of the axis.
Middle is the given data with inter-
polated values. The restored data
has the character of the given data.
Bottom shows the best fitting fil-
ter. Its output (not shown) has
minimum energy. (Claerbout, PVI)
signal/. missif

PEF interpolation has picked up the character of the known data and used it to fill in the
missing. Popular interpolations like linear, cubic, or sinc do nothing like this. The reason
PEFs work so well is that they resemble differential equations (actually, finite difference
forms of differential equations) which accounts for the more “physical” appearance.

Because data is expensive to collect, missing data examples abound. Consequently, the
problems are worthwhile, so we are pushed into experimentation—which should be fun. It
would be fun to view the data, the PEF, and the inverse PEF as the data streams through
the code. It would be even more fun to have an interactive code with sliders to choose
epsilonA, epsilonY, and our ∆t viewing rate.

It would be still more fun to have this happening on images (Chapter 2). Playing with
your constructions cultivates creative thinking, asserts the author of the MIT Scratch com-
puter language in his book Lifelong Kindergarten (Resnick, 2017). Sharing your rebuildable
projects with peers cultivates the same.
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The above code is quite easily extended to 2-D and 3-D spaces. The only complication
(explained in Chapter 2) is the shape of PEFs in higher dimensional spaces.

I wondered if our missing data code would work in the wider world of applications—the
world beyond mere signals. Most likely not. A single missing data value affects τn regression
equations while a missing home square footage affects only one regression equation.

1.3 CHOOSING THE STEP SIZE

In the method of steepest descent, one computes the distance to move along the gradient.
Herein we guess it. We might call this the method of cheapest descent. (Haha)

1.3.1 Epsilon

An application parameter like epsilon requires some practitioner to choose its numerical
value. This choice is best rationalized by making sure ε is free from physical units. Let us
now attend to units. From the past of y, the filter a predicts the future of y, so a itself
must be without physical units. The data yt might have units of voltage. Its prediction
error rt has the same units. To repair the units in ε we need something with units of voltage
squared for the denominator. Let us take it to be the variance σ2

y . You might compute it
globally for your whole data set y, or you could compute it by leaky integration (such as
σ2
t ← .99σ2

t−1 + .01y2
t ) to adjust itself with the nonstationary changes in data yt. The filter

update ∆a with a unit-free ε is:

∆a = − ε rt
σ2
y

d (1.6)

That is the story for epsilonA in the code above. For the missing data adaptation rate,
epsilonY, no normalization is required because r(t) and y(t) have the same physical
units; therefore the missing data yt−τ updates are scaled from the residual rt by the unit-
free epsilonY.

epsilonA is the fractional change to the filter at each time step. In a process called
“leaky integration,” any long-range average of the filter at time t is reduced by the (1− ε)
factor; then it is augmented by ε times a current estimate of it. After λ steps, the influence
of any original time is reduced by the factor (1 − ε)λ. Setting that to 1/e = 1/2.718
says (1 − ε)λ = 1/e. Taking the natural logarithm, 1 = −λ ln(1 − ε) ≈ λε, so to good
approximation

ε = 1/λ (1.7)

By the well known property of exponentials, half the area in the decaying signal appears
before the distance λ—the other half after.

The memory function (1 − ε)t is roughly like a rectangle function of length λ. Least
squares analysis begins with the idea that there should be more regression equations than
unknowns. Therefore, λ should significantly exceed the number of filter coefficients ntau.

With synthetic data, you may have runs of zero values. These do not count as data.
Then, you need a bigger λ because the zeros do not provide the needed information.
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Mathematicians are skilled at dealing with the stationary case. They are inclined to
consider all residuals rt to carry equal information. They may keep a running average mt

of a residual rt by the identity (proof by induction):

mt =
t− 1
t

mt−1 +
1
t
rt =

1
t

t∑
k=1

rk (1.8)

This equation suggests that an ε decreasing proportional to 1/t (which is like λ proportional
to t) may in some instances be a guide to practice, although it offers little guidance for
nonstationarity other than that ε should be larger; it should drop off less rapidly than does
1/t.

Given an immense amount of data, a “learning machine” should be able to come up
with a way of choosing the adaptivity rate ε. But, besides needing an immense amount of
data, learning machines are notoriously fragile. We should try conjuring up some physi-
cal/geometric concepts for dealing with the kind of nonstationarity that our data exhibits.
With such concepts we should require far less data to achieve more robust results. We need
examples to fire up our imaginations.

You are ready for Chapter 2.

1.4 NON-GAUSSIAN STATISTICS

The most common reason to depart from the Gaussian assumption in stationary data fitting
is to tolerate massive bursts of noise. In model regularization, the reason is to encourage
sparse models. In the stationary world these goals are commonly addressed with the `1
norm. In our nonstationary world we approach matters differently.

The traditional data fitting path is: residual→penalty function→gradient→solver. Our
nonstationary path is: modeling→residual into adjoint→epsilon jump for ∆a. Instead of
cooking up other penalty functions, we might cook up guesses for nonlinear stretching
components in r or ∆a. We could measure and build upon the statistics of what we see
coming out of rt and components of ∆at. But, what would be the criteria? Do we need
theoretical study, artificial intelligence, or simply examples and practice?

1.4.1 The hyperbolic penalty function

My book GIEE has many examples of use of the hyperbolic penalty function. Loosely, we
call it `h. For small residuals it is like `2, and for large ones it is like `1. Results with `h
are critically dependent on scaling the residual, such as q = r/r̄. Our choice of r̄ specifies
the location of the transition between `1 and `2 behavior. I have often taken r̄ to be at the
75th percentile of the residuals.

A marvelous feature of `1 and `h emerges on model space regularizations. They penalize
large residuals only weakly, therefore encouraging models to contain many small values,
thereby leaving the essence of the model in a small number of locations. Thus we build
sparse models, the goal of Occam’s razor.
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Happily, the nonstationary approach allows easy mixing and switching among norms.
In summary:

Name Scalar Residual Scalar Penalty Scalar Gradient Vector Gradient
`2 q = r q2/2 q q
`1 q = r |q| q/|q| sgn(q)
`h q = r/r̄ (1 + q2)1/2 − 1 q/(1 + q2)1/2 softclip(q)

From the table, observe at q large, `h tends to `1. At q small, `h tends to q2/2 which
matches `2. To see a hyperbola h(q), set h − 1 equal to the Scalar Penalty in the table,
getting h2 = 1 + q2. The softclip() function of a signal applies the `h Scalar Gradient
q/(1 + q2)1/2 to each value in the residual.

Coding requires a model gradient ∆m or ∆a that you form by putting the Vector
Gradient into the adjoint of the modeling operator, then taking the negative. If you want
`2, `1, or `h, then your gradient is either ∆a = −Y∗q, −Y∗sgn(q), or −Y∗softclip(q).
You may also tilt the `h penalty making it into a “soft” inequality like “ReLU” in machine
learning.

(Quick derivation: People choose `2 because its line search is analytic. We chose epsilon
instead. For the search direction, let P (q(a)) be the Scalar Penalty function. The step
direction is −∆a = ∂P

∂a∗ = ∂P
∂q∗

∂q∗

∂a∗ = ∂q∗

∂a∗
∂P
∂q∗ = Y∗ ∂P∂q∗ where for ∂P

∂q∗ you get to choose a
Vector Gradient from the table foregoing.)

An attribute of `1 and `2 fitting is that ‖αr‖ = α‖r‖. This attribute is not shared by
`h. Technically `h is not a norm; it should be called a “measure.”

1.4.2 How can the nonstationary PEF operator be linear?

Formally, finding the PEF is a = argmina(Ya) subject to a0 = 1, while using it is r = Ay.
The combination is a nonlinear function of the data y. But it is nearly linear. Notice that
A could have been built entirely from spatially nearby data, not at all from y. Then A
would be nonstationary, yet a perfectly linear operator on y.

I am no longer focused on conjugate-direction solutions to stationary linear problems,
but if I were, I could at any stage make two copies of all data and models. The solution copy
would evolve with iteration while the other copy would be fixed and would be used solely
as the basis for PEFs. Thus, the PEFs would be changing with time while not changing
with iteration, which makes the optimization problem a linear one, fully amenable to linear
methods. In the spirit of conjugate gradients (as it is commonly practiced), on occasion we
might restart with an updated copy. People with inaccurate adjoints often need to restart.
(ha ha)

1.5 DIVERSE APPLICATIONS

1.5.1 Weighting

More PEF constraints are common. PEFs are often “gapped” meaning some aτ coefficients
following the “1” are constrained with ∆aτ = 0. See the example in Chapter 2, Figure 1.3.
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In reflection seismology, t2 gain and debubble do not commute. Do the physics right by
applying debubble first; then get a bad answer (because late data has been ignored). Do
the statistics right; apply gain first; then violate the physics. How do we make a proper
nonstationary inverse problem? I think the way is to merge the t2 gain with the ε.

1.5.2 Change in variables

Because all we need to do is keep d · d = d∗d positive, we immediately envision more
general linear changes of variables in which we keep d∗B∗Bd positive, implying the update
∆a = −ε rt d∗B∗B. I conceive no example for that yet.

1.5.3 Wild and crazy squeezing functions

The logic leading up to Equation (1.3) requires only that we maintain polarity of the
elements in that expression. Commonly, residuals like r are often squeezed down from the
`2-norm derivative r, to their `1 derivative, sgn(r) = r/|r|, or the derivative of the hyperbolic
penalty function, softclip(r). Imagine an arbitrary squeezing function RandSqueeze() that
squeezes its argument by an arbitrary polarity-preserving squeezing function. Each τ might
have its own RandSqueezeτ () mixing signum() and softclip() and the like. The possibilities
are bewildering. We could update PEFs with the following:

∆aτ = − ε RandSqueeze(rt) RandSqueezeτ (yt−τ ) (1.9)

Recall the real estate application. It seems natural that each of the various columns with
their diverse entries (bathrooms, square footages) would be entitled to its ownRandSqueezeτ ().
Given enough data, how would we identify the RandSqueezeτ () in each column?

1.5.4 Deconvolution of sensible data mixed with giant spikes

The difference between sgn(rt) and sgn(yt−τ ) is interesting. Deconvolution in the presence
of large spike noise is improved using sgn(rt) to downplay predicting corrupted data. It
is also improved by downplaying—with sgn(yt−τ )—regression equations that use corrupted
data to try predicting good data. On the other hand, because a humongous data value
is easy to recognize, we might more simply forget squeezing and mark such a location as
missing data value.

1.5.5 My favorite wavelet for modelers

I digress to view current industrial marine wavelet deconvolution. Because acoustic pressure
vanishes on the ocean surface, upcoming waves reflect back down with opposite polarity.
This reflection happens twice, once at the air gun (about 10 meters deep), and once again
at the hydrophones yielding roughly a second finite-difference response called a “ghost.”
Where you wish to see an impulse on a seismogram, instead you see this ghost.

The Ricker wavelet, a second derivative of a Gaussian, is often chosen for modeling.
Unfortunately, the Gaussian function is not causal (not vanishing before t = 0). A more
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natural choice derives from the Futterman wavelet (GIEE) which is a causal representation
of the spectrum exp(−|ω|t/Q) where Q is the quality constant of rock. Figure 1.2 shows the
Futterman wavelet and also its second finite difference. I advocate this latter wavelet for
modelers because it is solidly backed by theory; and I often see it on data. The carry-away
thought is that the second derivative of a Gaussian is a three-lobed wavelet, while that is
hardly true of the second derivative of a Futterman wavelet.

Figure 1.2: The causal constant Q response and its second finite difference. The first two
lobes are approximately the same height, but the middle lobe has more area. That third lobe
is really small. Its smallness explains why the water bottom could seem a Ricker wavelet
(second derivative of a Gaussian) while the top of salt would seem a doublet. (Claerbout)
signal/. futter

1.5.6 Bubble removal

The internet easily finds for you slow-motion video of gun shots under water. Perhaps
unexpectedly, the rapidly expanding exhaust gas bubble soon slows; then, collapses to a
point, where it behaves like a second shot—repeating again and again. This reverberation
period (the interval between collapses) for exploration air guns (“guns” shooting bubbles
of compressed air) is herein approximately 120 milliseconds. Imagers hate it. Interpreters
hate it. Figure 1.3 shows marine data and a gapped PEF applied to it. It is a large
gap, 80 milliseconds (ms), or 80/4=20 samples on data sampled at 4 ms, actually, ∆a =
(1, 0, 0,more zeros, 0, a20, a21, · · · , a80).

REFERENCES

Claerbout, J., 2014, Geophysical image estimation by example: Lulu.com.
Resnick, M., 2017, Lifelong Kindergarten: Cultivating Creativity through Projects, Passion,

Peers, and Play: The MIT Press, Cambridge, MA.
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Figure 1.3: Debubble done by the nonstationary method. Original (top), debubbled (bot-
tom). On the right third of the top plot, prominent bubbles appear as three quasihorizontal
black bands between times 2.4s and 2.7s. Blink overlay display would make it more evident
that there is bubble removal everywhere. (Joseph Jennings) signal/. debubble-ovcomp
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Figure 1.4: Gulf of Mexico. Top is before sparse decon, bottom after. Between 2.25s to
2.70s, the right side is salt (no reflectors). Notice salt top reflection is white, bottom black.
Notice that sparse decon has eliminated bubble reverberation in the reflection-free salt zone
(as well as elsewhere). (Antoine Guitton) signal/. antoineGOM2



Chapter 2

PEFs in time and space

In this chapter we deal with 2-D functions of space, say the (x, y) plane. About the same
mathematics applies to a survey line of signals, say a (t, x) data plane. In one dimension
PEFs do a spectacular job of destroying periodic functions. They do an admirable job of
dealing with resonant signals. Further, we can use them to fill gaps in 1-D signals.

Now we move into two dimensions. 2-D PEFs do an excellent job of destroying (or
building) straight lines. On a data space, they will destroy (or build) plane waves.

Point scatterers in the earth emit circular waves, say d(t −
√

(x− x0)2 + (z − z0)2).
Locally these may look a little like planes waves, but they are not. In (x, t) space they are
hyperbolic. We struggled for years chopping data into small patches where the plane wave
approximation has some degree of validity. The problem with the patching approach is the
many boundaries connecting the small patches. Non-stationary PEFs resolve big chunks of
this difficulty.

Figure 2.1 shows an old stationary example from GIEE. In the stationary case, a global
PEF is computed first; then, it is used to fill missing data.

Figure 2.1: (left) Seabeam data of mid-Pacific transform fault. (right) After interpolation
by stationary 2-D PEF. The purpose herein is to guess what the ship would have recorded
if there were more hours in a day. (GIEE) image/. seapef90

15
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In one dimension PEF output tends to whiteness. In two dimensions, the codes we as-
semble herein produce outputs that tend to 2-D whiteness, tending to flatten nonstationary
spectra in the 2-D frequency (ω, kx)-space. In other words, the local autocorrelation of the
output tends to a delta function in 2-D lag space. In other words, we will be broadening
the 2-D bandwidth of whatever signal we design the PEF upon.

We learn about the earth by fitting models to data. Chapter 3 shows how 2-D PEFs
play a central role in this learning process. What is significantly new in this book is a
pathway to dealing with curving events. This is the situation we always have in seismology
where the angle of propagation varies from place to place.

2.0.7 2-D PEFs as plane wave destructors and plane wave builders

We have seen 1-D PEFs applied to 2-D data. Now for 2-D PEFs. Two-dimensional PEFs
are useful in seismology. Convolving an image with the PEF in Figure 2.2 would destroy
aspects of the image with slope 2. Nearby slopes would merely be suppressed. Linear
interpolation suggests that a PEF with a slightly lesser angle can be specified by spreading
the −1, by moving a fraction of it from the −1 to the pixel above it.

Newcomers often feel the +1 should be in a corner, not on a side, until they realize such
a PEF could not suppress all angles. For example putting the +1 on the top right corner
we would not be able to find coefficients inside the PEF that would destroy lines running
southeast to northwest.

Figure 2.2: Plane wave destructor
for events of slope 2. Applied to
data it destroys that slope in the
data. Used in a missing data pro-
gram, that slope is produced where
the data is missing. (Claerbout)
image/. DippingPEF5

t

x

A PDF can be specified, as I did in making Figure 2.2, or it can be learned from earlier
codes. After a PEF is known, it may be used to fill in missing data as on page 6. Using
the PEF in Figure 2.2 in a filtering program, that slope is destroyed. Using that PEF in a
missing data program, that slope is built. (Outside our present topic of nonstationary data,
stationary methods using polynomial division can fill large holes significantly more rapidly
than the method herein.)

Convolving two PEFs each with a different slope builds a wider PEF able to destroy
simultaneous presence of two differently sloped plane waves. In reflection seismology the
vertical axis is time and the horizontal axis distance, so steep slopes are slow velocities.
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2.0.8 Two-dimensional PEF coding

Signal analysis extends to images quite easily except for the 1.0 spike needing to be on the
side of the PEF as in Figure 2.3. This old knowledge is summarized in Appendix 5.1.2
Why 2-D PEFs have white output.

Figure 2.3: A PEF is a func-
tion of lag a(tl,xl). Here τ runs
up, x runs left so the filter trav-
els down and right. (Claerbout)
image/. pef2-d

Unlike our 1-D code, we now use negative subscripts on time.

As in 1-D, the PEF output is aligned with its input because a(0,0)=1. To avoid filters
trying to use off-edge inputs, no output is computed (first two loops) at the beginning of
the x axis nor at both ends of the time axis. At three locations in code below the lag loops
(tl,xl), cover the entire filter. First, the residual r(t,x) calculation (# Filter) is simply
the usual 1-D convolution seen again on the second axis. Next, the adjoint follows the usual
rule of swapping input and output spaces. Then the constraint line preserves not only the
1.0, but also the zeros preceding it. Finally, the update line a-=da is almost trivial1.

# CODE = 2-D PEF

read y( 0...nt , 0...nx) # data

r( 0...nt , 0...nx) =0. # residual = PEF output

a(-nta...nta, 0...nxa)=0. # filter Illustrated size is a( -2...2, 0...2).

a( 0 , 0 )=1.0 # spike

do for x = nxa to nx

do for t = nta to nt-nta

do for xl= 0 to +nxa

do for tl= -nta to +nta

da(tl,xl) = 0.

r (t ,x ) += a(tl,xl) * y(t-tl, x-xl) # Filter

do for xl= 0 to +nxa

do for tl= -nta to +nta

da(tl,xl) += r(t , x) * y(t-tl, x-xl) # Adjoint

do for tl= -nta to 0 # Constraints

da(tl, 0) = 0.

do for xl= 0 to +nxa

do for tl= -nta to +nta

a (tl,xl) -= da(tl,xl) * epsilon/variance # Update

1 Beware of instability if ε is taken too large. A stability limit for ε is defined after equation (1.5).
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2.0.9 Accumulating statistics over both x and t

We will see in Chapter 3 that nearly everyone’s code for fitting models to survey data
needs a 2-D PEF. A serious limitation of the foregoing code (CODE = 2-D PEF) is that the
data statistics are updated entirely from the time axis. You are surveying down a road.
Every 100 meters you record a 10 second signal. Then you update a 2D-PEF handling
these signals (traces) one after another. After the bottom of one trace you return to wholly
different statistics (especially wave slopes) at the top of the next. You need to have saved
all the PEFs of the previous trace and be relying initially on those at early times.

A straightforward extension to the 1-D code allows us to average the statistics in a 2-D
region of (x, t)-space. Define this region as an area of roughly λt × λx pixels.

We update filters with a← ā + ε∆a. Previously we updated the PEF from the location
ā(t − ∆t, x). Now we begin also updating from the neighboring trace ā(t, x − ∆x). The
proposal is to update from a weighted average a where

a = a(t−∆t, x)
λ2
t

λ2
t + λ2

x

+ a(t, x−∆x)
λ2
x

λ2
t + λ2

x

(2.1)

The scale factors sum to unity so we may designate them by cos2 θ and sin2 θ named
cos2t and sin2t in the code. We need to allocate memory for each filter at the previous
space level x − ∆x so we allocate memory ab(nxa,nta,nt). At the first value of x we
cannot refer to the previous x so the allocated memory should be initialized to zeros with
each filter having a properly placed 1.0. The most basic allocation and initialization follows:

allocate ab( -nta:nta, 0:nxa, nt)

ab(*,*,*) = 0

do for t = 0 to nt

ab(0,0,t) = 1.0

Returning to (CODE = 2-D PEF), we now need to update the filter adding ∆a to the a of
equation (2.1). The last three lines of (CODE = 2-D PEF) become these five lines

do for xl= 0 to +nxa

do for tl= -nta to +nta

a (tl,xl) = a(tl,xl)*cos2t + ab(tl,xl,t)*sin2t # Average

a (tl,xl) -= da(tl,xl) * epsilon/variance # Update

ab(tl,xl,t) = a(tl,xl) # Remember for x+dx

The line #Average implements equation (2.1). The next line was already in (CODE =
2-D PEF). The last line puts the new a in the buffer ab(*,*,t) for the next trace.

Notice that λt and λx need not be constants. The length and width of the region of
statistical averaging may vary in x and t.

Before you jump to a new trace, you have the option of smoothing ab(*,*,t) by leaky
integration backwards on time. Doing this, your region of smoothing has doubled from the
quarter plane prior to t and x to the half plane prior to x. The adjoint of a 2-D filter is the
same filter with both t and x axes reversed. Bob Clapp makes the sensible recommendation
of alternating between the PEF and its adjoint.
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2.0.10 Why 2-D PEFs improve gradients

This example shows why PEFs improve gradients. The initial residual (starting from m = 0)
is the data d. Figure 2.4 shows a shot gather d before and after stationary PEFing Ad.
Notice the back-scattered energy (travel time decreasing as distance increases). Near zero
offset, it almost vanishes on the raw data whereas it is prominent after the PEF. This
backscattered energy tells us a great deal about reflectors topping near 2.5-2.8s. Here is
why PEFs improve gradients: Strong and obvious but redundant information is subdued,
enabling subtle information to become visible, hence sooner to come into use, not waiting
until quirks of the strong are exhaustively over interpreted.

Figure 2.4: (left) Shot gather; (right) mirror imaged after global 2D PEF (20×5). (Antoine
Guitton, GIEE) image/. antoinedecon2

Fortunately, Antoine Guitton at the Colorado School of Mines joined me in the last
month of this book preparation to demonstrate these ideas in the next chapter, Chapter 3.
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2.1 INTERPOLATION BEYOND ALIASING

Wavefields are parameterized by their temporal frequency, and by their velocity, namely,
their slope in (x, t)-space, altogether, two 1-D functions. PEFs in (x, t)-space are a 2-D
function. Consequently, with a PEF, we have more adjustable coefficients than needed to
characterize waves. PEFs can characterize stuff we might well consider to be noise. Herein
however, PEFs are calculated in such a manner that forces them to be more wave-like.

The scalar wave equation template has the property of “dilation invariance,” meaning
that halving all of (∆t,∆x,∆y,∆z) on a finite difference representation of the scalar wave
equation leaves the finite differencing template effectively unchanged. Likewise we may
impose the assumption of dilation invariance upon a PEF. We may apply it with all of
(∆t,∆x,∆y,∆z) doubled, halved, or otherwise scaled. In other words, we may interlace
both x and t axes with zeros. A PEF that perfectly predicts plane waves of various slopes
can be interlaced with zeros on both time and space axes still predicting the same slopes.
Such a PEF scaling concept was used in my book (Claerbout, 1992) Earth Soundings Anal-
ysis, Processing versus Inversion (PVI) with the assumption of stationarity to produce
Figure 2.5. It shows badly spatially aliased data processed to interpolate three intermedi-

Figure 2.5: Left is five signals, each showing three arrivals. An expanded PEF from the left
was compressed to create interpolated data on the right. There are three new traces between
the given traces. The original traces are preserved. (Claerbout, PVI) image/. lace3

ate channels. Naturally, an imaging process (such as “migration”) would fare much better
with the interpolated data. Sadly, the technique never came into use, both because of the
complexity of the coding, and because of the required stationarity assumption. Herein both
those problems are addressed and (I believe) solved. Starting from our earlier pseudo code
for missing data on page 6, and the pseudo code 2-D PEF on page 17, let us combine these
ideas into three additional lines of pseudo code to do the job in a nonstationary world, a
world of curving event arrivals, data gaps, but not large gaps.

2.1.1 Dilation invariance interpolation

The 2-D PEF code on page 17 contains line (1) below. Line (2) is likewise, but it accesses
prediction signals at double the distance away from the data being predicted. These two
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lines produce two different residuals r1 and r2, each of them densely sampled on time t and
x. We should create and study three frame blink movies [y|r1|r2] of miscellaneous seismic
data to gain some insights I cannot predict theoretically: Which of r1 and r2 is better? Is
that true for all kinds of data? Is r2 a reasonable proxy for r1?

Loops over t and x:

Loops over filter (tl,xl):

(1) r1(t ,x ) += a(tl,xl) * y(t-tl , x-xl )

(2) r2(t ,x ) += a(tl,xl) * y(t-tl*2, x-xl*2) # Dilated PEF

Loops over filter (tl,xl):

Only where da() is unconstrained:

(3) da(tl,xl) -= r1(t , x) * y(t-tl , x-xl ) * epsilon1

(4) da(tl,xl) -= r2(t , x) * y(t-tl*2, x-xl*2) * epsilon2

Line (3) updates the PEF from r1, while line (4) updates it from r2. It does not hurt to
use both the updates, although only one is needed. We could average them, or weight them
inversely by a running norm of their residual, or find some reason to simply choose one of
them.

2.1.2 Multiscale missing data estimation

Observe the form of missing data updates in one dimension from pseudocode on page 6.
Express it in two dimensions, without and with trace skipping.

Loops over t and x:

Loops over filter (tl,xl):

r1(t) = same code as above # usual PEF

r2(t) = same code as above # Dilated PEF

Loops over filter (tl,xl):

Only where data is missing:

(5) y(t-tl, x-xl ) -= r1(t,x) * a(tl, xl) * epsilon3

(6) y(t-tl*2,x-xl*2) -= r2(t,x) * a(tl, xl) * epsilon4

We intend to use only lines (2), (4), and (5), with the usual looping statements and con-
straints that you find in earlier codes. Start from missing data presumed zero.

# CODE = INTERPOLATION BEYOND ALIASING

(2) r2( t , x ) += a( tl,xl) * y(t-tl*2, x-xl*2)

(4) da( tl, xl ) -= r2( t ,x ) * y(t-tl*2, x-xl*2) * epsilon2

(5) y ( t-tl, x-xl ) -= r1( t ,x ) * a( tl, xl ) * epsilon3

Line (2) uses “long legs” to reach out to make a residual for a sparse filter. Line (4)
updates that filter. Line (5) asks us for the dilation invariance assumption r1 ≈ r2, then
switches to the dense filter. Assuming r1(t,x)=r2(t,x), line (5) updates y(t,x) where
it is not known.

Viscosity breaks the dilation invariance of the scalar wave equation. I wonder what
would break it on PEFs (r1 6= r2). I await someone to perform tests. Should dilation
invariance fail on field data, the excellent stationary result in Figure 2.5 suggests a pathway
nearby remains to be found.
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2.1.3 You are ready for subsequent chapters.

2.2 STRETCH MATCHING

Sometimes we have two signals that are nearly the same but for some reason, one is stretched
a little from place to place. Tree rings seem an obvious example. I mostly encounter
seismograms where a survey was done both before and after oil and gas production, so there
are stretches along the seismogram that have shrunken or grown. A decade or two back,
navigation was not what it is now, especially for seismograms recorded at sea. Navigation
was one reason, tidal currents are another. Towed cables might not be where intended.
So, signals might shift in both time and space. A first thought is to make a running
crosscorrelation. The trouble is, crosscorrelation tends to square spectra which diminishes
the high frequencies, those being just the ones most needed to resolve small shifts. Let us
consider the time-variable filter that best converts one signal to the other.

Take the filter a to predict signal x from signal y. Either signal might lag the other.
Take the filter to be two-sided, [a(-9),a(-8),...,a(0),a(1),...,a(9)]. Let us begin
from a(0)=1, but not hold that as a constraint because the signals may be out of scale.

r(...) = 0. # CODE = NONSTATIONARY EXTRAPOLATION FILTER

a(...) = 0.

a( 0 ) = 1.

do over time t { # r(t) = nonstationary extrapolation error

do i= -ni, ni

r(t) += a(i) * y(t-i) - x(t) # forward

do i= -ni, ni

a(i) -= r(t) * y(t-i) * epsilon # adjoint

do i= -ni, ni

shift(t) = i * a(i)

}

The last loop is to extract a time shift from the filters. Here I have simply computed the
moment. That would be correct if signals x and y had the same variance. If not, I leave it
to you calculate their standard deviations σx and σy and scale the shift in the code above
by σx/σy thus yielding the shift in pixels.

Do not forget, if you have only one signal, or if it is short, you likely should loop over
the data multiple times while decreasing epsilon.

Besides time shifting, this filtering operator has the power of gaining and of changing
color. Suppose, for example that brother y and sister x each recited a message. This
filtering could not only bring them into synchronization, it would raise his pitch. Likewise
in 2-D starting from their photos, he might come out resembling her too much!

2.3 DISJOINT REGIONS OF SPACE

2.3.1 Geostatistics

Figure 2.6 illustrates using PEF technology refilling an artificial hole in an image of the Gulf
of Mexico. This illustration (taken from GIEE) uses mature stationary technology. The



2.3. DISJOINT REGIONS OF SPACE 23

center panel illustrates filling in missing data from knowledge of a PEF gained outside the
hole. The statistics at the hole in the center panel are weaker and smoother than the statis-
tics of the surrounding data. Long wavelengths have entered the hole but diminish slowly
in strength as they propagate away from the edges of known data. Shorter wavelengths
are less predictable and diminish rapidly to zero as we enter the unknown. Actually, it is
not low frequency but narrow bandedness that enables projection far into the hole from its
boundaries.

Figure 2.6: A 2-D stationary example from GIEE. A CDP stack with a hole punched in it.
The center panel attempts to fill the hole by methodology similar to herein. The right panel
uses random numbers inverse to the PEF to create panel fill with the global spectrum while
assuring continuity at the hole boundary. (Morgan Brown) image/. WGstack-hole-fillr

The right panel illustrates a concept we have not covered. This panel has the same
spectrum inside the hole as outside. Nice. And, it does not decay in strength going inward
from the boundaries of the hole. Nice. Before I ask you which you prefer, the central panel
or the right panel, I should tell you that the right panel is one of millions of panels that
could have been shown. Each of the millions uses a different set of random numbers. A
statistician (i.e., Albert Tarantola) would say the solution to a geophysical inverse problem
is a random variable. The center panel is the mean of the random variable. The right panel
is one realization of the many possible realizations. The average of all the realizations is
the center panel.

Geophysicists tend to like the center panel; geostatisticians tend to prefer an ensemble
of solutions, such as the right panel. In stationary theory, the center panel solves a regu-
larization such as 0 ≈ Am. The solution to the right panel uses a different regularization,
0 ≈ Am− r, where r is random numbers inside the hole and zeros outside. The variance of
the prediction error outside would match the variance of the random numbers inside. Got
it? Good. Now it is your turn to write a nonstationary program. Let’s call it “CODE =
GEOSTATISTICS.”

Start from my 1-D missing data program on page 6. Make the Geostatistics modifica-
tions. Test them on the example of Figure 1.1. If your results are fun, and I may use them,
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your name will be associated with it.

2.3.2 Gap filling

When filling a 1-D gap, I wonder if we would get the same fill if we scanned time backward.
Stationary theory finds a PEF from the autocorrelation function. In that world, the PEF
of forward-going data must be identical with that of backward-going data. But, when it
comes to filling a gap in data, should we not be using that PEF going in both directions?
We should experiment with this idea by comparing one direction to two directions. Would
convergence run faster if we ran alternating directions? After each time scan we would
simply time reverse both the input and the output, yt and rt, for the next scan. In 2-D,
reversal would run over both axes.

You might like to jump to Chapter 3

2.3.3 Rapid recognition of a spectral change

This booklet begins with with the goal of escaping the strait jacket of stationarity, intending
merely to allow for slowly variable spectral change. Real life, of course has many important
examples in which a spectral change is so rapid that our methods cannot adapt to it—
imagine you are tracking a sandstone. Suddenly, you encounter a fault with shale on the
other side and permeability is blocked—this could be bad fortune or very good fortune!

Warming up to an unexpectedly precise measurement of location of spectral change
consider this 1-D example: Let T = 1 and o = −1. The time function

(...., T, T, T, o, o, o, T, T, T, o, o, o, T, T, T, o, o, T, T, o, o, T, T, o, o, T, T, o, o....)

begins with period 6 and abruptly switches to period 4. The magnitude of the prediction
error running to the right is quite different from the one running to the left. Running
right, the prediction error is approximately zero, but, it suddenly thunders at the moment
of spectral change, thunder gradually dying away again as the PEF adapts. Running left,
again there is another thunder of prediction error; but, this thunder is on the opposite
side of the abrupt spectral change. Having both directions is the key to defining a sharp
boundary between the two spectra. Let the prediction variance going right be σright and
going left be σleft. The local PEF is then defined by a weighted average of the two PEFs.

a =
σright

σright + σleft
aleft +

σleft

σright + σleft
aright (2.2)

A weight is big where the other side has big error variance. The width of the zone of
transition is comparable to the duration of the PEFs, much shorter than the distance of
adaptation. This is an amazing result. We have sharply defined the location for the spectral
change even though the PEF estimation cannot be expected to adapt rapidly to spectral
changes. Amazing! This completes your introduction for the image of Lenna, Figure 2.8.
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2.3.4 Boundaries between regions of constant spectrum

There is no direct application to predicting financial markets. But, with recorded data, one
can experiment with predictions in time forward, and backward. Including space with time
makes it more intriguing. In space, there is not only forwards and backwards but sideways
and at other angles. The PEF idea in 3-D (Figure 2.7) shows that sweeping a plane (the top
surface) upward through a volume transforms an unfiltered upper half-space to a filtered
lower one. Whatever trajectory the sweep takes, it may also be done backward, even at
other angles.

Figure 2.7: The coefficients in a 3-D
PEF. (GIEE) image/. 3dpef

1

You are trying to remove noise from the test photo of Lenna (Figure 2.8). Your sweep
abruptly transitions from her smooth cheek to her straight hair, to the curly fabric of her
hat. To win this competition, you surely want sweeps in opposite directions or even more
directions. Fear not that mathematics limits us to slow spectral transitions. The location of
a sharp spectral transition can be defined by having colliding sweeps, each sweep abruptly
losing its predictability along the same edge. But Lenna is not ours yet.

How should we composite the additional sweeps that are available in higher dimensional
spaces? Obviously, we get two sweep directions for each spatial dimension; but, more might
be possible at 45◦ angles or with hexagonal coordinates.

Unfortunately, Equation (2.2), is actually wrong (one of the PEFs needs to be reversed),
and, obviously, PEFs of various rotations cannot be added. The various angles, however,
do help define regions of near homogeneity, but putting it all together to best define Lenna,
remains a challenge.

REFERENCES

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing versus Inversion: Blackwell
Scientific Publications.
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Figure 2.8: Lenna, a widely
known photo used for testing en-
gineering objectives in photometry.
(Wikipedia) image/. Lenna



Chapter 3

Updating models using PEFs

While fitting modeled data to observed data, the residuals should be scaled and filtered to
be uniform in variance as a function of space and of frequency. This notion, called IID,
was introduced on page 2. PEFs allow us to achieve data fitting with IID’d residuals. An
appendix (on page 58) shows that PEFs build in the notion of inverse covariance matrix.

Chapter 1 shows how to compute a PEF in one dimension. Nonstationary methodology
allows us frequency being a function of time. Chapter 2 shows how to compute PEFs in
higher dimensional spaces. Nonstationary methodology allows us dip being a function of
location.

To tackle a wide range of physical problems we now introduce an operator F that may
define a wide range of physical settings. Upon finding a physical residual r = d − Fm we
may compute its PEF A by means of Chapters 1 and 2. It is easy to apply the PEF to
the physical residual getting the statistical residual q = Ar = A(d − Fm). What remains
is our project here, to upgrade the model m = m + ε∆m while applying the PEF to the
physical residual. How will we get ∆m?

3.0.5 A giant industrial process

Unless you live in Houston, you’ve likely never heard of reflection seismology. Mathemati-
cally it resembles medical imaging but on a much larger scale. Seismic survey contracting is
a multi-billion dollar per year industry whose customers are the petroleum industry. Numer-
ous other industries fit models in Cartesian continua. None appear to use multidimensional
PEFs in image building. Without trying to drag you into any of these fields I’d like to show
you some samples of data fitting with and without PEFs.

In the real earth we never know the true answer (m = earth reflectivity(x, z)). But,
we can model the data of any m. The advantage of manufactured data (synthetic data) is
we can measure overall quality by the nearness of the estimated model to the true model
‖m−mtrue‖ as a function of iteration, whereas for real data we are reduced to looking at
the difference between real and modeled data ‖d− Fm‖.

For a well-known and widely studied model (Marmousi), and a well-known operator
(Born Modeling operator F) Figure 3.1 shows two curves as a function of iteration. These

27



28 CHAPTER 3. UPDATING MODELS USING PEFS

curves are the percentage of the model found, namely 100×(1−‖m−mtrue‖/‖mtrue‖) with
and without use of a PEF. The curve raising the higher has found the greater percentage
of the true model. The PEF wins, 31% versus 18%. Use of the PEF has enabled finding
almost twice as much of the model.

Figure 3.1: Percentage of model
found as a function of itera-
tion count. The curve that
climbs the higher is using the
PEF. Hooray! The astounding
aspect is that the PEFs have
pulled almost twice as much
model from the data. (Guitton)
ag/. compmodelfit2MARINE2

I had expected PEF use to give better answers, but I did not expect it to start off
more slowly. The slower start might result from the PEF method trying all slopes whereas
without the PEF slopes used first are those dominant in the data. Both desirable attributes,
initial speed and ultimate minimum, could be achieved by gapping the coefficients of the
PEF during early iterations.

An interesting fact is that with or without the PEF neither final model comes close to
fitting the correct one. What is going on? The problem is linear and the size of model space
is 121×369=44,649 components. Theoretically, we should get the exact answer in 44,649
iterations. Reality is that we always stop long before then. If we had a unitary operator we
should get the correct answer in one iteration. I see the problem stemming from the fact
that finite difference operators merely approximate differential operators. Our mathematics
is nonphysical at higher frequencies.

3.1 Code for model updating with PEFs

For the special case m = 0, the regression 0 ≈ A(d − Fm) = Ad is simply the PEF
problem that we solved in earlier chapters. As m grows, the statistical energy E in the
residual q(m) is expressed as:

E = q · q = q∗ q = (d∗ −m∗F∗)A∗A(d− Fm)). (3.1)

The mismatch energy gradient by the model is:

∆m = − ∂E

∂m∗
= F∗A∗A(d− Fm) = F∗A∗Ar. (3.2)

So, the computational problem is to apply A∗A to the residual r simultaneously with finding
A. It is the PEF of r. Following are the steps to update the model grid:

r = (d− Fm) (3.3)
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q = A(d− Fm) = A r (3.4)
s = A∗A(d− Fm) = A∗q = A∗Ar (3.5)

∆m = F∗A∗A(d− Fm) = F∗s (3.6)

Actually ∆m need not be the model update direction but iterative linear solvers all compute
the energy gradient as part of their algorithms.

Equations above are in code below for computing ∆m while finding A. You might
choose to include a weight W in physical space with something like s = A∗W2Ar or
s = WA∗AWr.

Regularization augments the data fitting penalty with another PEF B for the regular-
ization ε2m∗B∗Bm. The role of B∗B resembles that of an inverse Hessian.

3.1.1 Applying the adjoint of a streaming filter

We often think of adjoint filtering as running the filter backward on the time or space axes.
That view arises with recursive filters in which the adjoint must indeed run backward.
With nonrecursive filters, such as the prediction error filter, there is a more basic view. In
a (nonrecursive) linear operator code, the inputs and outputs can simply be exchanged to
produce the adjoint output. For example, the following pseudocode applies a PEF a(tau)
to the physical residual r(t) to get a statistical (whitened) residual q. We get the adjoint
by the usual process of swapping spaces getting s. The time t loop could run forward or
backward.

# CODE = CONVOLUTION AND ITS ADJOINT

do t= ntau, nt

do tau = 0, na

if( forward operator )

q(t) += r(t-tau) * a(tau) # one output q(t) pulls many

if( adjoint )

s(t-tau) += q(t) * a(tau) # one input q(t) pushes many

3.1.2 Code for applying A∗A while estimating A

# CODE = DATA FITTING WITH PEFed RESIDUALS.

a(*) = 0; da(*) = 0; a(0) = 1.

r(*) = 0; q(*) = 0; s(*) = 0 # You compute r=Fm-d.

do t= ntau, nt

do tau = 0, ntau

da(tau) = 0

q(t) += a(tau) * r(t-tau) # q = A r

do tau = 0, ntau

da(tau) += q(t) * r(t-tau) # da = q r

do tau = 0, ntau

s(t-tau) += q(t) * a(tau) # s = A’ A r

do tau = 1, ntau

a(tau) -= da(tau) * epsilon # Update the filter

# You apply F’ to s
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The code organization assures us that A and A∗ apply the same filter. Notice that the
program also works when the time axis is run backward. In two dimensions, either or
both the axes may be run backward. Flipping axes flips the region in which statistics are
gathered.

3.2 DATA MOVEMENT

The approach herein has the potential for “streaming,” meaning that the entire data volume
need not be kept in memory—it all flows through the box defined by the codes herein. Our
PEFs changed significantly from shot to shot (since dip changes). Although the conjugate
direction solver does not require linearity, quick tests showed that our PEFs would change
only slightly from iteration to iteration so for this pioneering effort we chose the cautious
route of freezing the PEFs after the first iteration. That makes our tested process strictly
linear.

The earth velocity in the Marmousi model is given so to simplify matters in this first
test the processing uses it without estimating it.

An oversimplified view of the Born Modeling operator F is that each shot gather is
flattened, then they are all added to get the earth image. More correctly, the operator
downward propagates hypothetical shots, and downward propagates the observed data,
and then crosscorrelates them. Thus earth dips are correctly dealt with. In Figure 3.2,
what you see is based on d−Fm for a single shot after the first iteration. After the above
processing, often called “migration”, all shots are added to create subsequent illustrations
of earth images.

3.2.1 Instability management by regularization

We have done no instability management, but theoretically it could be needed. By the
“jaggies” it almost looks to be incipient in Figures 3.3-3.4. The general solution is to add
to the overall quadratic something like ε2m‖m′B′Bm‖ which means after each iteration of
data fitting boosting m, you follow by another shrinking it with m ← m − εmBm. And
where does B come from? Like any other PEF, you build it from m.

3.2.2 Technical issues for seismologists

1. Born Modeling operator F with two-way wave equation.

2. Data are streamer data modeling F (primaries only) with maximum offset of 4 km,
with 88 shots spaced by 100 meters. Each shot has 160 traces 25 meters apart.

3. Inverse crime: data are modeled and inverted with the same operator.

4. Maximum frequency is 20Hz with central frequency of 10Hz.

5. Inversion with conjugate direction solver, 30 iterations max.

6. When streaming PEFs are used, ε = 0.5 and size of PEF is 20× 5.
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7. Streaming PEFs A are based on shot gathers. They are estimated from the input data
and kept constant during the inversion. Each gather has its own filter as a function
of time and offset.

3.2.3 Where might we go from here?

If today you were to put PEFs on receiver gathers instead of shot gathers, you’d be off on
a path of original research. Shots are four times as widely separated as receivers, but PEFs
generally untroubled by spatially aliased data so it should work fine.

With a little more courage you might think of a 3-D PEF formulation for the shot-
geophone-time space. There might seem to be too many filter coefficients, but nothing says
those coefficients must be dense in 3-D space.

3.2.4 Antoine Guitton’s Marmousi illustrations

Figure 3.2 shows a shot gather. There are 88 of these.

Figure 3.2: A single shot and its mirror reflection, but the reflection has had a 2D PEF
applied, so, like the cover of this book, the backscattering is enhanced. Cutting off data
above a diagonal line is called “muting”. It is done to eliminate near surface waves since
they do not contribute to the final earth image. ag/. compshotwithwithoutnspef42
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Figure 3.3: After a single iteration we see the traditional adjoint estimate. Original model
(top). One iteration of Fm− d (middle). One iteration of A(Fm− d) (bottom). Because
this is the first iteration, results are scaled by a factor five compared to the true model.
Notice how without PEFs the flat layers in the shallow part are retrieved easily. Because
the PEF whitens the spectrum of the data and highlights backscattering and weak events,
the first iteration with PEF A tends to image faults and diffracted events first explaining
why the non-PEFed result comes quicker. ag/. compmodelsiteration1
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Figure 3.4: Models after 30 iterations. Top: Model mtrue. Middle: m(r = (Fm − d)).
Bottom: m(r = (A(Fm − d))). All three images are displayed with the same scaling.
The three images are not easily compared on their paper representation herein. It is eas-
ier to compare on this internet blink view: http://sep.stanford.edu/sep/prof/ag.gif. Se-
lect interesting locations to position your pointer. Video of my interpretation is here:
http://sep.stanford.edu/sep/prof/Marmousi2.mp4. What is obvious on this paper repre-
sentation is without the PEF the model is weaker. With the PEF higher frequencies have
emerged hence the stronger amplitude. ag/. compmodelsiteration30
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Figure 3.5: Residuals at constant offset (h=25 m) for the first iteration (left side) and the
last (right side). Non-PEFed on top, PEFed on the bottom. Because these are incom-
mensurate residuals, before and after absolute amplitudes are not comparable. However,
notice the PEFed residuals have lost more lower frequency and steeper dipped events. Pre-
sumably, those have gone into the model. Also, at early times the PEFed residuals have
weakened further suggesting the PEFed results are better solved there than the non-PEFed.
ag/. compwithwithoutoffsetnspef155

3.2.5 Conclusion

We are thrilled by these results. The notions of IID and PEF have long been ignored by
the seismic imaging community. That community should appreciate the fine results shown
here. These results were obtained in one month of Antoine Guitton’s spare time. (He has
a day job too.)

Because time was limited, many simplifications were adopted offering later workers
(you?) the opportunity to learn whether proceeding more correctly would bring better
results or would simply bring trouble. PEFs were frozen at their initial values not changing
with iteration. Equation 2.1 and its related code were ignored.

I’m almost ready to speculate on the relation of PEFs to Hessians and on how PEFs
might be introduced to the broader problem of simultaneously estimating velocity with
reflectivity. When estimating these two, is there a role for two-channel PEF (Chapter 5)?



Chapter 4

Missing data interpolation

1Geophysical data often has “holes”, either local regions of absent data, or obviously wrong
data. We may begin by ignoring them, but as we work there comes a time to deal with the
blemishes. As the old Swedish proverb says: Även solen har sina fläckar.” (Even the sun
has spots.)

Both the stationary and nonstationary approaches to PEF missing data infill are simple,
elegant, and have strong theoretical underpinnings. As the proverb suggests, there were
small irregularities that might often turn out salient.

One preprocessing step common to both our stationary and nonstationary PEF missing
data infill was to generate a locally-smoothed copy of our data before interpolation, smoothly
interpolated into the missing data regions, and subsequently adding it back after PEF infill.
This step is beneficial because we want our PEF design to focus on local texture and not
any broad, smooth background upon which the texture is present. After all, almost any
standard interpolator can handle smooth interpolation.

4.0.6 Stationary PEF infill

The GIEE approach to PEF interpolation of missing data is elegant, powerful, and uncon-
ditionally stable. Its main limitation is the stationary assumption that the data texture
and their statistics are invariant across the image section. In many cases, such as in Figure
4.1, breaking up the input into, possibly overlapping, patches and infilling each separately
can be effective, however klunky.

One concern that has been raised repeatedly is that our PEFs are unidirectional, step-
ping along a helix unwrapping of the multidimensional grid. After all, there is nothing
causal about an elevation map. Recall that stationary theory finds a PEF from the auto-
correlation function. In that world, i.e. one where either there is no missing data or the PEF
is one contiguous set of coefficients in the helix sense, the PEF of forward-going data must
be identical with that of backward-going data. In practice, for more than one dimension a
normal, noncontiguous PEF layout will not always land on the identical set of known values
and there can be some differences.

1Adapted from SEP report 173
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Figure 4.1: Gulf of California AUV Bathymetry collected by MBARI interpolated us-
ing local stationary PEF. The black patches are data gaps and the black lines outline
the areas of interest on which PEFs were designed. Courtesy C. M. Castillo (2018).
sal/. GofCLocalPEF
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4.0.7 Nonstationary PEF infill

Our nonstationary PEF can also be applied to interpolate missing data. This follows directly
from the previous work, adapting the filter as usual when passing over known data and
incorporating some or all of the filter’s prediction in data gaps with some scale factor εY .
Here, unlike the stationary case, we can make multiple passes over the data and can choose
different directions for different passes.

As the PEF adaptive update can and should be chosen to reduce its prediction error,
we can expect a stable extrapolation into gaps with, most likely, a tail off in amplitude with
distance from the edge of the hole. Figure 4.2 shows a simple example with a square hole
in purely random data.

Figure 4.2: Infill of hole surrounded
by random Gaussian numbers with
εY = 1

2 sal/. PEFinterpBigepsd

Oops!

No, this is not a bug. It is a consequence of the fact that the leading coefficient of
any PEF has magnitude one, and, therefore, unless all other coefficients are zero, the PEF
has a norm greater than one. Upon encountering a gap, the PEF can, indeed, produce
geometrically increasing new values. Indeed, once such growth kicks in, the PEF will
further adapt to better and better predict the geometric growth pattern.

To prevent this we rescaled our εY by dividing it by the norm of the initial PEF filter
we designed on the live data in the area of interest. This, too, managed to blow up! We
finally realized that because the prediction error filter, A, was adapting as it entered the
gaps, and adapting differently from iteration to iteration, we had to recalculate the filter
norm at every step in order to ensure that our missing data updates were under control and
stayed usefully incremental.

The situation for the filter adapation parameter εA was less challenging because the
guideline in Claerbout and Wang (2018,chap. 1.3) to use the reciprocal of the variance of
the data, Y , to rescale it to a unitless value worked reasonably well. The value we settled
on, εA = 0.05/

∑
d2
i , where di are the samples under the current filter, was a compro-

mise between adapting painfully slowly and allowing the last orientation in an iteration to
introduce a visible directional bias in the infill.

In addition to setting εY and εA, we also could vary the number of interpolation passes
over the grid. We settled on 64 eight-way passes, admittedly overkill, but sufficient to
converge the infill all but the largest gaps.
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Examples

To assist in Castillo’s thesis work (Castillo, 2018), our PEF interpolation was implemented
under the ArcGIS framework using the ArcPy tool API. Details of this implementation may
be found in SEP 173.

It is a fundamental property of prediction error filters that they are designed to track
individual sinusoids and combinations of them, limited by just the number of PEF coeffi-
cients. Figures 4.3 and 4.4 are evidence that our stationary code is working. For both of
these examples we specifically avoided cases where either the hole or the sinusoids seredip-
itously aligned with coordinate axes. In addition, we made sure that the criss-crossing
sinusoids had distinctly different wavenumbers and slopes.

Figure 4.3: Test of stationary PEF missing data infill to ensure it reproduces input spatial
sinusoid in a hole that is not aligned with x and y axes. sal/. DiamondPair

Figure 4.4: Test of stationary PEF missing data infill to ensure it reproduces two input
spatial sinusoids with incommensurate orientations and wavenumbers. sal/. CrissCross

While Fourier theory says that even the most complex seafloor grid of bathymetry can be
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perfectly reconstructed with a finite number of sinusoids, there is no reason to expect that a
global Fourier reconstruction will infill data gaps in a useful way when, as is almost always
the case, the statistics and pattern of the bathymetry change locally. This is illustrated
in the challenging dataset of Figure 4.5. Our nonstationary PEF interpolation is highly
realistic, exhibiting the characteristics of the data that our eye expects to see in the hole.

Figure 4.5: Portion of seafloor texture after detrending and removing a 16x16 square in
the center alongside a nonstationary PEF missing data infill. sal/. SeafloorTexture

Finally, Figure 4.6 shows a large scale application of PEF interpolation to infill typical
gaps in seafloor coverage that arise as the echo sounding vessel shifts and meanders as it
moves along its nominal path.

Summary

We have implemented both stationary and nonstationary PEF missing data infill. We
developed reasonable choices for the adjustable parameters in the nonstationary setting
using a combination of theoretical reasoning and empirical trials. While further optimization
can help reduce the time it takes to iterate to an answer, we would challenge anyone to find
the location of the originally missing data in our results.

REFERENCES

Castillo, C. M., 2018, Deep thoughts about the shallow subsurface: PhD thesis, Stanford
University.

Claerbout, J. and K. Wang, 2018, Data Fitting with Nonstationary Statistics: Lulu Press,
www.lulu.com.



40 CHAPTER 4. MISSING DATA INTERPOLATION

Figure 4.6: Track gap interpolation of a 500 m bathymetric grid collected in Western Pacific
Basin interpolate using local PEFs. Courtesy C. M. Castillo (2018). sal/. TrackInterp



Chapter 5

Vector-valued signals

1We have done much with PEFs on scalar-valued signals. Vector-valued signals are for
3-component seismographs and the like. The idea of deconvolution with a PEF extends
to multicomponent signals. In ideal geometries, different wave types arrive on different
channels; but in real life, wave types get mixed. Pressure waves tend to arrive on verti-
cal seismographs, and shear waves arrive on horizontals; but, dipping waves corrupt each
channel with the other. The main goal herein is to disentangle this channel crosstalk.

Scalar blind deconvolution is widely used in the seismic survey industry. The simple
information flow in the upper quarter of Figure 5.1 is pretty much what we have done in
Chapter 1 with the addition of the bandpass filter at the end. Oversimplifying, the idea
is that Earth layers have random densities (impedances), therefore random echo polarities
at a fine scale. This layering zt gets smeared by the source wavelet, which is not an ideal
impulse, instead being a mixture of air bubbles, ghosts, and weathered-layer reverberations
leading to the observed output yt. Those corrupting processes amount to causal filters, best
undone with a PEF producing the output rt. The bandpass filter at the end is there for
subjective reasons, mainly we do not want to clutter our view with the highest possible
frequency that a grid can hold because we know it is just noise. A popular alternative to
the bandpass filter is gapping the PEF. Instead of limiting high frequencies, it does much
the same by broadening the autocorrelation spike of the “white” output.

5.0.8 Multi channels = vector-valued signals

Widespread adaptation of multicomponent recorders leads to new opportunities indicated
by the lower bulk of Figure 5.1. Hypothetical statistically independent channels z1 and
z2 become colored making our ideal unpolluted channels x1 and x2, which unfortunately
“crosstalk” before giving us our observations y1 and y2. Learning herein the theory of matrix
valued PEFs, we design a matrix of filters, say A = aij attempting to achieve the original
purity of z. Normally, we do not wish to achieve the pure whiteness of z. Rather than
apply a bandpass filter herein, we use our estimates b̂11 and b̂22 to find x̂ as our attempt to
restore the original colored signals x.

Others may make other choices, but we are choosing to display x̂ for a reason. We want
1This chapter draws from (Claerbout and Wang, 2017).
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Figure 5.1: Top is scalar decon. Bottom is vector decon. In nature, two uncorrelated white
random signals z get colored thereby creating x, which then gets mixed and creates our
observations y. Vector decon converts y to uncorrelated white signals r, which hopefully
are a reasonable approximation to z. If r ≈ z, then AB ≈ I, therefore, recoloring r without
mixing gives us x̂, which should match the original colored signals x. (Kaiwen Wang)
vector/. diagram

tests of whether or not our method works in practice. If it does, we can expect to see the
S-wave channel coming out lower frequency than the P-wave channel, because the Earth
acts as a wavelength filter. It is generally believed the Earth dissipates waves proportional
to their spatial frequencies. Cutting both P and S at the same spatial frequency implies S
cuts off at a lower temporal frequency than P because its velocity is lower. The scalar wave
equation explains it ω2 = v2k2.

The multichannel structure of Figure 5.1 arises in diverse physical settings. Not only
does the Earth contain pressure waves and shear waves, where we measure vertical and
horizontal motions, additionally, ocean bottom recordings contain pressure as well as three
component velocity sensors. It is useful to extract upgoing from downgoing waves. Because
pressure and velocity are sensed in different but overlapping frequency bands, the idea of
b11 and b22 having different passbands is another valuable aspect of this model.

Fourier analysis suggests a crude approach to Figure 5.1. For scalar waves, given the
spectrum Y (ω)∗Y (ω), the solution to the problem is A(ω) = 1/

√
Y (ω)∗Y (ω). But, a

symmetric function of frequency implies a symmetric function of time which is not causal.
Fourier space requires stationary statistics, and forbids `1-norm. The square root of a matrix
of Fourier functions is easily found, but the disadvantages of Fourier space are overwhelmed
by the simplicity of the time domain. Causality is easily expressed with Z-transforms,
equivalently either as a matrix of polynomials or as a polynomial of matrix coefficients.
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5.1 MULTI CHANNEL PEF

This mathematical model applies to one point in space, where it is based on causality and
simultaneity of the two channels responding to the world around. The two-component signal
model herein is not suitable for two scalar signals recorded at separate locations. At separate
locations, there naturally would be time delays between the locations. If the underlying
model B were to introduce delay, its hypothetical inverse A would need to contain inverse
delay (anticausality!). Because A, a PEF, is casual by construction, it cannot function
anticausally. Whatever A would come out of this process, it could not satisfy BA = I. In
other words, there are many ways B could contain delays without changing its covariance
BB∗. Our inverse operator A is fundamentally based on BB∗, which contains no phase.
We get phase by insisting on causality for A.

If you are processing a string of multicomponent recorders (e.g., down a well) each
multicomponent recorder yields statistics that may be shared and averaged with neighboring
recorders, but the signals themselves do not mix. The process described herein is simply
a vector-valued, time variable linear operator. The same process could be independently
applied to other channels.

Delay causes the method of this paper to fail in principle. In marginal cases (tiny delay)
the notion of sparsity has helped for scalar signals (Claerbout and Guitton, 2013). There is
an example in Chapter 1. Minuscule delays are a promising area beyond our present scope.
Differential equations apply to a point in space. Their finite difference representations cover
slightly more than a point. There may be some ticklish but promising aspects of merging
finite difference operators with vector signals.

The multichannel model would seem to extend to three and more physical dimensions
though we will never know until we try. Whether or not it is suitable for many channel
market signals, I cannot predict.

5.1.1 Vector signal scaling

When components of data or model are out of scale with one another, bad things happen,
such as the adjoint operator will not be a good approximation to the inverse, physical
units may be contradictory, and the steepest descent method creep along slowly. These
dangers would arise with vector-valued signals if the observations y1 and y2 had different
physical units such as pressure and velocity recorded from up-going and down-going waves,
or, uncalibrated vertical and horizontal seismograms.

We need to prepare ourselves for channels being out of scale with one another. Thus,
we scale each component of data y and residual r by dividing out their variances. Recall
that any component of a gradient may be scaled by any positive number. Such scaling is
merely a change in coordinates.

With scalar signals, we updated using ∆a = − (ε r/σ2
y) yt−τ . With multiple channels, we

are a bit more cautious and allow for data variance to differ from prediction-error variance.
More importantly, the two components of y might have differing physical units. Let σr be
an estimate of the standard deviation of the prediction error in each channel. The following
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code resembles this update

∆a = −
(
ε r

σrσy

)
yt−τ (5.1)

Our original code contained leaky integrations for σy and σr, but we had no vision of
data to test that aspect. It also gave odd behavior when we adapted too rapidly. Because
we had more pressing areas in which to direct our attention, the code exposition below
simply replaces σy and σr by their global averages.

5.1.2 Pseudocode for vector signals

Compared with earlier pseudocode for scalar signals in which the gradient is a scaled adjoint,
the gradient herein divides out the variances σr and σy. That because we may always scale
gradient components by positive numbers, say sigy and sigr. Look at the code below for
the four do loops following Happy streaming. You see a matrix full of PEFs at work. The
three loops next below the PEF filtering are simply its adjoint (allowing for the complication
of the σr and σy scaling)—something you easily recognize by the interchange of inputs and
outputs, r and a.

# CODE = PREDICTION ERROR FOR VECTOR SIGNALS

#

integer it, nt=1000, tau, ntau=10, gap=0, ic, jc, nc=2

real y(nc,nt), r(nc,nt), aa(nc,nc,na), sige(nc), sigy(nc), eps

e (*,*) = 0.

aa(*,*,*) = 0.

do ic=1,nc {

aa(ic,ic,0) = 1. # Make a 2x2 identity matrix.

}

read input y(nc,nt) # Read multichannel data.

#

do ic=1,nc { # Initial variance estimates.

sumsq=0

do it=0,nt

sumsq += y(ic,it)**2

sigy(ic) = sqrt(sumsq/nt)

sigr(ic) = sigy(ic)/2.

}

# Here we go! Happy streaming. Wheee!

do it= ntau, nt {

do tau=1,ntau { # lag axis.

do ic =1,nc { # Take a signal vector into a filter matrix.

do jc =1,nc { #

r(ic,it) += aa(ic,jc,tau) * y(jc, it-tau)

}}}

# Optionally update sigy and sige

do tau=gap+1, ntau { # adjoint = r * y’ (outer product)

do ic= 1, nc { #

do jc= 1, nc { #

aa(ic,jc,tau) -= eps * (r(ic,it)/sigr(ic)) * ( y(jc, it-tau) /sigy(jc))

}}}

}
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Now, it is easy to say that the code above is really quite trivial, but I breathed a sigh of relief
when Kaiwen showed me the first results. (It worked on the first try!) Before I conceived
the calculation as explained above, I had quite a struggle attempting the derivative of a
quadratic form by a matrix filter, and even more doubts that I would be able to explain my
analysis to other people, as well as a debt to Mohammed Hadidi, whose derivation showed
that my derivative was the transpose of the correct one. Then I tried thinking carefully
about Figure 5.1. But, it was better not to think at all; instead simply code the modeling,
its adjoint, and stuff in the residual! Phew.

5.1.3 How the conjugate gradient method came to be oversold

Textbooks often illustrate the solution to a two component regression by comparing the
steepest-descent method to the conjugate-gradient method. Conjugate gradient winningly
obtains the exact solution on the second iteration while steepest descent plods along zig-
zagging an infinite number of iterations. But, is this a fair comparison? Is it not true that
axis stretching completely alters the picture? So, what exactly is the axis stretching that
makes a more fair comparison? I suspect it is the kind of stretching done in the preceding
code with variance divisors.

5.1.4 The PEF output is orthogonal to its inputs

Let us try to understand what this program has accomplished. If the program ran a long
time in a stationary environment with a tiny ε eps, the filter A, namely aa(*,*,*) would
no longer be changing. The last line of the code would then say the residual r(ic,it) is
orthogonal to the fitting functions y(jc,it-tau+1). We would have a square matrix full
of such statements. The fitting functions are all channel combinations of the shifted data.
That is the main ingredient to Levin’s whiteness proof for scalar signals in Chapter 7. I
believe it means we can presume Levin’s whiteness proof applies to vector signals. As we
subsequently see, however, the situation at zero lag does bring up something new (Cholesky
factorization).

5.1.5 Restoring source spectra

White signals are not ideal for display. Before corruption from channel 2, channel 1 had
the spectrum of b11. Consider restoring r1 to the original spectrum, namely b11. Because
B = A−1, we can deduce b11.

B =

[
b11 b12

b21 b22

]
=

[
a11 a12

a21 a22

]−1

=
1

a11a22 − a21a12

[
a22 −a12

−a21 a11

]
(5.2)

Under the assumption that the crossover filters are less significant than the pass-through
filters, we may simplify the result for initial trials:

b11 = a22/(a11a22 − a21a21) ≈ 1/a11 (5.3)
b22 = a11/(a11a22 − a21a21) ≈ 1/a22 (5.4)
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The result of polynomial division x̂(Z) = r(Z)/A(Z) is recognizable in the code by x̂t =
xhat(ichan,t). Here is the polynomial division code fragment:

# CODE = POLYNOMIAL DIVISION

xhat(1,t) = r(1,t)

do tau=1,ntau # xhat1(Z) = r1(Z)/a11(Z)

xhat(1,t) -= aa(1,1,tau) * xhat(1,t-tau)

xhat(2,t) = r(2,t)

do tau=1,ntau # xhat2(Z) = r2(Z)/a22(Z)

xhat(2,t) -= aa(2,2,tau) * xhat(2,t-tau)

}

We have been doing this polynomial division for some time with no stability issues yet.

5.2 CHOLESKY DECORRELATING AND SCALING

The two independent channels of unit-variance random numbers in r entering filter B in
Figure 5.1 have the identity matrix I as a covariance. Herein we arrange to have the same
identity covariance for the values r exiting from A on the right.

By construction, the multicomponent PEF output chews up nonzero lagged correlations
within and among channels. By construction, it does not chew up correlations among
channels at zero lag. With two components we are left at the zero lag with a nice 2 × 2
matrix of prediction-error variances W.

W(τ = 0) =

[
σ2
r11 σ2

r12
σ2
r21 σ2

r22

]
≈

[
(r1 · r1) (r1 · r2)
(r2 · r1) (r2 · r2)

]
(5.5)

Consider the expectation (leaky sum over time) E[ r r∗]. Theoretically it is a three
component (3-C) function of lag and the two channels. We are going to assume our PEFs
do their job, so, it is no longer a function of lag. Thus, we presume that E[ r r∗] is like the
W(τ = 0) we computed with Equation (5.5) at zero lag τ .

Use the Cholesky method to factor W into a triangular matrix V times its transpose. We
express this as: W = VV∗. (The Cholesky method is nearly trivial: [1] write a triangular
matrix of unknown elements, [2] multiply it by its transpose, and [3] notice a sequential
method that unravels the unknown elements.) Starting from W = VV∗ we have:

W = V V∗ (5.6)
V−1W(V∗)−1 = I (5.7)

CWC∗ = I (5.8)

where we have defined C = V−1. Using this new matrix operator C we get a new vector
signal q.

q = C r (5.9)

Using Equation 5.8 the expectation of this new variable q is as follows:

E[qq∗] = E[C rr∗C∗] = C E[rr∗] C∗ = CWC∗ = I (5.10)

This proves Cholesky meets our goals: (1) it descales, and (2) it decorrelates r at zero lag.
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5.3 ROTATING FOR SPARSITY

Intrigue is what comes last, something wholly unfamiliar. As the universe marches on,
things get mixed and entropy increases. We seek the opposite. Even after solving the
problem posed in Figure 5.1, the solution is unique only within an arbitrary unitary matrix.
(With scalar signals the arbitrariness is in a scale factor eiφ.) We get to choose the unitary
matrix U having minimum entropy r output. Luckily, this two-channel problem, although
nonlinear, is easily amenable to a one-parameter exhaustive search. That search can be
done to maximize sparsity of the final signals. We humans love the simplest representation
of our data. This should be it. Hooray!

Rotations and reflections are called “unitary operators.” For now, we are ignoring
reflections (polarity changes). (Consider that to be an application labeling issue.) Scanning
a single parameter θ through all angles allows us to choose the one with the most sparsity
(least clutter). A general form for a 2× 2 rotation operator is

U =

[
cos θ sin θ
− sin θ cos θ

]
(5.11)

We will meet our goal of finding A and r of Figure 5.1 with the following:

r = Uq = UCr = U C E y = A y (5.12)

A unitary operator U does not change the length of any vector. It satisfies U∗U = I,
therefore for any v we see (Uv)∗Uv = v∗U∗Uv = v∗v. Let us check that the covariance
of r = Uq is constant independent of θ. Equation (5.10) leads to rr∗ = U E[qq∗] U∗ =
UIU = I, which says the energy stays constant as we sweep through θ.

5.3.1 Finding the angle of maximum sparsity (minimum entropy)

Given any angle θ for Equation (5.11), we have r = Uq. We can scan θ over one degree
increments. Defining the entropy at any particular time as (|r1|+ |r2|)/

√
r2

1 + r2
2, we easily

choose the angle of minimum entropy for that time. We may define the entropy for the
entire time range of the signal as follows:

Entropy(θ) =
∑∞
t |r1(t)|+ |r2(t)|√∑∞
t r2

1(t) + r2
2(t)

(5.13)

Because the denominator should be a constant function of θ, we may as well define entropy
simply by the numerator Entropy(θ) =

∑∞
t |r1(t)|+ |r2(t)|.

Retrospectively, the authors have come to understand that the unitary operator U is
not only a mathematical tool, but, it also models rotation in the physical world. It should
be done at beginning of the process (as well as again at the end) because it often has the
power to diagonalize the matrices right at the beginning.

Why the scan works

Why does this U process of scanning θ lead to sparsity? Suppose the vector signal element
qN at time at t = N has all its energy in its first component. Say the vector signal is



48 CHAPTER 5. VECTOR-VALUED SIGNALS

[−1, 0]∗ with energy and magnitude both now equal unity. The rotated signal is now as
follows: [

cos θ sin θ
− sin θ cos θ

] [
−1
0

]
=

[
− cos θ

sin θ

]
(5.14)

Let the rotation angle be 45◦ so sine and cosine are both 1/
√

2. The sum of the magnitudes
becomes 2/

√
2 =
√

2 > 1. As expected the rotation took away the original sparsity.

We experimented with taking the matrix U to be time variable. That has pitfalls we
are not yet prepared to explain.

5.3.2 3-component vector data

For 3-component vectors, the scan would run over two angles; therefore the u(itheta)
would be expanded to u(itheta,iphi).

5.3.3 Channel order and polarity

Although our first synthetic data had the strongest pressure wave on the first channel,
our first successful run yielded the pressure wave on the second channel. The channel flip
operation is as follows: [

0 1
1 0

]
(5.15)

Now, we flip channels when we find the expression |r1 · y1|+ |r2 · y2| < |r1 · y2|+ |r2 · y1|.

Our initial P-wave result had a flipped polarity. The operation for flipping the polarity
for Channel 1 is as follows: [

−1 0
0 1

]
(5.16)

We change the polarity of Channel 1 when (y1 · r1) < 0 and likewise for Channel 2.

It is easy to show for signals with an identity I correlation matrix, that channel flip and
polarity change operations do not change the I correlation matrix. It is easy to imagine
situations in which flip and polarity should change with time. For example, there may be
more than two wave types present. One may die out, while another grows. We have not
yet synthesized such data for testing and are unclear how we might proceed. We will, no
doubt, be strongly influenced by the data at hand.

5.4 RESULTS OF KAIWEN WANG

Figure 5.2 is our first test data, synthetic data with a vertical component and a horizontal
component. Both a P wave and an S wave are emerging at a fairly steep angle; so the
vertical is mostly a P is corrupted by a little S, while on the horizontal it is the opposite.

On Figure 5.3, we notice that the spike estimates become sharper and sharper with time
as the filter A adapts with time. Oddly, there is some crosstalk on the P channel that does
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Figure 5.2: Synthetic data input is
vertical and horizontal components.
Model is a mix of sharp, unipolar P
waves and S waves of lower frequency
with alternating polarity. Stronger P
waves on the vertical, and stronger
S waves on the horizontal. (Kaiwen
Wang) vector/. y-cropped
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Figure 5.3: Output results: Decon-
volved P wave on vertical compo-
nent (top), S on horizontal (bottom).
Spiking improves with time. (Kai-
wen Wang) vector/. z-cropped
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not seem to be diminishing with time. I do not know why that is. Perhaps, we should
repeatedly run the program over the panel.

On Figure 5.4, the P and S channels contain two signals—the original spikes and their
estimates. We notice that crosstalk nearly diminishes to zero on the P channel, likewise on
the S channel.

Figure 5.5 is like Figure 5.4 but with denser spikes—a spike every 4 pixels, each spike
topped by a small circle. Vertical lines primarily connect to the dots. Ideally, between the
dots are vertical lines of zero height, the nonzero height exhibiting the limitations of the
overall process.

Notice the vertical trace (top in upper panel) being dominated by P waves is a higher
frequency than the horizontal trace “H” (top in lower panel) which is dominated by S
waves. Results are about the same quality as Figure 5.4—proving that having so much
wavelet overlap creates no real problems. Fitting on the S channel (bottom in lower panel)
gets much better with time. Fitting on the P channel is so good near the beginning that
we hardly notice improvement with time.
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Figure 5.4: V=vertical, H=horizontal. The traces P and S are overlays of the original
impulsive waves and their attempted reconstruction from (V,H). The pulses get sharper
with time as the PEFs adapt. (Kaiwen Wang) vector/. tracesOrdered-cropped
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Figure 5.5: The top panel refers to the vertical motions V and the pressure waves P.
The second signal in that panel is a superposition of the sparse original impulses (tiny
circles) that made the data and the pulses as estimated by the entire process. These should
match. They mostly do match, but small nonzero values appear between the dots. The
lower panel is likewise for the horizontal H seismograph and the S wave (Kaiwen Wang)
vector/. denseSpikes-cropped



Chapter 6

Inverse interpolation

Figure 6.1 illustrates a universal problem in Geophysics and in many other fields. We
wish a dense uniform grid on the Earth surface from which linear interpolation would give
our raw data found sprinkled on the surface. (Reflection seismology using physics and math
explains the transformation t→ z).

Figure 6.1: Please, pretty please,
build me a dense uniform grid on
the Earth surface (x, y) plane. From
that grid, I want to draw by in-
terpolation my observed data sprin-
kled in the (x, y) plane. Those two
gray boxes must be magic 2-D PEFs.
They sweep through the entire vol-
ume, updating themselves as they
go. uniform/. WorldOfSignals5

To achieve IID estimation, we can always use PEFs on model space (since we define it),
but we often wish likewise for data space where PEFs could fill data gaps. Our goal here
is to make pseudo data on a uniform grid from the real data sprinkled about. Since this is
an inversion problem, the pseudo data is the model space. The model m is located at xi =
x0 + i∆x, namely x=x0+ix*dx. Components of the observed signal data d each have with
them a location xd, namely xx(id)—likewise for 2-D space (x,y). Generally, the pseudo
data m is gridded into somewhat more locations than the real data d so regularization is
essential.

The 1-D linear operator L is defined by the following code. (2-D is similar.) Code
elements dd and mm are 1-D arrays of signals.

# CODE = LINEAR INTERPOLATION OF 1-D SIGNALS

integer 0 <= d <= nd # nd data signals

integer 0 <= m <= nm # nm grid locations

real mm(m) # components of mm are signals on a uniform grid
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real dd(d) # components of dd are signals, recorded data.

real xx(d) # locations of dd signal raw data recordings.

real ox, dx # origin and delta of x grid coordinates.

do d = 0, nd # Data scan over all recorded signals.

x = (xx(d)-x0)/dx # the value x points within the grid.

ix = integer(x) # the value ix points to a place on the grid.

if ( 0<ix< nm-1 ) # include only data signals inside the grid

f = x-ix # 0<f<1. closeness to ix+1

g = 1.-f # 0<g<1. closeness to ix f+g=1.

do t = 0, nt # Both dd and mm are functions of time.

if forward

dd(d) += ( g * mm(ix) + f * mm(ix+1))

else adjoint

mm(ix) += g * dd(d)

mm(ix+1) += f * dd(d)

Geophysics requires data, most often acquired on land (although also often at sea or in
space). On land it is often difficult or impossible to acquire data on a regular grid, because
we have limited access to land. But, mathematical algorithms are normally expressed in
a form requiring a regular grid. And, PEFs require a uniform Cartesian grid. And more,
PEFs are the only easy, large scale method of achieving IID. (Singular-value decomposition
is much slower, suitable only for much smaller problems.) Resolving the data/theory grid
conflict requires a process to synthesize pseudo data on a regular grid, from the given signals
on a non regular grid. Such processes are a class of “inverse problems.”

6.0.1 Sprinkled signals go to a uniform grid via PEFed residuals

Sprinkled signals d means at arbitrary (xi, yi) lies your ith signal d = di,t. Herein we
make synthetic signals m = mt(x0 + j∆x, y0 + k∆y). The algorithm for building m is the
following:

1: Background
2: m1 = Random trial model
3: d1 = Lm1 trial data
4: m2 = L∗ d1 implied model
5: r = m1 − αm2 model residual, but α unknown
6: 0 = d(r · r)/dα
7: 0 = m2 · (m1 − αm2)
8: α = (m2 ·m1)/(m2 ·m2) α is now a known property of L.

9: Iteration
10: r = d− Lm residual update rule
11: m←m + εdαL∗r use data to expand the model (fitting)
12: m←m − εmAm use PEF to shrink the model (regularizing)
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Regularization being the flat-earth model

We could debug code starting signals of a single time value, so m = m. To see energy
spreading out from a signal to surrounding model space locations, take the PEF A to be
simply the space derivative dm/dx. We may call dm/dx ≈ 0 the “flat-earth” fitting goal.

r ← d − Lm (6.1)

m ← m + εd αL∗ r − εm
d

dx
m (6.2)

To simplify testing codes, we may use signals each consisting of a single scalar value.

Once the preceding code works on scalar valued signals, we can upgrade to signal dura-
tion longer than a single scalar value. Signals would be placed somewhat randomly along
a 1-D line on the earth surface. The test data d might be dipping layers. Some layers
would be thin (short on the time axis) others fat; some steeply dipping, some gentle. On
m space, fat gentle bedding should interpolate smoothly and continuously in space. Thin
steep bedding would break up into a series of fattened dots.

Learning the PEF while using it to interpolate

Going beyond the flat-earth assumption, let us interpolate a seismic receiver line. The wave
arrival slope changes with time and space. Remember from page 16 that 2-D PEFs can
kill linear events like wavefronts. Waves of differing slopes and differing frequencies often
arrive at the same time. We need local PEFs to handle these complications occurring all
together. Think of this:

r ← d − Lm (6.3)
m ← m + εd αL∗ r − εm Am (6.4)

Consider the effect of the two terms, L∗r and Am. First, r is the raw data minus the data
our model predicts. If our model m is too weak, its predicted data will be too weak, so the
term L∗r will push more raw data into m. While the εd term adds essentials to the model,
the εm term cuts back some “bad” spectrum from the model—here is how: The PEF A has
removed the dominant spectrum, the good, from m, so what comes out of Am is its bad
spectrum, that to be subtracted. (This term also obligates us to the side project estimating
the PEF A from m.)

I suggest the PEF estimation be done in a subroutine where its residual r is kept internal,
so not to be confused with the present residual r going into L∗.

We may wish the PEF A be derived in the dilation invariant manner of page 20.

Manufacturing super-resolution does not work, but we can go far.

Mathematically, the pulling apart of the product Am is a nonlinear activity, therefore it
is susceptible to multiple solutions. That happens with too fine a grid. An attractive
always-available starting solution is defining an initial m on a coarse grid, and interpolating
that.
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We cannot build spatial resolution that is not in the data, however, the tacit assumption
that we envision the world being made up of planes (because our physics gives us plane
waves) has saved us from needing a 3-D PEF. This leads to some magic: Without going into
a lengthy discussion, in reflection seismology we often encounter very slow waves (ground
roll) that are adequately sampled on the time axis, but inadequately sampled on a distance
axis. Never-the-less, after we nail down the velocity (slope), the space axis comes easily
from the neighboring time axis. Good understanding of one dimension is valuable, but not
fully adequate to understand higher dimensional spaces.

We give up on recursion because our gaps are small.

Take data organized somewhat like the model space, but with a substantial gap of missing
signals in it. Enough iterations of (6.3)-(6.4) should eventually fill the gap, albeit somewhat
tediously. Stationary theory has a seductive method of filling long gaps commonly known
as recursion or polynomial division. This method is fast for covering long gaps, such as at
cable ends. But in most applications, we have more modest goals, such as data sampling
irregularities and gaps the size of streamer separations. Moreover, the speed of the method
herein might render itself irrelevant, even on larger gaps. Do not give much credence to
synthetic data far from real data. My dear old Russian friend Boris would say, “Do not
trust data what you have not paid for.”

3-D flat-earth regularization

For 3-D data, an (x, y)-plane of signals, we penalize slopes in both x and y with the following
iteration:

m ← m + εd αL∗ r − εm [
d

dx

d

dy
]

[
I
I

]
m (6.5)

This fills holes with the 3-D flat-earth model.

3-D locally constant dip regularization

For the first time now, we do that which is not easy to do by any other method. Use two
2-D PEFs, A and B, one for the (t, x)-plane, the other for the (t, y)-plane. In principle, a
10 × 2 PEF in the (t, x) plane, likewise for the (t, y)-plane, adapts to dipping planes. In
practice, 10×3 might work better. This and longer filters on the space axes allow for several
plane wave angles appearing simultaneously on the time axis. The fitting iterations are:

m ← m + εd αL∗ r − εm [A B]

[
I
I

]
m (6.6)

We have not discussed the double PEF estimation algorithm necessary in this circumstance.
Well, I need to leave some fun examples for my readers to map out. To get started, recall
Figure 6.1.

Seismologists (they work to map t → z) who have lived for years in (x, t) space, upon
arriving in (x, y, t) space find themselves in awe at how much different the world feels.
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Without me speculating more on why, (which I easily could), I feel users of Equation (6.6)
will be amazed when they first encounter results of Equation (6.6). Compare a solitary
picture on your retina, to a radiologist swimming throughout your body with a PET scan.
She can glide anywhere she likes, all the while viewing down, forward, and sideways.

6.1 REPAIRING THE NAVIGATION

Occasionally, data location is inaccurate. Historically, we have often seen that. Today
navigation is usually quite good, but not universally so. Multicomponent seismometers
along with a pressure gauge are called “nodes.” Nodes may be placed on the ocean bottom
with a Remote Operated Vehicle (ROV), or alternately with a maned underwater vehicle.
The surface boat knows its location well enough, but it may not be very certain where the
node is. I’m willing to work on this problem, but not until after I find colleagues to work
on it with me.

The Galilee data set in GIEE is an example of data that gave me good reason to doubt
the navigation. But, it is 1990 vintage data with pre-satellite navigation.

6.2 IMAGING

The bulk of the work at SEP concerns imaging. Imaging problems are also regressions,
as is the main theme of this booklet. Thus in principle imaging problems are amenable
to the descent methodology of this booklet. First impressions are that even easy trial
applications such as time migration and velocity analysis, might be too slow using the
technology of this booklet. The IID aspect is not slow, but slowness might result from the
huge number of locations in model space. Perhaps we should contemplate highly aliased
model spaces? Modern computer technology offers extreme parallelism. What applications
using our “gradient hopping” might benefit from such parallelism? These topics are suitable
for Friday afternoon casual discussions (with beer). Something of value might be learned
from simple test cases.

In a world consisting of (1) knowns, (2) known unknowns, and (3) unknown unknowns,
imaging by gradient hopping is among the unknown unknowns. If any place remains for
breakthroughs in the seemingly mature field of seismic imaging, we should ramble among
the unknown unknowns.

6.3 DAYDREAMS

I like to daydream about equation (6.6) and its relationship to the land surface of the USA.
Many kinds of geophysical recorders lay sparse and irregular on the ground, so the factor
(d−Fm) seems central to our efforts. Of course we need to flatten the Earth sphere leading
us to wonder whether PEF concepts are limited to Cartesian spaces. The land surface m
is somewhat smooth in the plains whereas rough in the mountains. Where m in the plains
is very smooth, there A must turn out to be a powerful roughener. There can be the
occasional sharply defined texture in the plains, so we will want softclip(Am) in the plains
as much as in the mountains.
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Have a look with Google Earth or satellite maps. In the Appalachians there is a pattern
to the mountains not found in the Rockies. Follow the track from Harrisburg, Pennsylvania
to Birmingham Alabama. Occasionally these rolling mountains are broken through by
rivers. After the land, look at the bottom of the oceans.

Ocean bottoms are tough places to get data. Many kinds of data (and data gaps!)
affect the images we are able to see of the ocean floor. Given Google Maps, even the casual
viewer should recognize many data acquisition limitations. Everywhere there are stories to
be told, half geological, and half about data acquisition limitations. Awesome! Let your
imagination run.



Chapter 7

Appendices

7.1 WHY PEFs HAVE WHITE OUTPUT

It is somewhat intuitive that 1-D PEFs have a white output, but it is really amazing that
2-D PEFs tend to spectral whiteness in a 2-D space; yet, this whiteness is extensively
demonstrated in GIEE (Claerbout, 2014), while herein it is simply introduced and has its
whiteness proven. Consequently (shown here), on a cartesian grid the PEF times its adjoint
plays the role of the inverse covariance matrix demanded by inverse theory.

7.1.1 Why 1-D PEFs have white output

1The basic idea of least-squares fitting is that the residual is orthogonal to each of the fitting
functions. Applied to the PEF, this idea means the output of the PEF is orthogonal to
lagged inputs. The orthogonality applies only for lags in the past, because prediction knows
only the past while it aims to the future. What we soon see herein is different; namely,
the output is uncorrelated with itself (as opposed to the input) for lags in both directions;
therefore, the autocorrelation of the output is a delta function and the output spectrum is
white. Knowing the PEF and having output whiteness has many applications.

Let d be a vector with components containing a time function. Let Znd represent
shifting the components to delay the signal in d by n samples. The definition of a PEF is
that it minimizes ||r|| by adjusting filter coefficients ak. The PEF output is as follows:

r = d + a1Z
1d + a2Z

2d + a3Z
3d + · · · (7.1)

We set out to choose the best ak by setting to zero the derivative of (r · r) by ak. After the
best ak are chosen, the residual is perpendicular to each of the fitting functions as follows:

0 =
d

dak
(r · r) (7.2)

0 = r · dr
dak

= r · Zkd for k > 0. (7.3)

1This subsection draws from Levin et al. (2013), and is also included in Claerbout (2014).
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Given that 0 = r · Zkd, we examine r · Zkr and see that it also vanishes. Using Equation
(7.1), we have for any autocorrelation lag k > 0,

r · Zkr = r · (Zkd + a1Z
k+1d + a2Z

k+2d + ...)
= r · Zkd + a1r · Zk+1d + a2r · Zk+2d + ...

= 0 + a10 + a20 + ...

= 0 .

Because the autocorrelation is symmetric, r · Z−kr is also zero for k < 0; therefore, the
autocorrelation of r is an impulse. In other words, the spectrum of the time function rt is
white. Thus, d and a have mutually inverse spectra. Because the output of a PEF is white,
the PEF itself has a spectrum inverse to its input.

7.1.2 The PEF gives the inverse covariance matrix.

Put any residual r into its PEF A and receive a white output Ar.

I = E[ Ar (Ar)∗] The autocorrelation is an impulse. (7.4)
= E[ A rr∗A∗]
= A E[ rr∗] A∗

A−1(A∗)−1 = E[ rr∗]
A∗A = (E[ rr∗])−1 The PEF gives the inverse covariance.

Q.E.D.

If you have not been introduced to expectations (E[ ]), think of Equation (7.4) as meaning

E

[
y1

y2

] [
y1 y2

]
= E

[
y2

1 y1y2

y2y1 y2
2

]
=

[ ∑∞
t y2

t

∑∞
t ytyt+1∑∞

t yt+1yt
∑∞
t y2

t+1

]
(7.5)

Notice the zero lag of the autocorrelation is on the main diagonal and the first lag above
and below it.

7.1.3 Why 2-D PEFs have white output

Chapter 4 in my GIEE book (Claerbout, 2014) extends 1-D signal analysis to 2-D and 3-D
physical space. There are also many examples in GIEE Chapter 7. In summary, to visualize
the 2-D idea of a 1-D PEF, wrap a long rope tightly spiraling around a silo inching upward
covering many revolutions. The surface of the silo and coiled rope are 2-D spaces for our
2-D imaging games. Let the silo hold the 2-D data and the rope hold the filter. Let the
rope be slippery so it can slide over the silo in a 2-D space. Such sliding may be along the
axis of the silo, or along the rope or any direction in the 2-D surface.

Figure 7.1 shows how you can think of the rope as either a 1-D or a 2-D filter. At the
end of the rope, one filter coefficient is constrained to be a “1.” Filter coefficients in the
semicircle near the “1.” in the 2-D space are typically the most significant ones because
being nearby the “1.” they most likely give the best predictions of what lies under the “1.”
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Figure 7.1: The “1.” at the end
of a 1-D rope wrapped on a silo.
We consider only the filter coef-
ficients inside the semicircle, out-
side coefficients supposedly negligi-
ble. appendix/. ropeEnding

1. t x

In principle all the coefficients outside the semicircle vanish. For coding convenience, the
non-vanishing coefficients commonly lie in a box not a semicircle.

Stew Levin points out that once you have mastered the 1-D whiteness proof, you do not
need the 2-D proof in GIEE if you know about the helix. Why? Because wrapping one side
of a long, long 1-D autocorrelation spike many turns around the helix on the silo shows you
a 2-D spike of an autocorrelation which implies 2-D spectral whiteness.

I do not like proving theorems, especially those with negative consequences, but I may
save you some trouble if I tell you a curious fact. If you put adjustable (by least squares)
coefficients on both sides of the “1,” you spoil the whiteness of the output.

7.2 THE HEART OF NONSTATIONARY PEF USING CALCULUS

2Suppose we have a PEF that represents all previous moments in time. Call it ā =
(1, ā1, ā2, ā3, · · ·). Say that ā represents the PEF (inverse spectrum) of the data values
(d1, d2, d3, · · · , d98). We seek to define the a that represents the PEF with an appended
data value d99. Consider the regression as follows:

0
0
0
0
0

 ≈


d99 d98 d97 d96

γ · · ·
· γ · ·
· · γ ·
· · · γ




1
a1

a2

a3

 − γ


0
1
ā1

ā2

ā3

 (7.6)

The top row says we are trying to fit a new data point d99. The bottom block says the
new PEF a should be highly similar to the PEF that fit earlier data, ā. The parameter γ
should be big enough that the new data point d99 does not change a very much. Rewrite
Equation (7.6) as follows:

0
0
0
0

 ≈


dn dn−1 dn−2

γ 0 0
0 γ 0
0 0 γ


 a1

a2

a3

 −


−dn+1

γ ā1

γ ā2

γ ā3

 (7.7)

or in a shortened block-matrix notation, we have the residual to minimize

0 ≈ r =

[
d∗

γ I

]
a −

[
−dn+1

γ ā

]
, (7.8)

2This section drawn on Fomel et al. (2016) and Claerbout (2017).
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where I is the identity matrix and

d =

 dn
dn−1

dn−2

 , a =

 a1

a2

a3

 ,

For decades Bernard “Bernie” Widrow (Wikipedia) attacked problems of this nature by
defining a quadratic form and finding its gradient. (Actually, he thinks in terms of circuit
diagrams.) Then he repeatedly made small steps down the gradient (not up). How big are
the small steps? Experience teaches.

The quadratic form is r∗r. We take its derivative to find the search direction.

∆a = − (some constant)
∂

∂a∗

∣∣∣∣
a=ā

r∗r (7.9)

Form the transpose of the Residual (7.8) and then, differentiate by a∗. (By a∗, we mean
the complex conjugate transpose of a.)

∂r∗

∂a∗
=

∂

∂a∗
{a∗[d γI] − [−dn+1 γā]} = [d γI] (7.10)

and multiply that onto r from Equation (7.8) keeping in mind that d∗ā is a scalar.

∆a ∝ ∂r∗

∂a∗
r = [d γI]

{[
d∗

γ I

]
a −

[
−dn+1

γ ā

]}
(7.11)

= d(d∗a) + γ2a + ddn+1 − γ2ā (7.12)

∆a ∝ ∂r∗

∂a∗

∣∣∣∣
a=ā

r = (d∗ā + dn+1) d (7.13)

∆a = − ε rt d (7.14)

It is certainly surprising that the analytic solution to the Regression (7.6) computationally
amounts to a single step of the optimization strategy (7.13), a strategy so crude as to be
absent from textbooks; yet true (Fomel et al., 2016). Experimentalists first notice that
Equation (7.6) demands we supply a not-given constant γ while (1.6) or (7.14) demands a
not-given constant ε (or λ).
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