
Earth Sounding Analysis: Processing
versus Inversion

Jon F. Claerbout

Directory
• Table of Contents
• BeginArticle

Copyright c© 2000
Last Revision Date: February 19, 2008

mailto:

Table of Contents
0.1. References

1. Convolution and Spectra
1.1. SAMPLED DATA AND Z-TRANSFORMS

• Linear superposition• Convolution with Z-transform• Dissecting
systems by factoring• Convolution equation and program• Negative
time

1.2. FOURIER SUMS
• Superposition of sinusoids• Sampled time and Nyquist frequency
• Fourier sum

1.3. FOURIER AND Z-TRANSFORM
• Unit circle • Differentiator • Gaussian examples• Complex roots
• Inverse Z-transform

1.4. CORRELATION AND SPECTRA
• Spectra in terms of Z-transforms• Two ways to compute a spectrum
• Common signals• Spectra of complex-valued signals• Time-domain
conjugate • Spectral transfer function• Crosscorrelation• Matched
filtering

2. Discrete Fourier transform
2.1. FT AS AN INVERTIBLE MATRIX

• The Nyquist frequency• Laying out a mesh• The comb function
• Undersampled field data

2.2. INVERTIBLE SLOW FT PROGRAM
• The slow FT code• Truncation problems• FT by Z-transform

2.3. SYMMETRIES
• Plot interpretation• Convolution in the frequency domain

2.4. SETTING UP THE FAST FOURIER TRANSFORM
• Shifted spectra

2.5. TWO-DIMENSIONAL FT
• Basics of two-dimensional Fourier transform• Signs in Fourier trans-
forms • Examples of 2-D FT

2.6. HOW FAST FOURIER TRANSFORM WORKS
2.7. References

3. Z-plane, causality, and feedback
3.1. LEAKY INTEGRATION

• Plots • Two poles

3.2. SMOOTHING WITH BOX AND TRIANGLE
• Smoothing with a rectangle• Smoothing with a triangle

3.3. CAUSAL INTEGRATION FILTER
• The accuracy of causal integration• Examples of causal integration
• Symmetrical double integral• Nonuniqueness of the integration oper-
ator

3.4. DAMPED OSCILLATION
• Narrow-band filters • Polynomial division • Spectrum of a pole
• Rational filters

3.5. INSTABILITY
• Anticausality • Inverse filters • The unit circle • The mapping be-

tween Z and complex frequency• The meaning of divergence• Bound-
edness• Causality and the unit circle

3.6. MINIMUM-PHASE FILTERS
• Mechanical interpretation• Laurent expansion

3.7. INTRODUCTION TO ALL-PASS FILTERS
• Notch filter

3.8. PRECISION EXHAUSTION

3.9. MY FAVORITE WAVELET
3.10.IMPEDANCE FILTERS

4. Univariate problems
4.1. INSIDE AN ABSTRACT VECTOR
4.2. SEGREGATING P AND S CROSSTALK

• Failure of straightforward methods• Solution by weighting functions
• Noise as strong as signal• Spectral weighting function• Flame out

4.3. References
4.4. HOW TO DIVIDE NOISY SIGNALS

• Dividing by zero smoothly• Damped solution• Example of decon-
volution with a known wavelet• Deconvolution with an unknown filter
• Explicit model for noise• A self-fulfilling prophecy?

4.5. NONSTATIONARITY
4.6. DIP PICKING WITHOUT DIP SCANNING

• The plane-wave destructor• Moving windows for nonstationarity
5. Adjoint operators

5.1. FAMILIAR OPERATORS
• Transient convolution• Zero padding is the transpose of truncation.

• Product of operators• Convolution end effects• Kirchhoff modeling
and migration• Migration defined

5.2. ADJOINT DEFINED: DOT-PRODUCT TEST
•What is an adjoint operator?

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS
• Nearest-neighbor interpolation• A family of nearest-neighbor in-

terpolations • Formal inversion • Nearest-neighbor NMO• Stack
• Pseudoinverse to nearest-neighbor NMO• Null space and inconsis-

tency • NMO with linear interpolation
5.4. DERIVATIVE AND INTEGRAL

• Adjoint derivative
5.5. CAUSAL INTEGRATION RECURSION

• Readers’ guide
5.6. UNITARY OPERATORS

• Meaning of B’B • Unitary and pseudounitary transformation• Pseu-
dounitary NMO with linear interpolation

5.7. VELOCITY SPECTRA
5.8. INTRODUCTION TO TOMOGRAPHY

• Units
5.9. STOLT MIGRATION
5.10.References

6. Model fitting by least squares
6.1. MULTIVARIATE LEAST SQUARES

• Inverse filter example• Normal equations• Differentiation by a com-
plex vector • Time domain versus frequency domain

6.2. ITERATIVE METHODS
• Method of random directions and steepest descent• Conditioning the
gradient•Why steepest descent is so slow•Conjugate gradient•Magic
• Conjugate-gradient theory for programmers• First conjugate-gradient
program • Preconditioning

6.3. INVERSE NMO STACK
6.4. MARINE DEGHOSTING

• Synthetics
6.5. CG METHODOLOGY

• Programming languages and this book
6.6. References

7. Time-series analysis
7.1. SHAPING FILTER

• Source waveform and multiple reflections• Shaping a ghost to a spike
7.2. SYNTHETIC DATA FROM FILTERED NOISE

•Gaussian signals versus sparse signals• Random numbers into a filter
• Random numbers into the seismic spectral band

7.3. THE ERROR FILTER FAMILY
• Prediction-error filters on synthetic data• PE filters on field data
• Prediction-error filter output is white.• Proof that PE filter output is

white • Nonwhiteness of gapped PE-filter output• Postcoloring versus
prewhitening

7.4. BLIND DECONVOLUTION
7.5. WEIGHTED ERROR FILTERS

• Automatic gain control• Gain before or after convolution• Meet the
Toeplitz matrix • Setting up any weighted CG program

7.6. CALCULATING ERROR FILTERS
• Stabilizing technique

7.7. INTERPOLATION ERROR

• Blind all-pass deconvolution
8. Missing-data restoration

8.1. INTRODUCTION TO ALIASING
• Relation of missing data to inversion• My model of the world

8.2. MISSING DATA IN ONE DIMENSION
• Missing-data program

8.3. MISSING DATA AND UNKNOWN FILTER
•Objections to interpolation error• Packing both missing data and filter
into a CG vector• Spectral preference and training data• Summary of
1-D missing-data restoration• 2-D interpolation before aliasing

8.4. 2-D INTERPOLATION BEYOND ALIASING
• Interpolation with spatial predictors• Refining both t and x with a spa-
tial predictor • The prediction form of a two-dip filter• The regression
codes • Zapping the null space with envelope scaling• Narrow-band
data

8.5. A FULLY TWO-DIMENSIONAL PE FILTER
• The hope method• An alternative principle for 2-D interpolation

8.6. TOMOGRAPHY AND OTHER APPLICATIONS

• Clash in philosophies• An aside on theory-of-constraint equations
8.7. References

9. Hyperbola tricks
9.1. PIXEL-PRECISE VELOCITY SCANNING

• Smoothing in velocity• Rho filter
9.2. GEOMETRY-BASED DECON

• A model with both signature and reverberation• Regressing simul-
taneously before and after NMO• A model for convolution both before
and after NMO• Heavy artillery

9.3. References
10. Spectrum and phase

10.1.HILBERT TRANSFORM
• A Z-transform view of Hilbert transformation• The quadrature filter
• The analytic signal • Instantaneous envelope• Instantaneous fre-

quency
10.2.SPECTRAL FACTORIZATION

• The exponential of a causal is causal.• Finding a causal wavelet
from a prescribed spectrum•Why the causal wavelet is minimum-phase

• Pathological examples• Relation of amplitude to phase
10.3.A BUTTERWORTH-FILTER COOKBOOK

• Butterworth-filter finding program• Examples of Butterworth filters
10.4.PHASE DELAY AND GROUP DELAY

• Phase delay• Group delay • Group delay as a function of the FT
• Observation of dispersive waves• Group delay of all-pass filters

10.5.PHASE OF A MINIMUM-PHASE FILTER
• Phase of a single root• Phase of a rational filter

10.6.ROBINSON’S ENERGY-DELAY THEOREM
10.7.FILTERS IN PARALLEL

11. Resolution and random signals
11.1.TIME-FREQUENCY RESOLUTION

• A misinterpretation of the uncertainty principle•Measuring the time-
bandwidth product • The uncertainty principle in physics• Gabor’s
proof of the uncertainty principle•My rise-time proof of the uncertainty
principle

11.2.FT OF RANDOM NUMBERS
• Bandlimited noise

11.3.TIME-STATISTICAL RESOLUTION
• Ensemble• Expectation and variance• Probability and independence
• Sample mean• Variance of the sample mean

11.4.SPECTRAL FLUCTUATIONS
• Paradox: large n vs. the ensemble average• An example of the band-
width/reliability tradeoff • Spectral estimation

11.5.CROSSCORRELATION AND COHERENCY
• Correlation • Coherency• The covariance matrix of multiple signals
• Bispectrum

11.6.SMOOTHING IN TWO DIMENSIONS
• Tent smoothing•Gaussian mounds• Speed of 2-D Gaussian smooth-
ing

11.7.PROBABILITY AND CONVOLUTION
11.8.THE CENTRAL-LIMIT THEOREM

12. Entropy and Jensen inequality
12.1.THE JENSEN INEQUALITY

• Examples of Jensen inequalities
12.2.RELATED CONCEPTS

• Prior and posterior distributions• Jensen average• Additivity of
envelope entropy to spectral entropy

13. RATional FORtran == Ratfor
14. Seplib and SEP software

14.1.THE DATA CUBE
14.2.THE HISTORY FILE
14.3.MEMORY ALLOCATION

• Memory allocation in subroutines with sat• The main program envi-
ronment with saw

14.4.References
14.5.Acknowledgments

15. Notation
15.1.OPERATORS
15.2.SCALARS
15.3.FILTERS, SIGNALS, AND THEIR TRANSFORMS
15.4.MATRICES AND VECTORS
15.5.CHANGES FROM FGDP

16. Interactive, 1-D, seismology program ed1D

16.1.References
17. The Zplane program

17.1.THE SCREEN
• Complex frequency plane• The seismic data plane• Burg spectra

17.2.References
n. dex

FREEWARE, COPYRIGHT, LICENSE, AND CRED-
ITS
This disk contains freeware from many authors. Freeware is software you can copy
and give away. But it is restricted in other ways. Please see author’s copyrights and
“public licenses” along with their programs.

As you saw on the copyright page and will find in the electronic files, my elec-
tronic book is copyrighted. However, the programs I wrote that display the book
and its figures are available to you under the GNU public license (see below). I
have signed over copyright of the book text to a traditional book publisher1; how-
ever, I did not grant them the electronic rights. I license you, the general public, to
make electronic copies of the entire book provided that you do not remove or alter
this licensing statement. Please respect the publisher’s legal rights and do not make
paper copies from your copy of the electronic book.

We (you and I) are indebted to many people who have generously contributed
software to the public good. I’ll mention here only those outside the Stanford Uni-

1 Blackwell Scientific Publications, 3 Cambridge Center, Cambridge, MA 02142

versity research group whose contributions are widely used and on which we deeply
depend:

TEX Don Knuth, Stanford University
LATEX Leslie Lamport, Stanford Research Institute
ratfor77 Ozan Yigit, Arizona, and Wes Bauske, IBM
ratfor90 Bob Clapp
dvips Tomas Rokicki, Stanford University

I feel sure the list of valuable contributors is much longer. I am afraid I may have
overlooked the names of some, and others have modestly omitted leaving their name
and copyright.

My electronic book is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

My electronic book is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 675 Massachusetts
Ave., Cambridge, MA 02139, USA.

PREFACE TO THE ELECTRONIC BOOK

Reproducibility
Each figure caption is followed by an [R] or an [NR] which denotes Reproducible
or Not Reproducible. To actually burn and rebuild the illustrations you will need to
have “seplib” installed at your site.

SEP software
Contained on the CD-ROM distribution are two interactive programs,ed1D and
Zplane . I originally wrote these programs in Sunview, an interactive software devel-
opment platform from Sun Microsystems. Fortunately, Steve Cole converted them
to the X Window system, using the X toolkit and Xlib graphics, so they are now
available on machines from many manufacturers. Unfortunately, in 1998, we do not
have them compiled for our main machines at SEP, linux PC’s and SGI.

Acknowledgement
This textbook itself was updated in minor ways since the 1991 CD-ROM was pro-
duced. The electronic document, however, is greatly enhanced through systems
improvements made by Martin Karrenbach, Steve Cole, and Dave Nichols. Most of
the features described in this preface were absent or incomplete in 1991.

A note to the reader

In many branches of engineering and science there is a substantial computational
element. Earth-imaging seismology is one of these. In taking up computational
problems we should abandon books, journals, and reports and replace them with
electronic documents that can be used to recreate any print document, including its
figures, from its underlying data and computations. Today, few published results are
reproducible in any practical sense. To verify them requires almost as much effort as
it took to create them originally. After a time, authors are often unable to reproduce

i

their own results! For these reasons, many people ignore most of the literature. In
the past this scandalous waste of time and energy may have been justified by the high
cost and incompatibility of data-processing machines. But with standards for For-
tran, C, UNIX,2 LATEX, Postscript,3 Xwindow,4 CD-ROM, and shirt-pocket-sized
two-gigabyte tapes, there is no longer any excuse for nonreproducible research. It
is time to plunge into this new era.

This paper book of 300 pages presents theory implemented by sixty subrou-
tines, all included in the book, which in turn made the book’s 150 figures. Behind
the paper book are about seventy figure-making directories, a large volume of Stan-
ford Exploration Project utility software, and some real datasets you can experiment
with if you have access to the electronic form of the book. I made nearly all of the
figures myself. Even without the electronic book, from the printed subroutines only,
you should be able to produce results similar to mine and, beyond this, use the sub-
routines in your own work.

2AT&T
3Adobe Systems, Inc.
4Massachusetts Institute of Technology

If you have access to the electronic form of this book, you can read it from a
computer screen and press the buttons in the figure captions to rebuild and redisplay
the figures. Some of the figures are in color, some are interactive, and some are
movies. But this is not the goal of the electronic book. Its goal is to enable you to
reproduce all my figures with reasonable ease, to change parameters, to try other
datasets, to modify the programs, and to experiment with the theoretical concepts.

I could have written the programs in this book in vanilla Fortran or C and suf-
fered the verbosity and blemishes of these languages. Instead I chose to write the
programs in a Fortran dialect that, like mathematics, is especially suited to the ex-
position of technical concepts. At Stanford we translate these programs to Fortran
automatically by passing them first through a home-made processor namedsat ,
which overcomes Fortran’s inability to create temporary arrays of arbitrary dimen-
sion, and second through AT&T’sRatfor (Rational Fortran) preprocessor. If you
wish, a program calledf2c , freely available from AT&T, will translate the Fortran
to C.

My goal in writing the programs in this book was not to write the best possible
code with the clearest possible definitions of inputs and outputs. That would be a
laudable goal for a reference work such asNumerical Recipes(Press et al.). Instead,

I present a full mathematical analysis with simple and concise code along with
meaningful examples of its use. I use the code as others might use pseudocode—to
exemplify and clarify the concepts. These programs, which also made the book’s
figures, are not guaranteed to be free of errors. Since the word processor and the
compiler got the programs from the same place, however, there can be no errors of
transcription.

Why another book?
I decided to write this book for five reasons. First, seismologists and explorationists,
as well as many others in science and engineering, share the ability to synthesize
the data implied by any physical model. They have much to learn, however, about
“inverse modeling,” that is, given the data, the process of finding the most appro-
priate model. This task is also called “model fitting,” words that hardly hint at the
ingenuity that can be brought to bear. There is no shortage of books about least-
squares regression, also called “inversion.” These books provide a wide range of
mathematical concepts—often too many, and often with no real examples. In my
teaching and research I have found that people are mostly limited, not by lack of

theory, but by failure to recognize where elementary theory is applicable. To cite
an example, “zero padding” is a tiny bit of technology used nearly everywhere, but
few people seem to recognize its mathematical adjoint and so are ill prepared to
invoke (A′A)−1A′d or set up a conjugate-gradient optimization. Therefore, a key-
stone chapter of this book shows how adjoint operators can be a simple byproduct
of any modeling operator. In summary, the first reason I am writing this book is to
illuminate the concept of “adjoint operator” by examining many examples.

The second reason for writing the book is to present the conjugate-gradient
optimization algorithm in the framework of many examples. The inversion theory
found in most textbooks, while appearing generally applicable, really is not. Ma-
trix inversions and singular-value decompositions are limited in practice to matrices
of dimension less than about one thousand. But practical problems come in all
dimensions, from one to many millions (when the operator is a multidimensional
wave equation). Conjugate-gradient methods—only beginning to find routine use
in geophysics—point the way to overcoming this dimensionality problem. As in
the case of inversion, many books describe the conjugate-gradient method, but the
method is not an end in itself. The heart of this book is the many examples that are
set up in the conjugate-gradient framework. Setting up the problems is where inge-

nuity is required. Solving them is almost routine—especially using the subroutine
library in this book.

My third reason for writing the book is much narrower. Seismogram deconvolution—
by far the largest use of geophysical inversion theory—is in a state of disarray. I see
serious discrepancies between theory and practice (as do others). I believe the disar-
ray stems from a tendency to cling to a large body of old quasi-analytic theory. This
theory had a place in my first book,Fundamentals of Geophysical Data Process-
ing, but I have omitted it here. It can be replaced by a simpler and less restrictive
numerical approach.

My fourth reason for writing the book is to illuminate the place of missing
seismograms. Much data is analyzed assuming that missing data is equivalent to
zero-valued data. I show how to handle the problem in a better way.

Finally, I am writing this book to illuminate the subtitle,Processing versus In-
version,by which I mean the conflicting approaches of practitioners and academics
to earth soundings analysis.

This book should be readable by anyone with a bachelor’s degree in engineering
or physical science. It is easier for students to use than my first book,Fundamentals
of Geophysical Data Processing. It is written at about the level of my second book,

Imaging the Earth’s Interior.

Organization
Page numbers impose a one-dimensional organization on any book. I placed basic
things early in the book, important things in the middle of the book, and theoretical,
less frequently used things at the end. Within chapters and sections, this book an-
swers the questionswhatandhowbefore it answerswhy. I chose to avoid a strictly
logical organization because that would result in too much math at the beginning
and too long a delay before the reader encountered applications. Thus, you may
read about a single subject at different points in the book. It is not organized like
an encyclopedia but is ordered for learning. For reference, please make use of the
index.

Dedication
I am especially indebted to all those students who complained that I did not give
enough examples in my classes. (Even with access to the book in its present form,

they still complain about this, so there is work left to do.)

Acknowledgements
In this book, as in my previous book,Imaging the Earth’s Interior, I owe a great
deal to the many students at the Stanford Exploration Project. The local comput-
ing environment from my previous book is still a benefit, and for this I thank Stew
Levin, Dave Hale, and Richard Ottolini. In preparing this book I am specially in-
debted to Joe Dellinger for his development of the intermediate graphics language
vplot that I used for all the figures. I am also very grateful to Kamal Al-Yahya
for converting my thinking from thetroff typesetting language to LATEX, for set-
ting up the initial structure of the book in LATEX, and for the conversion program
tr2tex (which he made publicly available and which is already widely used) that
I needed to salvage my older materials. I have benefited from helpful suggestions
by Bill Harlan and Gilles Darche. Biondo Biondi, Dave Nichols, and I developed
the saw and sat Fortran preprocessors. Dave Nichols found thecake document
maintenance system, adapted it to our local needs, and taught us all how to use it,
thereby giving us a machine-independent software environment. Martin Karren-

bach implemented the caption pushbuttons and had many ideas for integrating the
paper book with the interactive book. Steve Cole adaptedvplot to Postscript and X,
redesignedxtex for Sun computers, and generously offered assistance in all areas.
Mark Chackerian prepared the first CD-ROM of the electronic book and gave assis-
tance with LATEX. I am thankful to my editor, JoAnn Heydron, for careful work, to
Joe Stefani for detecting typographical errors in mathematics, and to Diane Lau for
office assistance.

Jon Claerbout
Stanford University
most final revisions in 1992
(electronic media keep changing)

Introduction

Prospecting for petroleum is a four-step process: (1) echo soundings are recorded;
(2) they are analyzed for reflections; (3) the reflections are interpreted as a geo-
logical model; and (4) the prospect is tested by drilling. The first two stages, data
acquisition and analysis, are on a worldwide basis a multibillion-dollar-per-year
activity. This book describes only the echo soundings analysis. Together with my
1985 book,Imaging the Earth’s Interior, it provides a complete introduction to echo
soundings analysis.

xi

The subtitle of this book,Processing versus Inversion, places the book equidis-
tant from two approaches, one generally practical and industrial and the other gener-
ally theoretical and academic. This book shows how the two approaches are related
and contribute to each other.

Adjoint processing defined
“Data processing” in earth soundings analysis could mean anything anybody does
to seismic data. A narrower definition is those processes that are routinely applied
in industry, such as those described in Oz Yilmaz’s book,Seismic Data Processing.
As we will see in chapter5 of this book, much of echo soundings analysis can be
interpreted as theadjointof seismogram modeling. Here we use the word “adjoint ”
in the mathematical sense to mean the complex conjugate of the matrix transpose.
Not all processes can be accurately characterized as the adjoint to seismogram mod-
eling, but many can, including normal moveout, stacking, migration, dip moveout,
and more. Since these are the heavyweights of the industry, the simple word “pro-
cessing” can almost be understood to stand for “processing by adjoint modeling.”
As we will see, such processing applied to perfect data generally gives an imperfect

result. This imperfection leads thoughtful people to the concept of inversion.

Inversion defined
Principles of physics allow us to calculate synthetic data from earth models. Such
calculations are said to solve “forward” problems. In real life we are generally
interested in the reverse calculation, i.e., computing earth models from data. This
reverse calculation is called “inversion.” The word “inversion” is derived from
“matrix inversion.” Despite its association with the well-known and well-defined
mathematical task of matrix inversion, echo sounding inversion is not simple and is
often ill defined. Inversion promises to give us an earth model from our data despite
the likelihood that our data is inaccurate and incomplete. This promise goes too far.
Inversion applied to perfect data, however, can give a perfect result, which makes
inversion more appealing academically than processing by adjoint modeling.

Processing versus inversion
Practical people often regard inversion theorists with suspicion, much as one might
regard those gripped by an exotic religion. There is not one theory of inversion
of seismic data, but many—maybe more theories than theoreticians. The inventors
of these theories are all ingenious, and some are illustrious, but many ignore the
others’ work. How can this be science or engineering? The diversity of viewpoint
arises from the many practical problems that need to be solved, from the various
ways that noise can be modeled, from the incompleteness of data, and above all,
from the many approaches to simplifying the underlying model.

Practitioners too are a diverse group of shrewd and talented people, many illus-
trious in their highly competitive industry. As a group they have the advantage of
the “real world” as a helpful arbitrator. Why do they prefer a adjoint operator when
the correct answer, almost by definition, stems from the inverse? Adjoint process-
ing requires no more than the data one has actually collected. It requires no noise
model, never uses divisions so cannot divide by zero, and often uses only additions
(no subtractions) so cannot amplify small differences. Anyone taking the first step
beyond adjoint processing loses these supports. Unfortunately, adjoint operators
handle missing data as if it were zero-valued data. This is obviously wrong and is

known to limit resolution.

I hope to illuminate the gaps between theory and practice which are the heart
and soul of exploration seismology, as they are of any living science.

Fortunately there is a middle way between adjoint processing and inversion, and
this book is a guide to it. Adjoint processing and inversion stand at opposite ends
of the spectrum of philosophies of data processing, but, as we will see in chapter6,
adjoint processing is also thefirst step of inversion. Whether thesecondand any
subsequent steps are worthwhile depends on circumstances.

The theme of this book is not developed in an abstract way but instead is drawn
from the details of many examples: normal moveout, stacking, velocity analysis,
several kinds of migration, missing data, tomography, deconvolution, and weighted
deconvolution. Knowing how processing relates to inversion suggests different op-
portunities in each case.

Linear inverse theory
In mathematical statistics is a well-established theory called “linear inverse the-
ory.” “ Geophysical inverse theory” is similar, with the additions that (1) vari-
ables can be sample points from a continuum, and (2) physical problems are often
intractable without linearization. Once I imagined a book that would derive tech-
niques used in industry from general geophysical inverse theory. After thirty years
of experience I can report to you that very few techniques in routine practical use
arise directly from the general theory! There are many reasons for this, and I have
chosen to sprinkle them throughout discussion of the applications themselves rather
than attempt a revision to the general theory. I summarize here as follows: the
computing requirements of the general theory are typically unrealistic since they
are proportional to the cube of a huge number of variables, which are sample val-
ues representing a continuum. Equally important, the great diversity of spatial and
temporal aspects of data and residuals (statistical nonstationarity) is impractical to
characterize in general terms.

Our route
Centrally, this book teaches how to recognize adjoint operators in physical processes
(chapter5), and how to use those adjoints in model fitting (inversion) using least-
squares optimization and the technique of conjugate gradients (chapter6).

First, however, we review convolution and spectra (chapter1) discrete Fourier
transforms (chapter9), and causality and the complexZ = ei ω plane (chapter3),
where poles are the mathematically forbidden points of zero division. In chapter3
we travel widely, from the heaven of theoretically perfect results through a life of
practical results including poor results, sinking to the purgatory of instability, and fi-
nally arriving at the “big bang” of zero division. Chapter4 is a collection of solved
problems with asingle unknownthat illustrates the pitfalls and opportunities that
arise from weighting functions, zero division, and nonstationarity. Thus we are pre-
pared for the keystone chapter, chapter5, where we learn to recognize the relation
of the linear operators we studied in chapters 1–3 to their adjoints, and to see how
computation of these adjoints is a straightforward adjunct to direct computation.
Also included in chapter5 are interpolation, smoothing, and most of the many oper-
ators that populate the world of exploration seismology. Thus further prepared, we
pass easily through the central theoretical concepts of least-squares optimization,

basic NMO stack, and deconvolution applications in chapter6.
In chapter7 we see the formulation and solution of many problems in time-

series analysis, prediction, and interpolation and learn more about mathematical
formulations that control stability. Chapter8 shows how missing data can be esti-
mated. Of particular interest is a nonstationary world model where, locally in time
and space, the wave field fits the model of a small number of plane waves. Here
we find “magical” results: data that is apparently undersampled (spatially aliased)
is recovered.

Hyperbolas are the reflection seismologist’s delight. My bookImaging the
Earth’s Interior could almost have been namedHyperbolas and the Earth.That
book includes many techniques for representing and deforming hyperbolas, espe-
cially using various representations of the wave equation. Here I repeat a minimal
part of that lore in chapter??. My goal is now to marry hyperbolas to the conjugate-
gradient model-fitting theme of this book.

Having covered a wide range of practical problems, we turn at last to more
theoretical ones: spectra and phase (chapter10), and sample spectra of random
numbers (chapter11). I have begun revising three theoretical chapters from my
first book,Fundamentals of Geophysical Data Processing(hereinafter referred to

asFGDP), which is still in print. Since these revisions are not yet very extensive,
I am excluding the revised chapters from the current copy of this book. (My 1985
book,Imaging the Earth’s Interior(hereinafter referred to asIEI), deserves revision
in the light of the conjugacy methods developed here, but that too lies in the future.)

Finally, every academic is entitled to some idiosyncrasies, and I find Jensen in-
equalities fascinating. These have an unproved relationship to practical echo analy-
sis, but I include them anyway in a brief concluding chapter.

0.1. References
Claerbout, J.F., 1985, Fundamentals of geophysical data processing: Blackwell Sci-

entific Publications.

Claerbout, J.F., 1985, Imaging the earth’s interior: Blackwell Scientific Publica-
tions.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cam-
bridge University Press.

Yilmaz, O., 1987, Seismic data processing: Society of Exploration Geophysicists.

Chapter 1

Convolution and Spectra

In human events, the word “convoluted” implies complexity. In science and en-
gineering, “convolution” refers to a combining equation for signals, waves, or im-
ages. Although the combination may be complex, theconvolution equation is an

1

elementary one, ideally suited to be presented at the beginning of my long book
on dissecting observations. Intimately connected to convolution are the concepts of
pure tones and Fourier analysis.

Time and space are ordinarily thought of as continuous, but for the purposes of
computer analysis we must discretize these axes. This is also called “sampling” or
“digitizing .” You might worry that discretization is a practical evil that muddies all
later theoretical analysis. Actually, physical concepts have representations that are
exact in the world of discrete mathematics. In the first part of this book I will re-
view basic concepts of convolution, spectra, and causality, while using and teaching
techniques of discrete mathematics. By the time we finish with chapter3, I think
you will agree with me that many subtle concepts are easier in the discrete world
than in the continuum.

1.1. SAMPLED DATA AND Z-TRANSFORMS
Consider the idealized and simplified signal in Figure1.1. To analyze such an ob-
served signal in a computer, it is necessary to approximate it in some way by a list of
numbers. The usual way to do this is to evaluate or observeb(t) at a uniform spac-

Figure 1.1: A continuous sig-
nal sampled at uniform time in-
tervals. (Press button for trivial
interaction with plot.) cs-triv1
[ER]

ing of points in time, call this discretized signalbt . For Figure1.1, such a discrete
approximation to the continuous function could be denoted by the vector

bt = (. . . 0, 0, 1, 2, 0,−1,−1, 0, 0,. . .) (1.1)

Naturally, if time points were closer together, the approximation would be more ac-
curate. What we have done, then, is represent a signal by an abstractn-dimensional
vector.

Another way to represent a signal is as a polynomial, where thecoefficientsof
the polynomial represent the value ofbt at successive times. For example,

B(Z) = 1+2Z+0Z2
− Z3

− Z4 (1.2)

This polynomial is called a “Z-transform .” What is the meaning ofZ here? Z
should not take on some numerical value; it is instead theunit-delay operator. For
example, the coefficients ofZ B(Z)= Z+2Z2

− Z4
− Z5 are plotted in Figure1.2.

Figure 1.2 shows the same waveform as Figure1.1, but now the waveform has
been delayed. So the signalbt is delayedn time units by multiplyingB(Z) by Zn.
The delay operatorZ is important in analyzing waves simply because waves take a
certain amount of time to move from place to place.

Figure 1.2: The coefficients
of Z B(Z) are the shifted ver-
sion of the coefficients ofB(Z).
cs-triv2 [ER]

Another value of the delay operator is that it may be used to build up more
complicated signals from simpler ones. Supposebt represents the acoustic pressure
function or the seismogram observed after a distant explosion. Thenbt is called
the “impulse response.” If another explosion occurred att = 10 time units after
the first, we would expect the pressure functiony(t) depicted in Figure1.3. In
terms ofZ-transforms, this pressure function would be expressed asY(Z)= B(Z)+
Z10B(Z).

1.1.1. Linear superposition
If the first explosion were followed by an implosion of half-strength, we would have
B(Z)− 1

2 Z10B(Z). If pulses overlapped one another in time (as would be the case
if B(Z) had degree greater than 10), the waveforms would simply add together in
the region of overlap. The supposition that they would just add together without any
interaction is called the “linearity ” property. In seismology we find that—although
the earth is a heterogeneous conglomeration of rocks of different shapes and types—
when seismic waves travel through the earth, they do not interfere with one another.
They satisfy linearsuperposition. The plague ofnonlinearity arises from large

Figure 1.3: Response to two ex-
plosions. cs-triv3 [ER]

amplitude disturbances. Nonlinearity is a dominating feature in hydrodynamics,
where flow velocities are a noticeable fraction of the wave velocity. Nonlinearity
is absent from reflection seismology except within a few meters from the source.
Nonlinearity does not arise from geometrical complications in the propagation path.
An example of twoplane waves superposing is shown in Figure1.4.

1.1.2. Convolution with Z-transform
Now suppose there was an explosion att = 0, a half-strength implosion att = 1, and
another, quarter-strength explosion att = 3. This sequence of events determines a
“source” time series,xt = (1,−1

2,0,1
4). The Z-transform of the source isX(Z) =

1− 1
2 Z+ 1

4 Z3. The observedyt for this sequence of explosions and implosions
through the seismometer has aZ-transformY(Z), given by

Y(Z) = B(Z)−
Z

2
B(Z)+

Z3

4
B(Z)

=

(
1−

Z

2
+

Z3

4

)
B(Z)

Figure 1.4: Crossing plane
waves superposing viewed on the
left as “wiggle traces” and on the
right as “raster.” cs-super[ER]

= X(Z) B(Z) (1.3)

The last equation showspolynomial multiplication as the underlying basis of time-
invariant linear-system theory, namely that the outputY(Z) can be expressed as the
input X(Z) times the impulse-responsefilter B(Z). When signal values are insignif-
icant except in a “small” region on the time axis, the signals are called “wavelets.”

There are many examples of linear systems. The one of most interest to us is
wave propagation in the earth. A simpler example, around which a vast literature
exists, is electronic filters. Acascade of filtersis formed by taking the output of one
filter and plugging it into the input of another. Suppose we have two linear filters
characterized byB(Z) andC(Z). Then the question arises, illustrated in Figure1.5,
as to whether the two combined filters are equivalent.

Figure 1.5: Two equivalent fil-
tering systems. cs-commute
[NR]

The use ofZ-transforms makes it obvious that these two systems are equivalent,

since products of polynomialscommute, i.e.,

Y1(Z) = [X(Z)B(Z)] C(Z) = X BC

Y2(Z) = [X(Z)C(Z)] B(Z) = XC B = X BC (1.4)

1.1.3. Dissecting systems by factoring
Consider a system with an impulse response (2,−1,−1). Its Z-transform isB(Z)=
2− Z− Z2. This polynomial can befactored into 2− Z− Z2

= (2+ Z) (1− Z).
Thus our original filter could be thought of as a cascade of two filters, (2,1) and
(1,−1). Either of the two filters could be applied first and the other second: the
output would be the same. Since any polynomial can be factored, any impulse re-
sponse can be simulated by a cascade of two-term filters (impulse responses whose
Z-transforms are linear inZ).

1.1.4. Convolution equation and program
What do we actually do in a computer when we multiply twoZ-transforms together?
The filter 2+ Z would be represented in a computer by the storage in memory of

the coefficients (2,1). Likewise, for 1− Z, the numbers (1,−1) would be stored.
The polynomial multiplication program should take these inputs and produce the
sequence (2,−1,−1). Let us see how the computation proceeds in a general case,
say

X(Z) B(Z) = Y(Z) (1.5)

(x0+ x1Z+ x2Z2
+·· ·) (b0+b1Z+b2Z2) = y0+ y1Z+ y2Z2

+·· ·(1.6)

Identifying coefficients of successive powers ofZ, we get

y0 = x0b0

y1 = x1b0+ x0b1

y2 = x2b0+ x1b1+ x0b2 (1.7)

y3 = x3b0+ x2b1+ x1b2

y4 = x4b0+ x3b1+ x2b2

= ·· · · · · · · · · · · · · · · · ·

In matrix form this looks like

y0
y1
y2
y3
y4
y5
y6


=



x0 0 0
x1 x0 0
x2 x1 x0
x3 x2 x1
x4 x3 x2
0 x4 x3
0 0 x4


 b0

b1
b2

 (1.8)

The following equation, called the “convolution equation,” carries the spirit of the
group shown in (1.7):

yk =

Nb∑
i=0

xk−i bi (1.9)

To be correct in detail when we associate equation (1.9) with the group (1.7), we
should also assert that either the inputxk vanishes beforek = 0 or Nb must be ad-
justed so that the sum does not extend beforex0. These end conditions are expressed

more conveniently by definingj = k− i in equation (1.9) and eliminatingk getting

yj+i =

Nb∑
i=0

xj bi (1.10)

A convolution program based on equation (1.10) including end effects on both ends,
is convolve() . convolve Some details of the Ratfor programming language are
given in an appendix, along with the subroutinezero() /prog:zero, which erases
the space for the output.

1.1.5. Negative time
Notice thatX(Z) andY(Z) need not strictly be polynomials; they may contain both
positive and negative powers ofZ, such as

X(Z) = ·· ·+
x−2

Z2
+

x−1

Z
+ x0+ x1Z+·· · (1.11)

Y(Z) = ·· ·+
y−2

Z2
+

y−1

Z
+ y0+ y1Z+·· · (1.12)

convolution: Y(Z) = X(Z) * B(Z)
#
subroutine convolve(nb, bb, nx, xx, yy)
integer nb # number of coefficients in filter
integer nx # number of coefficients in input

number of coefficients in output will be nx+nb-1
real bb(nb) # filter coefficients
real xx(nx) # input trace
real yy(1) # output trace
integer ib, ix, iy, ny
ny = nx + nb -1
call null(yy, ny)
do ib= 1, nb

do ix= 1, nx
yy(ix+ib-1) = yy(ix+ib-1) + xx(ix) * bb(ib)

return; end

Back

The negative powers ofZ in X(Z) andY(Z) show that thedata is defined before
t = 0. The effect of using negative powers ofZ in thefilter is different. Inspection
of (1.9) shows that the outputyk that occurs at timek is a linear combination of
current and previous inputs; that is, (xi , i ≤ k). If the filter B(Z) had included a term
like b−1/Z, then the outputyk at timek would be a linear combination of current
and previous inputs andxk+1, an input that really has not arrived at timek. Such a
filter is called a “nonrealizable” filter, because it could not operate in the real world
where nothing can respond now to an excitation that has not yet occurred. However,
nonrealizable filters are occasionally useful in computer simulations where all the
data is prerecorded.

1.2. FOURIER SUMS
The world is filled with sines and cosines. The coordinates of a point on a spinning
wheel are (x, y) = (cos(ωt +φ),sin(ωt +φ)), whereω is the angular frequency of
revolution andφ is the phase angle. The purest tones and the purest colors are
sinusoidal. The movement of a pendulum is nearly sinusoidal, the approximation
going to perfection in the limit of small amplitude motions. The sum of all the tones

in any signal is its “spectrum.”
Small amplitude signals are widespread in nature, from the vibrations of atoms

to the sound vibrations we create and observe in the earth. Sound typically com-
presses air by a volume fraction of 10−3 to 10−6. In water or solid, the compression
is typically 10−6 to 10−9. A mathematical reason why sinusoids are so common in
nature is that laws of nature are typically expressible as partial differential equations.
Whenever the coefficients of the differentials (which are functions of material prop-
erties) are constant in time and space, the equations have exponential and sinusoidal
solutions that correspond to waves propagating in all directions.

1.2.1. Superposition of sinusoids
Fourier analysis is built from the complex exponential

e−i ωt
= cosωt− i sinωt (1.13)

A Fourier component of a time signal is a complex number, a sum of real and
imaginary parts, say

B = <B+ i=B (1.14)

which is attached to some frequency. Letj be an integer andωj be a set of fre-
quencies. A signalb(t) can be manufactured by adding a collection of complex
exponential signals, each complex exponential being scaled by a complex coeffi-
cient Bj , namely,

b(t) =

∑
j

Bj e−i ωj t (1.15)

This manufactures acomplex-valued signal. How do we arrange forb(t) to be real?
We can throw away the imaginary part, which is like addingb(t) to its complex
conjugateb(t), and then dividing by two:

<b(t) =
1

2

∑
j

(Bj e−i ωj t + B̄j ei ωj t) (1.16)

In other words, for each positiveωj with amplitudeBj , we add a negative−ωj with
amplitudeB̄j (likewise, for every negativeωj ...). TheBj are called the “frequency
function,” or the “Fourier transform.” Loosely, theBj are called the “spectrum,”
though technically, and in this book, the word “spectrum” should be reserved for

the productB̄j Bj . The words “amplitude spectrum” universally mean
√

B̄j Bj .

In practice, the collection of frequencies is almost always evenly spaced. Letj
be an integerω = j 1ω so that

b(t) =

∑
j

Bj e−i (j 1ω)t (1.17)

Representing a signal by a sum of sinusoids is technically known as “inverse Fourier
transformation.” An example of this is shown in Figure1.6.

1.2.2. Sampled time and Nyquist frequency
In the world of computers, time is generally mapped into integers too, sayt =
n1t . This is called “discretizing” or “sampling.” The highest possible frequency
expressible on ameshis (· · · ,1,−1,+1,−1,+1,−1,· · ·), which is the same asei πn.
Settingei ωmaxt = ei πn, we see that the maximum frequency is

ωmax =
π

1t
(1.18)

Time is commonly given in either seconds or sample units, which are the same
when1t = 1. In applications, frequency is usually expressed in cycles per second,

Figure 1.6: Superposition of two sinusoids. (Press button to activate programed1D.
See appendix for details.)cs-cosines[NR]

which is the same asHertz, abbreviatedHz. In computer work, frequency is usually
specified in cycles per sample. In theoretical work, frequency is usually expressed in
radians where the relation between radians and cycles isω = 2π f . We use radians
because, otherwise, equations are filled with 2π ’s. When time is given in sample
units, the maximum frequency has a name: it is the “Nyquist frequency,” which is
π radians or 1/2 cycle per sample.

1.2.3. Fourier sum
In the previous section we superposed uniformly spaced frequencies. Now we will
superposedelayed impulses. The frequency function of a delayed impulse at time
delayt0 is ei ωt0. Adding some pulses yields the “Fourier sum”:

B(ω) =

∑
n

bn ei ωtn =

∑
n

bn ei ωn1t (1.19)

The Fourier sum transforms the signalbt to the frequency functionB(ω). Time will
often be denoted byt , even though its units are sample units instead of physical
units. Thus we often seebt in equations like (1.19) instead ofbn, resulting in an
implied1t = 1.

1.3. FOURIER AND Z-TRANSFORM
The frequency function of a pulse at timetn = n1t is ei ωn1t

= (ei ω1t)n. The factor
ei ω1t occurs so often in applied work that it has a name:

Z = ei ω1t (1.20)

With this Z, the pulse at timetn is compactly represented asZn. The variableZ
makesFourier transform s look like polynomials, the subject of a literature called
“ Z-transforms.” TheZ-transform is a variant form of the Fourier transform that is
particularly useful for time-discretized (sampled) functions.

From the definition (1.20), we haveZ2
= ei ω21t , Z3

= ei ω31t , etc. Using these
equivalencies, equation (1.19) becomes

B(ω) = B(ω(Z)) =

∑
n

bn Zn (1.21)

1.3.1. Unit circle
In this chapter,ω is a real variable, soZ = ei ω1t

= cosω1t+ i sinω1t is a complex
variable. It has unit magnitude because sin2

+cos2 = 1. As ω ranges on the real

axis,Z ranges on the unit circle|Z| = 1. In chapter3 we will see how the definition
(1.20) also applies for complex values ofω.

1.3.2. Differentiator
A particularly interesting factor is (1− Z), because the filter (1,−1) is like a time
derivative. The time-derivative filter destroyszero frequency in the input signal.
The zero frequency is (· · · ,1,1,1,· · ·) with a Z-transform (· · ·+ Z2

+ Z3
+ Z4
+·· ·).

To see that the filter (1− Z) destroys zero frequency, notice that (1− Z)(· · ·+ Z2
+

Z3
+Z4
+·· ·)= 0. More formally, consider outputY(Z)= (1−Z)X(Z) made from

the filter (1− Z) and any inputX(Z). Since (1− Z) vanishes atZ = 1, then likewise
Y(Z) must vanish atZ = 1. Vanishing atZ = 1 is vanishing at frequencyω = 0
becauseZ = exp(i ω1t) from (1.20). Now we can recognize that multiplication
of two functions ofZ or of ω is the equivalent of convolving the associated time
functions.

Multiplication in the frequency domain isconvolution in the time domain.

A popular mathematical abbreviation for the convolution operator is an asterisk:

equation (1.9), for example, could be denoted byyt = xt∗bt . I do not disagree with
asterisk notation, but I prefer the equivalent expressionY(Z) = X(Z)B(Z), which
simultaneously exhibits the time domain and the frequency domain.

The filter (1−Z) is often called a “differentiator .” It is displayed in Figure1.7.
The letter “z” plotted at the origin in Figure1.7 denotes theroot of 1− Z at

Z = 1, whereω = 0. Another interesting filter is 1+ Z, which destroys the highest
possible frequency (1,−1,1,−1,· · ·), whereω = π .

A root is a numerical value for which a polynomial vanishes. For example,
2− Z− Z2

= (2+ Z) (1− Z) vanishes wheneverZ = −2 or Z = 1. Such a root is
also called a “zero.” The fundamental theorem of algebra says that if the highest
power of Z in a polynomial isZN , then the polynomial has exactlyN roots, not
necessarily distinct. AsN gets large, finding these roots requires a sophisticated
computer program. Another complication is that complex numbers can arise. We
will soon see that complex roots are exactly what we need to design filters that
destroy any frequency.

Figure 1.7: A discrete representation of the first-derivative operator. The filter
(1,−1) is plotted on the left, and on the right is an amplitude response, i.e.,|1− Z|
versusω. (Press button to activate programZplane . See appendix for details.)
cs-ddt [NR]

1.3.3. Gaussian examples
The filter (1+ Z)/2 is a running average of two adjacent time points. Applying this
filter N times yields the filter (1+ Z)N/2N . The coefficients of the filter (1+ Z)N

are generally known asPascal’s triangle. For largeN the coefficients tend to a
mathematical limit known as aGaussianfunction, exp(−α(t − t0)2), whereα and
t0 are constants that we will determine in chapter11. We will not prove it here, but
this Gaussian-shaped signal has a Fourier transform that also has a Gaussian shape,
exp(−βω2). The Gaussian shape is often called a “bell shape.” Figure1.8 shows
an example forN ≈ 15. Note that, except for the rounded ends, the bell shape
seems a good fit to a triangle function. Curiously, the filter (.75+ .25Z)N also tends
to the same Gaussian but with a differentt0. A mathematical theorem (discussed
in chapter11) says that almost any polynomial raised to theN-th power yields a
Gaussian.

In seismology we generally fail to observe thezero frequency. Thus the ide-
alized seismic pulse cannot be a Gaussian. An analytic waveform of longstanding
popularity in seismology is the second derivative of a Gaussian, also known as a
“Ricker wavelet.” Starting from the Gaussian and putting two more zeros at the
origin with (1− Z)2 = 1−2Z+ Z2 produces this old, favorite wavelet, shown in

Figure 1.8: A Gaussian approximated by many powers of (1+ Z). cs-gauss[NR]

Figure1.9.

Figure 1.9: Ricker wavelet.cs-ricker [NR]

1.3.4. Complex roots
We have seen how a simple two-term filter can destroy the zero frequency or the
Nyquist frequency. When we try to destroy any other frequency, we run into a new

difficulty—we will seecomplex-valued signals. Let Z0 take the complex value
Z0 = ei ω0, whereω0 is real. Further, chooseω0 = π/2 and as a resultZ0 = i . So
the filter (1− Z/Z0) = (1+ i Z) has the complex coefficients (1,i), and its output
is a complex-valued signal. Naturally this is annoying, because we usually prefer a
real output signal.

The way to avoid complex-valued signals is to handlenegative frequency−ω0
the same way we handleω0. To do this we use a filter withtwo roots, one atω0
and one at−ω0. The filter (1+ i Z)(1− i Z)= 1+ Z2 has real-valued time-domain
coefficients, namely, (1,0,1). The factor (1+ i Z) vanishes whenZ = i or ω= π/2,
and (1− i Z) vanishes atω = −π/2. Notice what happens when the filter (1,0,1)
is convolved with the time seriesbt = (· · ·1,0,−1,0,1,0,−1,· · ·): the output is zero
at all times. This is becausebt is a sinusoid at the half-Nyquist frequencyπ/2, and
the filter (1,0,1) has zeros at plus and minus half-Nyquist.

Let us work out the general case for a root anywhere in thecomplex plane. Let
the rootZ0 be decomposed into its real and imaginary parts:

Z0 = x+ iy = <Z0+ i=Z0 (1.22)

and let the root be written in a polar form:

Z0 =
ei ω0

ρ
(1.23)

whereω0 andρ are constants that can be derived from the constants<Z0 and=Z0
and vice versa. The conjugate root isZ0= e−i ω0/ρ. The combined filter is(

1−
Z

Z0

) (
1−

Z

Z0

)
= 1−

(
1

Z 0
+

1

Z0

)
Z +

Z2

Z0Z0
(1.24)

= 1 − 2ρ cosω0 Z + ρ2Z2 (1.25)

So the convolutional coefficients of this filter are the real values (1,−2ρ cosω0,ρ2).
Takingρ = 1, the filter completely destroys energy at frequencyω0. Other values
of ρ near unity suppress nearby frequencies without completely destroying them.

Recall that to keep the filter response real, any root on the positiveω-axis must
have a twin on the negativeω-axis. In the figures I show here, the negative axis is
not plotted, so we must remember the twin. Figure1.10shows a discrete approx-
imation to the second derivative. It is like (1− Z)2, but since both its roots are in

Figure 1.10: Approximation to the second difference operator (1,−2,1). cs-ddt2
[NR]

the same place atZ = 1, I pushed them a little distance apart, one going to positive
frequencies and one to negative.

1.3.5. Inverse Z-transform
Fourier analysis is widely used in mathematics, physics, and engineering as aFourier
integral transformation pair:

B(ω) =
∫
+∞

−∞

b(t)ei ωt dt (1.26)

b̄(t) =
∫
+∞

−∞

B(ω)e−i ωt dω (1.27)

These integrals correspond to the sums we are working with here except for some
minor details. Books in electrical engineering redefineei ωt ase−i ωt . That is like
switchingω to−ω. Instead, we have chosen thesign conventionof physics, which
is better for wave-propagation studies (as explained in IEI). The infinite limits on
the integrals result from expressing theNyquist frequency in radians/second as
π/1t . Thus, as1t tends to zero, theFourier sum tends to the integral. When we

reach equation (1.31) we will see that if a scaling divisor of 2π is introduced into
either (1.26) or (1.27), thenb(t) will equal b̄(t).

The Z-transform is always easy to make, but the Fourier integral could be dif-
ficult to perform, which is paradoxical, because the transforms are really the same.
To make aZ-transform, we merely attach powers ofZ to successive data points.
When we haveB(Z), we can refer to it either as a time function or a frequency
function. If we graph the polynomial coefficients, then it is a time function. It is a
frequency function if we evaluate and graph the polynomialB(Z = ei ω) for various
frequenciesω.

If the Z-transform amounts to attaching powers ofZ to successive points of
a time function, then theinverse Z-transform must be merely identifying coef-
ficients of various powers ofZ with different points in time. How can this mere
“identification of coefficients” be the same as the apparently more complicated op-
eration of inverse Fourier integration? Let us see. Theinverse Fourier integral
(1.27) for integer values of time is

bt =
1

2π

∫
+π

−π

B(ω)e−i ωt dω (1.28)

Substituting (1.21) into (1.28), we get

bt =
1

2π

∫ π

−π

(· · ·+b−1e−i ω
+b0+b1e+i ω

+·· ·)e−i ωt dω (1.29)

Since sinusoids have as much area above the axis as below, the integration ofeinω

over−π ≤ ω <+π gives zero unlessn= 0, that is,

1

2π

∫ π

−π

einω dω =
1

2π

∫ π

−π

(cosnω+ i sinnω)dω

=

{
1 if n= 0
0 if n= non-zero integer

(1.30)

Of all the terms in the integrand (1.29), we see from (1.30) that only the term with
bt will contribute to the integral; all the rest oscillate and cancel. In other words,
it is only the coefficient ofZ to the zero power that contributes to the integral, so
(1.29) reduces to

bt =
1

2π

∫
+π

−π

bt e−i 0 dω (1.31)

This shows how inverse Fourier transformation is just like identifying coefficients
of powers ofZ. It also shows why the scale factor in equation (1.28) is 2π .

EXERCISES:
1 Let B(Z)= 1+Z+Z2

+Z3
+Z4. Graph the coefficients ofB(Z) as a function

of the powers ofZ. Graph the coefficients of[B(Z)]2.

2 As ω moves from zero to positive frequencies, where isZ and which way does
it rotate around the unit circle, clockwise or counterclockwise?

3 Identify locations on the unit circle of the following frequencies: (1) the zero
frequency, (2) the Nyquist frequency, (3) negative frequencies, and (4) a fre-
quency sampled at 10 points per wavelength.

4 Given numerical constants<Z0 and=Z0, deriveω0 andρ.

5 Sketch the amplitude spectrum of Figure1.9from 0 to 4π .

1.4. CORRELATION AND SPECTRA
The spectrum of a signal is a positive function of frequency that says how much
of each tone is present. The Fourier transform of a spectrum yields an interesting
function called an “autocorrelation,” which measures the similarity of a signal to
itself shifted.

1.4.1. Spectra in terms of Z-transforms
Let us look at spectra in terms ofZ-transforms. Let aspectrum be denotedS(ω),
where

S(ω) = |B(ω)|2 = B(ω)B(ω) (1.32)

Expressing this in terms of a three-pointZ-transform, we have

S(ω) = (b̄0+ b̄1e−i ω
+ b̄2e−i 2ω)(b0+b1ei ω

+b2ei 2ω) (1.33)

S(Z) =

(
b̄0+

b̄1

Z
+

b̄2

Z2

)
(b0+b1Z+b2Z2) (1.34)

S(Z) = B

(
1

Z

)
B(Z) (1.35)

It is interesting to multiply out the polynomial̄B(1/Z) with B(Z) in order to exam-
ine the coefficients ofS(Z):

S(Z) =
b̄2b0

Z2
+

(b̄1b0+ b̄2b1)

Z
+ (b̄0b0+ b̄1b1+ b̄2b2)+ (b̄0b1+ b̄1b2)Z+ b̄0b2Z2

S(Z) =
s−2

Z2
+

s−1

Z
+s0+s1Z+s2Z2 (1.36)

The coefficientsk of Zk is given by

sk =

∑
i

b̄i bi+k (1.37)

Equation (1.37) is theautocorrelation formula. The autocorrelation valuesk at lag
10 iss10. It is a measure of the similarity ofbi with itself shifted 10 units in time.
In the most frequently occurring case,bi is real; then, by inspection of (1.37), we
see that the autocorrelation coefficients are real, andsk = s−k.

Specializing to a real time series gives

S(Z) = s0+s1

(
Z+

1

Z

)
+s2

(
Z2
+

1

Z2

)
(1.38)

S(Z(ω)) = s0+s1(ei ω
+e−i ω)+s2(ei 2ω

+e−i 2ω) (1.39)

S(ω) = s0+2s1cosω+2s2cos2ω (1.40)

S(ω) =
∑

k

sk coskω (1.41)

S(ω) = cosine transform ofsk (1.42)

This proves a classic theorem that for real-valued signals can be simply stated as
follows:

For any real signal, the cosine transform of theautocorrelation equals the
magnitude squared of the Fourier transform.

1.4.2. Two ways to compute a spectrum
There are two computationally distinct methods by which we can compute a spec-
trum: (1) compute all thesk coefficients from (1.37) and then form the cosine sum
(1.41) for eachω; and alternately, (2) evaluateB(Z) for some value of Z on the
unit circle, and multiply the resulting number by its complex conjugate. Repeat for

many values ofZ on the unit circle. When there are more than about twenty lags,
method (2) is cheaper, because the fast Fourier transform discussed in chapter9 can
be used.

1.4.3. Common signals
Figure1.11shows some common signals and theirautocorrelations. Figure1.12
shows the cosine transforms of the autocorrelations. Cosine transform takes us from
time to frequency and it also takes us from frequency to time. Thus, transform pairs
in Figure 1.12 are sometimes more comprehensible if you interchange time and
frequency. The various signals are given names in the figures, and a description of
each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was trun-
cated (multiplied by a rectangle function). The autocorrelation is a sinusoid
under a triangle, and its spectrum is a broadened impulse (which can be
shown to be a narrow sinc-squared function).

sinc Thesinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc func-
tion, and its spectrum is a rectangle function. Here the rectangle is corrupted

Figure 1.11: Common signals and one side of their autocorrelations.cs-autocor
[ER]

Figure 1.12: Autocorrelations and their cosine transforms, i.e., the (energy) spectra
of the common signals.cs-spectra[ER]

slightly by “Gibbs sidelobes,” which result from the time truncation of the
original sinc.

wide box A wide rectangle function has a wide triangle function for an autocor-
relation and a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but this
spectrum is modulated (multiplied) by a sinusoidal function of frequency,
where the modulation frequency measures the time separation of the narrow
boxes. (An oscillation seen in the frequency domain is sometimes called a
“quefrency.”)

comb Fine-toothed-combfunctions are like rectangle functions with a lower Nyquist
frequency. Coarse-toothed-comb functions have a spectrum which is a fine-
toothed comb.

exponential The autocorrelation of a transientexponential function is adouble-
sided exponentialfunction. The spectrum (energy) is a Cauchy function,

1/(ω2
+ω2

0). The curious thing about theCauchy function is that the ampli-
tude spectrum diminishes inversely with frequency to thefirst power; hence,
over an infinite frequency axis, the function has infinite integral. The sharp
edge at the onset of the transient exponential has much high-frequency en-
ergy.

Gauss The autocorrelation of aGaussianfunction is another Gaussian, and the
spectrum is also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surrounded
by some short grass. The spectrum is positive random numbers. For more
about random signals, see chapter11.

smoothed random Smoothed random numbers are much the same as random num-
bers, but their spectral bandwidth is limited.

1.4.4. Spectra of complex-valued signals
Thespectrum of a signal is the magnitude squared of the Fourier transform of the
function. Consider the real signal that is a delayed impulse. ItsZ-transform is sim-

ply Z; so the real part is cosω, and the imaginary part is sinω. The real part is thus
aneven functionof frequency and the imaginary part anodd function of frequency.
This is also true ofZ2 and any sum of powers (weighted by real numbers), and thus
it is true of any time function. For any real signal, therefore, the Fourier transform
has an even real part RE and an imaginary odd part IO. Taking the squared magni-
tude gives (RE+i IO)(RE−i IO)= (RE)2 + (IO)2. The square of an even function is
obviously even, and the square of an odd function is also even. Thus, because the
spectrum of a real-time function is even, its values at plus frequencies are the same
as its values at minus frequencies. In other words, no special meaning should be
attached to negative frequencies. This is not so of complex-valued signals.

Although most signals which arise in applications are real signals, a discus-
sion of correlation and spectra is not mathematically complete without considering
complex-valued signals. Furthermore, complex-valued signals arise in many dif-
ferent contexts. In seismology, they arise in imaging studies when the space axis is
Fourier transformed, i.e., when a two-dimensional functionp(t ,x) is Fourier trans-
formed over space toP(t ,kx). More generally, complex-valued signals arise where
rotation occurs. For example, consider two vector-component wind-speed indica-
tors: one pointing north, recordingnt , and the other pointing west, recordingwt .

Now, if we make a complex-valued time seriesvt = nt + i wt , the magnitude and
phase angle of the complex numbers have an obvious physical interpretation:+ω

corresponds to rotation in one direction (counterclockwise), and (−ω) to rotation in
the other direction. To see why, supposent = cos(ω0t+φ) andwt =−sin(ω0t+φ).
Thenvt = e−i (ω0t+φ). The Fourier transform is

V(ω) =

∫
+∞

−∞

e−i (ω0t+φ)ei ωtdt (1.43)

The integrand oscillates and averages out to zero, except for the frequencyω = ω0.
So the frequency function is a pulse atω = ω0:

V(ω) = δ(ω−ω0)e−i φ (1.44)

Conversely, ifwt were sin(ω0t +φ), then the frequency function would be a pulse
at−ω0, meaning that the wind velocity vector is rotating the other way.

1.4.5. Time-domain conjugate
A complex-valued signalsuch asei ω0t can be imagined as acorkscrew, where the
real and imaginary parts are plotted on thex- and y-axes, and timet runs down

the axis of the screw. The complex conjugate of this signal reverses they-axis and
gives the screw an opposite handedness. InZ-transform notation, thetime-domain
conjugate is written

B(Z) = b0+b1ei ω
+b2ei 2ω

+·· · (1.45)

Now consider the complex conjugate of a frequency function. InZ-transform nota-
tion this is written

B(ω) = B

(
1

Z

)
= b0+b1e−i ω

+b2e−i 2ω
+·· · (1.46)

To see that it makes a difference in which domain we take a conjugate, contrast the
two equations (1.45) and (1.46). The functionB(1

Z)B(Z) is a spectrum, whereas
the functionbt bt is called an “envelopefunction.”

For example, given complex-valuedbt vanishing fort < 0, the composite filter
B(Z)B̄(Z) is a causal filter with a real time function, whereas the filterB(Z)B̄(1/Z)
is noncausal and also a real-valued function of time. (The latter filter would turn out
to be symmetric in time only if allbt were real.)

You might be tempted to think thatZ = 1/Z, but that is true only ifω is real,
and often it is not. Chapter3 is largely devoted to exploring the meaning of complex

frequency.

1.4.6. Spectral transfer function
Filters are often used to change the spectra of given data. With inputX(Z), fil-
tersB(Z), and outputY(Z), we haveY(Z)= B(Z)X(Z) and the Fourier conjugate
Y(1/Z)= B(1/Z)X(1/Z). Multiplying these two relations together, we get

Y Y = (B B)(X X) (1.47)

which says that the spectrum of the input times the spectrum of the filter equals the
spectrum of the output. Filters are often characterized by the shape of their spectra;
this shape is the same as thespectral ratio of the output over the input:

B B =
Y Y

X X
(1.48)

1.4.7. Crosscorrelation
The concept ofautocorrelation and spectra is easily generalized tocrosscorrela-
tion andcross-spectra. Consider twoZ-transformsX(Z) andY(Z). The cross-

spectrumC(Z) is defined by

C(Z) = X

(
1

Z

)
Y(Z) (1.49)

The crosscorrelation function is the coefficientsck. If some particular coefficientck
in C(Z) is greater than any of the others, then it is said that the waveformxt most
resembles the waveformyt if either xt or yt is delayedk time units with respect to
the other.

1.4.8. Matched filtering
Figure1.13shows adeep-water seismogramwhere the bottom is unusually hard.
The second signal is the wavelet that results from windowing about the first water-
bottom reflection. Notice that the wavelet has a comparatively simple spectrum, its
principal feature being that it vanishes at low frequencies and high frequencies. The
input has a spectrum that is like that of the wavelet, but multiplied by a fine-toothed
comb reminiscent of “cmb5” in Figure1.12.

“Matched filtering ” is crosscorrelating with a wavelet. Equivalently, it is con-
volving with the time-reversed wavelet. Matched filtering usesY(Z)= F(1/Z)X(Z)

Figure 1.13: Example of matched filtering with water-bottom reflection. Top shows
signals and bottom shows corresponding spectra. The result was time shifted to best
align with the input. cs-match[ER]

instead ofY(Z)= F(Z)X(Z). The third signal in Figure1.13shows the data cross-
correlated with the sea-floor reflection. Notice that the output sea-floor reflection
is symmetric like anautocorrelation function. Later bounces arecrosscorrela-
tions, but they resemble the autocorrelation. Ideally, alternate water-bottom reflec-
tions have alternatingpolarities. From the figure you can see that matched filtering
makes this idealization more apparent. An annoying feature of the matched filter is
that it is noncausal, i.e., there is an output before there is an input. You can see this
in Figure1.13just before the water-bottom reflection.

EXERCISES:
1 Suppose a wavelet is made up of complex numbers. Is the autocorrelation

relationsk = s−k true? Issk real or complex? IsS(ω) real or complex?

2 If concepts of time and frequency are interchanged, what does the meaning of
spectrum become?

3 Suggest a reason why the spectrum of the wavelet in Figure1.13contains more
low-frequency energy than the whole seismogram.

4 Suggest a reason why the spectrum of the wavelet in Figure1.13contains more
high-frequency energy than the whole seismogram.

Chapter 2

Discrete Fourier transform

Happily, Fourier sums are exactly invertible: given the output, the input can be
quickly found. Because signals can be transformed to the frequency domain, ma-
nipulated there, and then returned to the time domain, convolution and correlation

53

can be done faster. Time derivatives can also be computed with more accuracy in
the frequency domain than in the time domain. Signals can be shifted a fraction of
the time sample, and they can be shifted back again exactly. In this chapter we will
see how many operations we associate with the time domain can often be done bet-
ter in the frequency domain. We will also examine some two-dimensional Fourier
transforms.

2.1. FT AS AN INVERTIBLE MATRIX
A Fourier sum may be written

B(ω) =

∑
t

bt ei ωt
=

∑
t

bt Zt (2.1)

where the complex valueZ is related to the real frequencyω by Z = ei ω. This
Fourier sum is a way of building a continuous function ofω from discrete signal val-
uesbt in the time domain. In this chapter we will study the computational tricks as-
sociated with specifying both time and frequency domains by a set of points. Begin
with an example of a signal that is nonzero at four successive instants, (b0,b1,b2,b3).

The transform is
B(ω) = b0+b1Z+b2Z2

+b3Z3 (2.2)

The evaluation of this polynomial can be organized as a matrix times a vector, such
as  B0

B1
B2
B3

 =


1 1 1 1
1 W W2 W3

1 W2 W4 W6

1 W3 W6 W9


 b0

b1
b2
b3

 (2.3)

Observe that the top row of the matrix evaluates the polynomial atZ = 1, a point
where alsoω = 0. The second row evaluatesB1 = B(Z = W = ei ω0), whereω0
is some base frequency. The third row evaluates the Fourier transform for 2ω0,
and the bottom row for 3ω0. The matrix could have more than four rows for more
frequencies and more columns for more time points. I have made the matrix square
in order to show you next how we can find the inverse matrix. The size of the matrix
in (2.3) is N = 4. If we choose the base frequencyω0 and henceW correctly, the

inverse matrix will be b0
b1
b2
b3

 = 1/N


1 1 1 1
1 1/W 1/W2 1/W3

1 1/W2 1/W4 1/W6

1 1/W3 1/W6 1/W9


 B0

B1
B2
B3

 (2.4)

Multiplying the matrix of (2.4) with that of (2.3), we first see that the diagonals
are +1 as desired. To have the off diagonals vanish, we need various sums, such
as 1+W+W2

+W3 and 1+W2
+W4

+W6, to vanish. Every element (W6, for
example, or 1/W9) is a unit vector in the complex plane. In order for the sums of
the unit vectors to vanish, we must ensure that the vectors pull symmetrically away
from the origin. A uniform distribution of directions meets this requirement. In
other words,W should be theN-th root of unity, i.e.,

W =
N
√

1 = e2π i /N (2.5)

The lowest frequency is zero, corresponding to the top row of (2.3). The next-
to-the-lowest frequency we find by settingW in (2.5) to Z = ei ω0. Soω0 = 2π/N;

and for (2.4) to be inverse to (2.3), the frequencies required are

ωk =
(0,1,2,. . . , N−1)2π

N
(2.6)

2.1.1. The Nyquist frequency
The highest frequency in equation (2.6), ω= 2π (N−1)/N, is almost 2π . This fre-
quency is twice as high as the Nyquist frequencyω= π . TheNyquist frequency is
normally thought of as the “highest possible” frequency, becauseei π t , for integert ,
plots as (· · · ,1,−1,1,−1,1,−1,· · ·). The double Nyquist frequency function,ei 2π t ,
for integert , plots as (· · · ,1,1,1,1,1,· · ·). So this frequency above the highest fre-
quency is really zero frequency! We need to recall thatB(ω) = B(ω−2π). Thus,
all the frequencies near the upper end of the range (2.6) are really small negative
frequencies. Negative frequencies on the interval (−π ,0) were moved to interval
(π ,2π) by the matrix form of Fourier summation.

Figure2.1shows possible arrangements for distributing points uniformly around
theunit circle . Those circles labeled “even” and “odd” have even and odd numbers
of points on their perimeters. Zero frequency is the right edge of the circles, and

Figure 2.1: Possible arrange-
ments of uniformly spaced fre-
quencies. Nyquist frequency is
at the left edge of the circles and
zero frequency at the right edge.
dft-circles [ER]

Nyquist frequency is the left edge. Those circles labeled “nyq=1” have a point at
the Nyquist frequency, and those labeled “nyq=0” do not.

Rewriting equations (2.3) and (2.4) with different even values ofN leads to
arrangements like the upper left circle in Figure2.1. Rewriting with odd values ofN
leads to arrangements like the lower right circle. Although the “industry standard”
is the upper-left arrangement, the two right-side arrangements are appealing for two
reasons: the Nyquist frequency is absent, and its time-domain equivalent, the jump
from large positive time to large negative time (a philosophical absurdity), is also
absent. We will be testing and evaluating all four arrangements in Figure2.5.

2.1.2. Laying out a mesh
In theoretical work and in programs, the definitionZ = ei ω1t is often simplified to
1t = 1, leaving us withZ = ei ω. How do we know whetherω is given in radians
per second or radians per sample? We may not invoke a cosine or an exponential
unless the argument has no physical dimensions. So where we seeω without 1t ,
we know it is in units of radians per sample.

In practical work, frequency is typically given in cycles orHertz, f , rather

than radians,ω (whereω = 2π f). Here we will now switch tof . We will design
a computermeshon a physical object (such as a waveform or a function of space).
We often take the mesh to begin att = 0, and continue till the endtmax of the object,
so the time rangetrange= tmax. Then we decide how many points we want to use.
This will be theN used in the discrete Fourier-transform program. Dividing the
range by the number gives a mesh interval1t .

Now let us see what this choice implies in the frequency domain. We custom-
arily take the maximum frequency to be the Nyquist, eitherfmax= .5/1t Hz or
ωmax= π/1t radians/sec. The frequency rangefrangegoes from−.5/1t to .5/1t .
In summary:

• 1t = trange/N is timeresolution.

• frange = 1/1t = N/trange is frequency range.

• 1 f = frange/N = 1/trange is frequencyresolution.

In principle, we can always increaseN to refine the calculation. Notice that in-
creasingN sharpens the time resolution (makes1t smaller) but does not sharpen
the frequency resolution1 f , which remains fixed. IncreasingN increases the fre-
quencyrange,but not the frequencyresolution.

What if we want to increase the frequency resolution? Then we need to choose
trange larger than required to cover our object of interest. Thus we either record
data over a larger range, or we assert that such measurements would be zero. Three
equations summarize the facts:

1t frange = 1 (2.7)

1 f trange = 1 (2.8)

1 f 1t =
1

N
(2.9)

Increasingrangein the time domain increasesresolutionin the frequency do-
main and vice versa. Increasingresolution in one domain does not increase
resolution in the other.

2.1.3. The comb function
Consider a constant function of time. In the frequency domain, it is an impulse at
zero frequency. Thecomb function is defined to be zero at alternate time points.

Multiply this constant function by the comb function. The resulting signal contains
equal amounts of two frequencies; half is zero frequency, and half is Nyquist fre-
quency. We see this in the second row in Figure2.2, where the Nyquist energy is
in the middle of the frequency axis. In the third row, 3 out of 4 points are zeroed
by another comb. We now see something like a new Nyquist frequency at half the
Nyquist frequency visible on the second row.

Figure 2.2: A zero-frequency
function and its cosine transform.
Successive rows show increas-
ingly sparse sampling of the zero-
frequency function. dft-comb
[NR]

2.1.4. Undersampled field data
Figure2.3shows a recording of anairgun along with its spectrum. The original data
is sampled at an interval of 4 milliseconds, which is 250 times per second. Thus,
the Nyquist frequency 1/(21t) is 125 Hz. Negative frequencies are not shown,
since the amplitude spectrum at negative frequency is identical with that at positive
frequency. Think of extending the top row of spectra in Figure2.3 to range from
minus 125 Hz to plus 125 Hz. Imagine the even function of frequency centered at
zero frequency—we will soon see it. In the second row of the plot, I decimated
the data to 8 ms. This drops the Nyquist frequency to 62.5 Hz. Energy that was
at−10 Hz appears at 125−10 Hz in thesecondrow spectrum. The appearance of
what were formerly small negative frequencies near the Nyquist frequency is called
“ folding” of the spectrum. In the next row the data is sampled at 16 ms intervals,
and in the last row at 32 ms intervals. The 8 ms sampling seems OK, whereas the
32 ms sampling looks poor. Study how the spectrum changes from one row to the
next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 ms
data could be used to construct the original 4 ms data by transforming the 8 ms data
to the frequency domain, replacing values at frequencies above 125/2 Hz by zero,

Figure 2.3: Raw data is shown on the top left, of about a half-second duration.
Right shows amplitude spectra (magnitude of FT). In successive rows the data is
sampled less densely.dft-undersample[ER]

and then inverse transforming to the time domain.
(Airguns usually have a higher frequency content than we see here. Some high-

frequency energy was removed by the recording geometry, and I also removed some
when preparing the data.)

2.2. INVERTIBLE SLOW FT PROGRAM
Because Fourier sums are exactly invertible, some other things we often require can
be done exactly by doing them in the frequency domain.

Typically, signals are real valued. But the programs in this chapter are for
complex-valued signals. In order to use these programs, copy the real-valued sig-
nal into a complex array, where the signal goes into the real part of the complex
numbers; the imaginary parts are then automatically set to zero.

There is no universally correct choice ofscale factor in Fourier transform:
choice of scale is a matter of convenience. Equations (2.3) and (2.4) mimic theZ-
transform, so their scaling factors are convenient for the convolution theorem—that
a product in the frequency domain is a convolution in the time domain. Obviously,
the scaling factors of equations (2.3) and (2.4) will need to be interchanged for the

complementary theorem that a convolution in the frequency domain is a product
in the time domain. I like to use a scale factor that keeps the sums of squares the
same in the time domain as in the frequency domain. Since I almost never need
the scale factor, it simplifies life to omit it from the subroutine argument list. When
a scaling program is desired, we can use a simple one likescale() /prog:scale.
Complex-valued data can be scaled withscale() merely by doubling the value of
n.

Fourier transform is just one of many transforms discussed in this book. In
the case of most other transforms, the number of output values is different than the
number of inputs. In addition, inverse transforms (and conjugate transforms), which
will also be represented in code included in this book, transform in reverse, outputs
to inputs. Finally, we will eventually combine transformations by addition or con-
catenation (one occurring after the other). All these considerations are expressed in
the simple programadjnull() , which erases output before we begin.adjnull()

may seem like too trivial a function to put in a library routine, but at last count, 15
other routines in this book use it.adjnull

subroutine adjnull(adj, add, x, nx, y, ny)
integer ix, iy, adj, add, nx, ny
real x(nx), y(ny)
if(add == 0)

if(adj == 0)
do iy= 1, ny

y(iy) = 0.
else

do ix= 1, nx
x(ix) = 0.

return; end

Back

subroutine slowft(adj, add, nyq, t0,dt,nt,tt, f0,df, nf,ff)
integer it,ie, adj, add, nyq, nt, nf
complex cexp, cmplx, tt(nt), ff(nf)
real pi2, freq, time, scale, t0,dt, f0,df
call adjnull(adj, add, tt,2*nt, ff,2*nf)

pi2= 2. * 3.14159265; scale = 1./sqrt(1.*nt)
df = (1./dt) / nf

if(nyq>0)
f0 = - .5/dt

else
f0 = - .5/dt + df/2.

do ie = 1, nf { freq= f0 + df*(ie-1)
do it = 1, nt { time= t0 + dt*(it-1)

if(adj == 0)
ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

else
tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

}}
return; end

Back

2.2.1. The slow FT code
Theslowft() routine exhibits features found in many physics and engineering pro-
grams. For example, the time-domain signal (which I call “tt() "), hasnt values
subscripted, fromtt(1) to tt(nt) . The first value of this signaltt(1) is located
in real physical time att0 . The time interval between values isdt . The value of
tt(it) is at timet0+(it-1)*dt . I do not use “if ” as a pointer on the frequency
axis becauseif is a keyword in most programming languages. Instead, I count
along the frequency axis with a variable namedie . slowft The total frequency
band is 2π radians per sample unit or 1/1t Hz. Dividing the total interval by the
number of pointsnf gives1 f . We could choose the frequencies to run from 0 to
2π radians/sample. That would work well for many applications, but it would be
a nuisance for applications such as differentiation in the frequency domain, which
require multiplication by−i ω including thenegative frequenciesas well as the
positive. So it seems more natural to begin at the most negative frequency and step
forward to the most positive frequency. Next, we must make a confusing choice.

Refer to Figure2.1. We could begin the frequency axis at the negative Nyquist,
−.5/1t Hz; then we would finish one point short of the positive Nyquist. This is
shown on the left two circles in Figure2.1. Alternately, for the right two circles

we could shift by half a mesh interval, so the points wouldstraddle the Nyquist
frequency. To do this, the most negative frequency would have to be−.5/1t +
1 f/2 Hz. In routineslowft() and in the test results, “nyq=1 ” is a logical statement
that the Nyquist frequency is in the dataset. Oppositely, if the Nyquist frequency is
interlaced by the given frequencies, thennyq=0 . Finally, the heart of the program is
to compute either a Fourier sum, or its inverse, which uses the complex conjugate.

The routineftlagslow() below simply transforms a signal to the Fourier do-
main, multiplies by exp(i ωt0), wheret0 is some desired timelag , and then inverse
transforms to the time domain. Notice that if the negative Nyquist frequency is
present, it is treated as the average of the negative and positive Nyquist frequencies.
If we do not take special care to do this, we will be disappointed to find that the time
derivative of a real-time function develops an imaginary part.ftlagslow

Figure2.4shows what happens when an impulse is shifted by various fractions
of a sample unit with subroutineftlagslow() . Notice that during the delay, the
edges of the signalsripple—this is sometimes called the “Gibbs ripple.” You might
find these ripples annoying, but it is not easy to try to represent an impulse halfway
between two mesh points. You might think of doing so with (.5, .5), but that lacks
the high frequencies of an ideal impulse.

subroutine ftlagslow(nyq, lag, t0,dt, n1, ctt)
integer nyq, n1, ie
real lag, t0, dt, f0, df, freq
complex ctt(n1), cexp, cmplx
temporary complex cff(n1)

call slowft(0, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

do ie= 1, n1 { freq= f0 + (ie-1)*df
if(ie==1 && nyq > 0)

cff(1) = cff(1) * cos(2.*3.14159265 * freq * lag)
else

cff(ie) = cff(ie) * cexp(cmplx(0., 2.*3.14159265 * freq * lag))
}

call slowft(1, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

return; end

Back

Figure 2.4: An impulse func-
tion delayed various fractions
of a mesh point. Pushbut-
ton for interaction (experimen-
tal). dft-delay [ER]

subroutine ftderivslow(nyq, t0,dt, ntf, ctt, cdd)
integer nyq, ntf, ie
real t0,dt,f0,df, freq
complex ctt(ntf), cdd(ntf), cmplx
temporary complex cff(ntf)
call slowft(0, 0, nyq, t0, dt, ntf, ctt, f0, df, ntf, cff)

do ie= 1, ntf { freq= f0+(ie-1)*df
cff(ie) = cff(ie) * cmplx(0., - 2. * 3.141549265 * freq)
}

if(nyq > 0) # if(omega0 == -pi/dt)
cff(1) = 0.

call slowft(1, 0, nyq, t0, dt, ntf, cdd, f0, df, ntf, cff)
return; end

Back

The routineftderivslow() below is the Fourier-domain routine for computing
a time derivative by multiplying in the frequency domain by−i ω. ftderivslow

2.2.2. Truncation problems
When real signals are transformed to the frequency domain, manipulated there, and
then transformed back to the time domain, they will no longer be completely real.
There will be a tiny noise in the imaginary part due to numerical roundoff. The
size of the imaginary part, theoretically zero, is typically about 10−6 of the real
part. This is also about the size of the error on the real part of a signal after inverse
transform. It is almost always much smaller than experimental errors and is of little
consequence. As a check, I viewed these near-zero imaginary parts, but I do not
show them here.

A more serious error is a relative one of about 1/N on anN-point signal. This
arises from insufficient care in numerical analysis, especially associated with the
ends of the time or frequency axis. To showend effects, I will print some numbers
resulting from processing very short signals withslowft() /prog:slowft. Below
I show first the result that a transform followed by an inverse transform gives the

original signal. I display this for both even and odd lengths of data, and for the two
Nyquist arrangements as well.

Inversion: You should see (2,1,0,0)

nyq=0 2.00 1.00 0.00 0.00

nyq=1 2.00 1.00 0.00 0.00

nyq=0 2.00 1.00 0.00 0.00 0.00

nyq=1 2.00 1.00 0.00 0.00 0.00

Second, I display the result of a test of the convolution theorem by convolving
(2,1) with (1,−1). We see that the scale factor varies with the data size because
we are using the energy-conserving FT, instead of equations (2.3) and (2.4). No
problems yet.

Convolution theorem: Proportional to (0,2,-1,-1,0,0,0,0)

nyq=0 0.00 0.89 -0.45 -0.45 0.00

nyq=1 0.00 0.89 -0.45 -0.45 0.00

nyq=0 0.00 0.82 -0.41 -0.41 0.00 0.00

nyq=1 0.00 0.82 -0.41 -0.41 0.00 0.00

The third test isdelaying a signal by two samples usingftlagslow() /prog:ftlagslow.

Here the interesting question is what will happen at the ends of the data sample.
Sometimes what shifts off one end shifts back in the other end: then the signal
space is like the perimeter of a circle. Surprisingly, another aggravating possibility
exists. What shifts off one end can return in the other endwith oppositepolarity.
When this happens, a figure like2.4 looks much rougher because of the disconti-
nuity at the ends. Even if there is no physical signal at the ends, the ripple we see
in Figure2.4 reaches the ends and worsens. (Recall thatnyq=1 means the Nyquist
frequency is included in the spectrum, and thatnyq=0 means it is interlaced.)

Delay tests:

In 11.0 12.0 13.0 14.0 15.0 16.0 17.0

Out n=7 nyq=0 16.0 17.0 11.0 12.0 13.0 14.0 15.0

Out n=7 nyq=1 -16.0 -17.0 11.0 12.0 13.0 14.0 15.0

Out n=6 nyq=0 -15.0 -16.0 11.0 12.0 13.0 14.0

Out n=6 nyq=1 15.0 16.0 11.0 12.0 13.0 14.0

The fourth test is to do a time derivative in the frequency domain with subrou-
tine ftderivslow() /prog:ftderivslow. Here we do not have quite so clear an idea
of what to expect. The natural position for a time derivative is to interlace the origi-
nal data points. When we make the time derivative by multiplying in the frequency

domain by−i ω, however, the derivative does not interlace the originalmesh, but is
on the same mesh. The time derivative of the small pulse we see here is the expected
doublet aligned on the original mesh, and it has some unexpected high-frequency
ripple that drops off slowly. The ripple resembles that on a pulse shifted half a mesh
point, as in Figure2.4. It happens that this rippling signal is an accurate represen-
tation of the derivative in many examples where such mesh alignment is needed, so
(as with time shift) the ripple is worth having. Here again, we notice that there is
an unfortunatetransient on the ends of the data on two of the tests. But in two of
the four tests below, the transient is so huge that it overwhelms the derivative of the
small pulse in the middle of the signal.

Derivative tests:

In 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0

Out n=9 nyq=0 -0.7 0.8 -1.1 2.0 0.0 -2.0 1.1 -0.8 0.7

Out n=9 nyq=1 13.5 -5.1 2.0 0.7 0.0 -0.7 -2.0 5.1 -13.5

Out n=8 nyq=0 13.2 -5.7 3.5 -1.9 3.9 -6.6 7.6 -14.8

Out n=8 nyq=1 0.0 0.3 -0.8 1.9 0.0 -1.9 0.8 -0.3

Examining all the tests, we conclude that if the data has an even number of
points, it is best to include theNyquist frequency in the frequency-domain repre-

sentation. If the data has an odd number of points, it is better to exclude the Nyquist
frequency by interlacing it. A more positive way of summarizing our results is
that the zero frequency should always be present. Given this conclusion, the next
question is whether we should choose to use an even or an odd number of points.

The disadvantage of an even number of data values is that the programs that do
frequency-domain manipulations will always need to handle Nyquist as a special
case. The value at the Nyquist frequency must be handled as if half of it were at
plus Nyquist and the other half at minus Nyquist. The Nyquist aggravation will
get worse in two dimensions, where we have corners as well as edges. Figure2.5
reproduces the four arrangements in Figure2.1 along with a one-word summary
of the suitability of each arrangement: “standard" for the standard arrangement,
“risky" for arrangements that have end effects that are likely to be undesirable, and
“best" for the arrangement that involves no risky end effects and no pesky Nyquist
frequency.

Later in this chapter we will see the importance of using afastFT program—
one which is orders of magnitude faster thanslowft() /prog:slowft. Unfortu-
nately, among fast FT programs, I could not find one for anodd-length transform
that is suitable for printing here, since odd-length FT programs seem to be many

Figure 2.5: Evaluation of vari-
ous arrangements of frequencies.
dft-circeval [ER]

pages in length. So further applications in this book will use the even-length pro-
gram. As a result, we will always need to fuss with the Nyquist frequency, making
use of the frequency arrangement labeled “standard" and not that labeled “best."

A discrete Fourier-transform program designed for anodd number of points
would make applications somewhat simpler. Alas, there seems to be no pro-
gram for odd-length transforms that is both simple and fast.

2.2.3. FT by Z-transform
The programslowft() is unnecessarily slow, requiring us to compute a complex
exponential at each step. By reorganizing easily using theZ-transform, the compu-
tational load can be reduced by about a factor of five (from a complex exponential
to a complex multiply) at every step.

For simplicity we consider a signal that is only four points long:

B(ω) = b0+b1Z+b2Z2
+b3Z3 (2.10)

Reorganizing the polynomial (2.10) by nesting gives

B(ω) = b0+ Z(b1+ Z(b2+ Z(b3))) (2.11)

A subroutine for evaluatingB(ω) in this way ispolyft() . polyft

2.3. SYMMETRIES
Next we examine odd/evensymmetries to see how they are affected in Fourier
transform. The even partet of a signalbt is defined as

et =
bt +b−t

2
(2.12)

The odd part is

ot =
bt −b−t

2
(2.13)

By adding (2.12) and (2.13), we see that a function is the sum of its even and odd
parts:

bt = et +ot (2.14)

Fourier transform by polynomial evaluation.
subroutine polyft(nt,tt, nw,cww)
integer nt # number of points in the time domain
integer nw # number of points in the fourier transform
real tt(nt) # sampled function of time
complex cww(nw) # sampled fourier transform

integer it, iw
real omega
complex cz, cw
do iw= 1, nw {

omega = 3.14159265 * (iw-1.) / (nw-1.)
cz = cexp(cmplx(0., omega))
cw = tt(nt)
do it= nt-1, 1, -1 # loop runs backwards

cw = cw * cz + tt(it)
cww(iw) = cw
}

return; end

Back

Consider a simple, real, even signal such as (b−1,b0,b1) = (1,0,1). Its trans-
form Z + 1/Z = ei ω

+ e−i ω
= 2cosω is an even function ofω, since cosω =

cos(−ω).
Consider the real, odd signal (b−1,b0,b1)= (−1,0,1). Its transformZ−1/Z =

2i sinω is imaginary and odd, since sinω =−sin(−ω).
Likewise, the transform of the imaginary even function (i ,0,i) is the imaginary

even functioni 2cosω. Finally, the transform of the imaginary odd function (−i ,0,i)
is real and odd.

Let r and i refer to real and imaginary,e ando to even and odd, and lower-
case and upper-case letters to time and frequency functions. A summary of the
symmetries of Fourier transform is shown in Figure2.6.

More elaborate signals can be made by adding together the three-point func-
tions we have considered. Since sums of even functions are even, and so on, the
diagram in Figure2.6applies to all signals. An arbitrary signal is made from these
four parts only, i.e., the function has the formbt = (re+ ro)t + i (ie+ io)t . On trans-
formation ofbt , each of the four individual parts transforms according to the table.

Most “industry standard” methods of Fourier transform set the zero frequency
as the first element in the vector array holding the transformed signal, as implied

Figure 2.6: Odd functions swap
real and imaginary. Even func-
tions do not get mixed up with
complex numbers. dft-reRE
[NR]

by equation (2.3). This is a little inconvenient, as we saw a few pages back. The
Nyquist frequency is then the first point past the middle of the even-length array,
and the negative frequencies lie beyond. Figure2.7 shows an example of aneven
function as it is customarily stored.

2.3.1. Plot interpretation
Now we will get away from the ends and think about what is in the middle of signals.
Figure2.7 shows even functions in both time and frequency domains. This figure
was computed with the matrix equations (2.3) and (2.4). Displaying both the left
and right halves of each function wastes half the paper; equivalently, for a fixed
amount of paper, it wastes half the resolution. Typically, only the left half of each
function is displayed. Accepting this form of display, we receive a bonus: each
figure can be interpreted in two more ways.

Since imaginary parts are not shown, they are arbitrary. If you see only half of
an axis, you cannot tell whether the function is even or odd or neither. A frequently
occurring function is the “causal” function, i.e., the function that vanishes fort < 0.
Its even part cancels its odd part ont < 0. The ro transforms to an IO, which, being

Figure 2.7: Even functions as customarily stored by “industry standard” FT pro-
grams. dft-even [NR]

imaginary, is not shown.
The third interpretation of these displays is that the frequency function is one-

sided, and the time signal is complex. Such signals are called “analytic signals.”
For analytic signals, RE extinguishes RO at negativeω, and the imaginary even part,
ie, is not displayed.

In summary, plots that show only half the axes can be correctly interpreted in
three ways:

left side right side
even[< f (t)] even[<F(ω)]
< causal(t) <F(ω)
< f (t) < OneSided(ω)

How can we compute these invisible imaginary parts? Their computation is
called “Hilbert transform .” Briefly, the Hilbert transform takes acosinusoidal
signal (like the real part of the FT of a delayed impulse, i.e.,<ei ωt0) and converts
it to a sinusoidalsignal of the same amplitude (like the imaginary part of a delayed
impulse,=ei ωt0).

2.3.2. Convolution in the frequency domain
Let Y(Z) = X(Z) B(Z). The coefficientsyt can be found from the coefficientsxt
and bt by convolution in the time domain or by multiplication in the frequency
domain. For the latter, we would evaluate bothX(Z) andB(Z) at uniform locations
around the unit circle, i.e., compute Fourier sumsXk andBk from xt andbt . Then
we would formCk = Xk Bk for all k, and inverse Fourier transform toyt . The values
yt come out the same as by the time-domain convolution method, roughly that of
our calculationprecision (typically four-byte arithmetic or about one part in 10−6).
The only way in which you need to be cautious is to usezero padding greater than
the combined lengths ofxt andbt .

An example is shown in Figure2.8. It is the result of a Fourier-domain com-
putation which shows that the convolution of a rectangle function with itself gives a
triangle. Notice that the triangle is clean—there are no unexpected end effects.

Because of the fast method of Fourier transform described next, the frequency-
domain calculation is quicker when bothX(Z) and B(Z) have more than roughly
20 coefficients. If eitherX(Z) or B(Z) has less than roughly 20 coefficients, then
the time-domain calculation is quicker.

Figure 2.8: Top shows a
rectangle transformed to a sinc.
Bottom shows the sinc squared,
back transformed to a triangle.
dft-box2triangle [NR]

2.4. SETTING UP THE FAST FOURIER TRANS-
FORM

Typically weFourier transform seismograms about a thousand points long. Under
these conditions another Fourier summation method works about a hundred times
faster than those already given. Unfortunately, the faster Fourier transform program
is not so transparently clear as the programs given earlier. Also, it is slightly less
flexible. The speedup is so overwhelming, however, that the fast program is always
used in routine work.

Flexibility may be lost because the basic fast program works with complex-

integer function pad2(n)
integer n
pad2 = 1
while(pad2 < n)

pad2 = pad2 * 2
return; end

Back

valued signals, so we ordinarily convert our real signals to complex ones (by adding
a zero imaginary part). More flexibility is lost because typical fast FT programs
require the data length to be an integral power of 2. Thus geophysical datasets often
have zeros appended (a process called “zero padding") until the data length is a
power of 2. From time to time I notice clumsy computer code written to deduce a
number that is a power of 2 and is larger than the length of a dataset. An answer is
found by rounding up the logarithm to base 2. The more obvious and the quicker
way to get the desired value, however, is with the simple Fortran functionpad2() .
pad2

How fast is the fast Fourier transform method? The answer depends on the size
of the data. The matrix times vector operation in (2.3) requiresN2 multiplications
and additions. That determines the speed of the slow transform. For the fast method
the number of adds and multiplies is proportional toN log2 N. Since 210

= 1024,
the speed ratio is typically 1024/10 or about 100. In reality, the fast method is not
quite that fast, depending on certain details of overhead and implementation. In
1987 I tested the three programs on a 1024-point real signal and found times

slowft 153s
polyft 36s

ftu .7s

Below is ftu() , a version of thefast Fourier transform program. There are
many versions of the program—I have chosen this one for its simplicity. Consider-
ing the complexity of the task, it is remarkable that no auxiliary memory vectors are
required; indeed, the output vector lies on top of the input vector. To run this pro-
gram, your first step might be to copy your real-valued signal into a complex-valued
array. Then append enough zeros to fill in the remaining space.ftu

The following two lines serve to Fourier transform a vector of 1024 complex-
valued points, and then toinverse Fourier transform them back to the original
data:

call ftu(1., 1024, cx)

call ftu(-1., 1024, cx)

An engineering reference given at the end of this chapter contains many other
versions of the FFT program. One version transforms real-valued signals to complex-
valued frequency functions in the interval 0≤ ω < π . Others that do not transform
data on top of itself may be faster with specialized computer architectures.

subroutine ftu(signi, nx, cx)
complex fourier transform with unitary scaling
#
1 nx signi*2*pi*i*(j-1)*(k-1)/nx
cx(k) = -------- * sum cx(j) * e
sqrt(nx) j=1 for k=1,2,...,nx=2**integer
#
integer nx, i, j, k, m, istep, pad2
real signi, scale, arg
complex cx(nx), cmplx, cw, cdel, ct
if(nx != pad2(nx)) call erexit(’ftu: nx not a power of 2’)
scale = 1. / sqrt(1.*nx)
do i= 1, nx

cx(i) = cx(i) * scale
j = 1; k = 1
do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }
m = nx/2
while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.
j = j+m
}

repeat {
istep = 2*k; cw = 1.; arg = signi*3.14159265/k
cdel = cmplx(cos(arg), sin(arg))
do m= 1, k {

do i= m, nx, istep
{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }

cw = cw * cdel
}

k = istep
if(k>=nx) break
}

return; end

Back

EXERCISES:
1 Consider an even time function that is constant for all frequencies less thanω0

and zero for all frequencies aboveω0. What is the rate of decay of amplitude
with time for this function?

2 Waves spreading from a point source decay in energy as the area on a sphere.
The amplitude decays as the square root of energy. This implies a certain
decay in time. The time-decay rate is the same if the waves reflect from planar
interfaces. To what power of timet do the signal amplitudes decay? For waves
backscattered to the source from point reflectors, energy decays as distance to
the minus fourth power. What is the associated decay with time?

2.4.1. Shifted spectra
Customarily, FT programs store frequencies in the interval 0≤ ω < 2π . In some
applications the interval−π ≤ ω < π is preferable, and here we will see how this
shift in one domain can be expressed as a product in the other domain. First we
examine shifting by matrix multiplication. A single unit shift, wrapping the end

value around to the beginning, is B3
B0
B1
B2

 =

 . . . 1
1 . . .
. 1 . .
. . 1 .


 B0

B1
B2
B3

 (2.15)

You might recognize that equation (2.15) convolves a wavelet with a delayed im-
pulse, where the bottom of the matrix is wrapped back in to the top to keep the
output the same length as the input. For this 4×4 matrix, shifting one more point
does the job of switching the high and low frequencies: B2

B3
B0
B1

 =

 . . 1 .
. . . 1
1 . . .
. 1 . .


 B0

B1
B2
B3

 (2.16)

We are motivated to seek an algebraic identity for the 4×4 matrix which represents
the fact that convolution in the time domain is multiplication in the frequency do-
main. To this end we will look at the converse theorem, that multiplication in the
time domain does shifting in the frequency domain. On the left of equation (2.17) is

the operation that first transforms from time to frequency and then swaps high and
low frequencies. On the right is the operation that weights in the time domain, and
then Fourier transforms. To verify the equation, multiply the matrices and simplify
with W4

= 1 to throw out all powers greater than 3. . . 1 .
. . . 1
1 . . .
. 1 . .




1 1 1 1
1 W W2 W3

1 W2 W4 W6

1 W3 W6 W9

 =


1 1 1 1
1 W W2 W3

1 W2 W4 W6

1 W3 W6 W9




1 . . .
. W2 . .
. . W4 .
. . . W6


(2.17)

For an FT matrix of arbitrary sizeN, the desired shift isN/2, so values at
alternate points in the time axis are multiplied by−1. A subroutine for that purpose
is fth() . fth To Fourier transform a 1024-point complex vectorcx(1024) and
then inverse transform it, you would

call fth(0, 1., 1, 1024, 1, cx)

call fth(1, 1., 1, 1024, 1, cx)

You might wonder about the apparent redundancy of using both the argumentconj

and the argumentsign . Having two arguments instead of one allows us to define the

FT a vector in a matrix, with first omega = - pi
#
subroutine fth(adj,sign, m1, n12, cx)
integer i, adj, m1, n12
real sign
complex cx(m1,n12)
temporary complex temp(n12)
do i= 1, n12

temp(i) = cx(1,i)
if(adj == 0) { do i= 2, n12, 2

temp(i) = -temp(i)
call ftu(sign, n12, temp)

}
else { call ftu(-sign, n12, temp)

do i= 2, n12, 2
temp(i) = -temp(i)

}
do i= 1, n12

cx(1,i) = temp(i)
return; end

Back

forward transform for atime axis with the opposite sign as the forward transform
for a spaceaxis. The subroutinefth() is somewhat cluttered by the inclusion of a
frequently needed practical feature—namely, the facility to extract vectors from a
matrix, transform the vectors, and then restore them into the matrix.

2.5. TWO-DIMENSIONAL FT
The programfth() is set up so that the vectors transformed can be either rows or
columns of a two-dimensional array. To see how this works, recall that inFortran a
matrix allocated as(n1,n2) can be subscripted as a matrix(i1,i2) or as a long vec-
tor (i1 + n1*(i2-1),1) , andcall sub(x(i1,i2)) passes the subroutine a pointer
to the(i1,i2) element. To transform an entire axis, the subroutinesft1axis() and
ft2axis() are given. For a two-dimensional FT, we simply call bothft1axis()

andft2axis() in either order. ft1axis ft2axis
I confess that there are faster ways to do things than those I have shown you

above. When we are doing many FTs, for example, the overhead calculations done
the first time should be saved for use on subsequent FTs, as in the subroutine
rocca() included in IEI. Further, manufacturers of computers for heavy numeri-

1D Fourier transform on a 2D data set along the 1-axis
#
subroutine ft1axis(adj, sign1, n1,n2, cx)
integer i2, adj, n1,n2
complex cx(n1,n2)
real sign1
do i2= 1, n2

call fth(adj, sign1, 1,n1, cx(1,i2))
return; end

Back

1D Fourier transform on a 2D data set along the 2-axis
#
subroutine ft2axis(adj, sign2, n1,n2, cx)
integer i1, adj, n1,n2
complex cx(n1,n2)
real sign2
do i1= 1, n1

call fth(adj, sign2, n1,n2, cx(i1,1))
return; end

Back

cal use generally design special FT codes for their architecture. Although the basic
fast FT used here ingeniously stores its output on top of its input, that feature is not
compatible with vectorizing architectures.

2.5.1. Basics of two-dimensional Fourier transform
Before going any further, let us review some basic facts abouttwo-dimensional
Fourier transform . A two-dimensional function is represented in a computer as
numerical values in a matrix, whereas a one-dimensional Fourier transform in a
computer is an operation on a vector. A 2-D Fourier transform can be computed by
a sequence of 1-D Fourier transforms. We can first transform each column vector of
the matrix and then each row vector of the matrix. Alternately, we can first do the

rows and later do the columns. This is diagrammed as follows:

p(t , x) ←→ P(t , kx)xy xy
P(ω, x) ←→ P(ω, kx)

The diagram has the notational problem that we cannot maintain the usual con-
vention of using a lower-case letter for the domain of physical space and an upper-
case letter for the Fourier domain, because that convention cannot include the mixed
objectsP(t ,kx) andP(ω,x). Rather than invent some new notation, it seems best to
let the reader rely on the context: the arguments of the function must help name the
function.

An example oftwo-dimensional Fourier transforms on typical deep-ocean
data is shown in Figure2.9. In the deep ocean, sediments are fine-grained and de-
posit slowly in flat, regular, horizontal beds. The lack of permeable rocks such as
sandstone severely reduces the potential for petroleum production from the deep
ocean. The fine-grained shales overlay irregular, igneous,basement rocks. In the

Figure 2.9: A deep-marine datasetp(t ,x) from Alaska (U.S. Geological Survey)
and thereal part of various Fourier transforms of it. Because of the long traveltime
through the water, the time axis does not begin att = 0. dft-plane4 [ER]

plot of P(t ,kx), the lateral continuity of the sediments is shown by the strong spec-
trum at lowkx. The igneous rocks show akx spectrum extending to such largekx
that the deep data may be somewhatspatially aliased(sampled too coarsely). The
plot of P(ω,x) shows that the data contains no low-frequency energy. The dip of
the sea floor shows up in (ω,kx)-space as the energy crossing the origin at an angle.

Altogether, thetwo-dimensional Fourier transform of a collection of seis-
mograms involves only twice as much computation as the one-dimensional Fourier
transform of each seismogram. This is lucky. Let us write some equations to es-
tablish that the asserted procedure does indeed do a 2-D Fourier transform. Say
first that any function ofx andt may be expressed as a superposition of sinusoidal
functions:

p(t ,x) =
∫ ∫

e−i ωt+ikxx P(ω,kx) dω dkx (2.18)

The double integration can be nested to show that the temporal transforms are done
first (inside):

p(t ,x) =

∫
ei kxx

[∫
e−i ωt P(ω,kx) dω

]
dkx

=

∫
ei kxx P(t ,kx) dkx

The quantity in brackets is a Fourier transform overω done for each and every
kx. Alternately, the nesting could be done with thekx-integral on the inside. That
would imply rows first instead of columns (or vice versa). It is the separability of
exp(−i ωt + i kxx) into a product of exponentials that makes the computation this
easy and cheap.

2.5.2. Signs in Fourier transforms
In Fourier transformingt-, x-, andz-coordinates, we must choose a sign convention
for each coordinate. Of the two alternativesign conventions, electrical engineers
have chosen one and physicists another. While both have good reasons for their
choices, our circumstances more closely resemble those of physicists, so we will
use their convention. For theinverseFourier transform, our choice is

p(t ,x,z) =

∫ ∫ ∫
e−i ωt+ ikxx+ ikzz P(ω,kx,kz) dωdkx dkz (2.19)

For theforward Fourier transform, the space variables carry anegativesign, and
time carries apositivesign.

Let us see the reasons why electrical engineers have made the opposite choice,
and why we go with the physicists. Essentially, engineers transform only the time
axis, whereas physicists transform both time and space axes. Both are simplifying
their lives by their choice of sign convention, but physicists complicate their time
axis in order to simplify their many space axes. The engineering choice minimizes
the number of minus signs associated with the time axis, because for engineers,
d/dt is associated withi ω instead of, as is the case for us and for physicists, with
−i ω. We confirm this with equation (2.19). Physicists and geophysicists deal with
many more independent variables than time. Besides the obvious three space axes
are their mutual combinations, such as midpoint and offset.

You might ask, why not makeall the signs positive in equation (2.19)? The
reason is that in that case waves would not move in a positive direction along the
space axes. This would be especially unnatural when the space axis was a radius.
Atoms, like geophysical sources, always radiate from a point to infinity, not the
other way around. Thus, in equation (2.19) the sign of the spatial frequencies must
be opposite that of the temporal frequency.

The only good reason I know to choose the engineering convention is that we
might compute with an array processor built and microcoded by engineers. Conflict
of sign convention is not a problem for the programs that transform complex-valued
time functions to complex-valued frequency functions, because there the sign con-
vention is under the user’s control. But sign conflict does make a difference when
we use any program that converts real-time functions to complex frequency func-
tions. The way to live in both worlds is to imagine that the frequencies produced by
such a program do not range from 0 to+π as the program description says, but from
0 to−π . Alternately, we could always take the complex conjugate of the transform,
which would swap the sign of theω-axis.

2.5.3. Examples of 2-D FT
An example of atwo-dimensional Fourier transform of a pulse is shown in Fig-
ure 2.10. Notice the location of the pulse. It is closer to the time axis than the
frequency axis. This will affect the real part of the FT in a certain way (see exer-
cises). Notice the broadening of the pulse. It was an impulse smoothed over time
(vertically) by convolution with (1,1) and over space (horizontally) with (1,4,6,4,1).

Figure 2.10: A broadened pulse (left) and the real part of its FT (right).
dft-ft2dofpulse [ER]

This will affect the real part of the FT in another way.
Another example of a two-dimensional Fourier transform is given in Figure2.11.

This example simulates an impulsive air wave originating at a point on thex-axis.
We see a wave propagating in each direction from the location of the source of the
wave. In Fourier space there are also two lines, one for each wave. Notice that there
are other lines which do not go through the origin; these lines are called “spatial
aliases.” Each actually goes through the origin of another square plane that is not
shown, but which we can imagine alongside the one shown. These other planes are
periodic replicas of the one shown.

EXERCISES:
1 Write ftlag() starting fromftlagslow() andfth() .

2 Most time functions are real. Their imaginary part is zero. Show that this
means thatF(ω,k) can be determined fromF(−ω,−k).

3 What would change in Figure2.10if the pulse were moved (a) earlier on the
t-axis, and (b) further on thex-axis? What would change in Figure2.10 if
instead the time axis were smoothed with (1,4,6,4,1) and the space axis with
(1,1)?

Figure 2.11: A simulated air wave (left) and the amplitude of its FT (right).
dft-airwave [ER]

4 What would Figure2.11look like on an earth with half the earth velocity?

5 Numerically (or theoretically) compute the two-dimensional spectrum of a
plane wave [δ(t − px)], where the plane wave has a randomly fluctuating am-
plitude: say, rand(x) is a random number between±1, and the randomly mod-
ulated plane wave is [(1+ .2rand(x))δ(t− px)].

6 Explain the horizontal “layering” in Figure2.9 in the plot of P(ω,x). What
determines the “layer” separation? What determines the “layer” slope?

2.6. HOW FAST FOURIER TRANSFORM WORKS
A basic building block in thefast Fourier transform is called “doubling.” Given a
series (x0,x1, . . . ,xN−1) and its sampled Fourier transform (X0, X1, . . . , XN−1), and
another series (y0, y1, . . . , yN−1) and its sampled Fourier transform (Y0,Y1, . . . ,YN−1),
there is a trick to find easily the transform of the interlaced double-length series

zt = (x0, y0,x1, y1, . . . ,xN−1, yN−1) (2.20)

The process of doubling is used many times during the computing of a fast
Fourier transform. As the word “doubling" might suggest, it will be convenient to
suppose thatN is an integer formed by raising 2 to some integer power. Suppose
N = 8= 23. We begin by dividing our eight-point series into eight separate se-
ries, each of length one. The Fourier transform of each of the one-point series is
just the point. Next, we use doubling four times to get the transforms of the four
different two-point series (x0,x4), (x1,x5), (x2,x6), and (x3,x7). We use doubling
twice more to get the transforms of the two different four-point series (x0,x2,x4,x6)
and (x1,x3,x5,x7). Finally, we use doubling once more to get the transform of the
original eight-point series (x0,x1,x2, . . . ,x7). It remains to look into the details of
the doubling process. Let

V = ei 2π/2N
=W1/2 (2.21)

V N
= ei π

=−1 (2.22)

By definition, the transforms of twoN-point series are

Xk =

N−1∑
j=0

xj V
2 jk (k= 0,1,. . . , N−1) (2.23)

Yk =

N−1∑
j=0

yj V
2 jk (k= 0,1,. . . , N−1) (2.24)

Likewise, the transform of the interlaced serieszj = (x0, y0,x1, y1, . . . ,xN−1, yN−1)
is

Zk =

2N−1∑
l=0

zl V
lk (k= 0,1,. . . ,2N−1) (2.25)

To makeZk from Xk andYk, we require two separate formulas, one fork = 0, 1,
. . ., N−1, and the other fork= N, N+1, . . ., 2N−1. Start from the sum

Zk =

2N−1∑
l=0

zl V
lk (k= 0,1,. . . , N−1) (2.26)

and then split the sum into two parts, noting thatxj multiplies even powers ofV ,
andyj multiplies odd powers:

Zk =

N−1∑
j=0

xj V
2 jk
+Vk

N−1∑
j=0

yj V
2 jk (2.27)

= Xk+VkYk (2.28)

We obtain the last half of theZk by

Zk =

2N−1∑
l=0

zl V
lk (k= N, N+1,. . . ,2N−1) (2.29)

=

2N−1∑
l=0

zl V
l (m+N) (k−N =m= 0,1,. . . , N−1) (2.30)

=

2N−1∑
l=0

zl V
lm(V N)

l
(2.31)

=

2N−1∑
l=0

zl V
lm(−1)l (2.32)

=

N−1∑
j=0

xj V
2 jm
−Vm

N−1∑
j=0

yj V
2 jm (2.33)

= Xm−VmYm (2.34)

Zk = Xk−N −Vk−NYk−N (k= N, N+1,. . . ,2N−1) (2.35)

The subroutineftu() /prog:ftu does not follow this analysis in detail.
If you would like some industrial grade FFT programs, search the web for

"prime factor FFT".

2.7. References
Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and Elec-

troacoustics (now known as IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing),AU-17, entire issue (66-172).

Chapter 3

Z-plane, causality, and feedback

All physical systems share the property that they do not respond before they are
excited. Thus the impulse response of any physical system is a one-sided time func-
tion (it vanishes beforet = 0). In system theory such a filter function is called

115

“ realizable" or “causal.” In wave propagation this property is associated with
causalityin that no wave may begin to arrive before it is transmitted. The lag-time
point t = 0 plays a peculiar and an important role. Thus many subtle matters can be
more clearly understood with sampled time than with continuous time. When a fil-
ter responds at and after lag timet = 0, we say the filter is realizable or causal. The
word “causal" is appropriate in physics, where stress causes instantaneous strain
and vice versa, but one should return to the less pretentious words “realizable" or
“one-sided" when using filter theory to describe economic or social systems where
simultaneity is different from cause and effect.

The other new concept in this chapter is “feedback." Ordinarily a filter pro-
duces its output using only pastinputs. A filter using feedback uses also its past
outputs. After digesting the feedback concept, we will look at a wide variety of
filter types, at what they are used for, and at how to implement them.

First a short review: theZ-transform of an arbitrary, time-discretized signalxt
is defined by

X(Z) = ·· · + x−2 Z−2
+ x−1 Z−1

+ x0 + x1 Z + x2 Z2
+ ·· · (3.1)

In chapter1 we saw that (3.1) can be understood as a Fourier sum (whereZ = ei ω).

It is not necessary forZ to take on numerical values, however, in order for the ideas
of convolution and correlation to be useful. In chapter1 we definedZ to be the unit
delay operator. Defined thus,Z2 delays two time units. Expressions likeX(Z) B(Z)
andX(Z) B̄(1/Z) are useful because they imply convolution and crosscorrelation of
the time-domain coefficients. Here we will be learning how to interpret 1/A(Z) as
a feedback filter, i.e., as a filter that processes not only past inputs, but past outputs.
We will see that this approach brings with it interesting opportunities as well as
subtle pitfalls.

3.1. LEAKY INTEGRATION
The convolution equation (1.9)

yk =

∑
i=0

xk−i bi (3.2)

says that the present output is created entirely from present and past values of the
input. Now we will include past values of theoutput. The simplest example is

numerical integration, such as

yt = yt−1 + xt (3.3)

Notice that whenxt = (0,0,0,1,0,0,· · ·), yt = (0,0,0,1,1,1,1,· · ·), which shows that
the integral of an impulse is a step.

A kind of deliberately imperfect integration used in numerical work is called
“ leaky integration.” The name derives from the analogous situation of electrical
circuits, where the voltage on a capacitor is the integral of the current: in real life,
some of the current leaks away. An equation to model leaky integration is

yt = ρ yt−1 + xt (3.4)

whereρ is a constant that is slightly less than plus one. Notice that ifρ were greater
than unity, the output of (3.4) would grow with time instead of decaying. A program
for this simple operation isleak() . I use this program so frequently that I wrote it so
the output could be overlaid on the input.leak() uses a trivial subroutine,copy()

/prog:copy, for copying. leak
Let us see whatZ-transform equation is implied by (3.4). Move they terms to

the left:
yt − ρ yt−1 = xt (3.5)

subroutine leak(rho, n, xx, yy)
integer i, n; real xx(n), yy(n), rho
temporary real tt(n)
call null(tt, n)
tt(1) = xx(1)
do i= 2, n

tt(i) = rho * tt(i-1) + xx(i)
call copy(n, tt, yy)
return; end

Back

Given theZ-transform equation

(1−ρZ) Y(Z) = X(Z) (3.6)

notice that (3.5) can be derived from (3.6) by finding the coefficient ofZt . Thus
we can say that the outputY(Z) is derived from the inputX(Z) by the polynomial
division

Y(Z) =
X(Z)

1−ρZ
(3.7)

Therefore, the effective filterB(Z) in Y(Z)= B(Z)X(Z) is

B(Z) =
1

1−ρZ
= 1+ρZ+ρ2Z2

+ρ3Z3
+·· · (3.8)

The left side of Figure3.1shows a damped exponential function that consists of the
coefficientsρt seen in equation (3.8). The spectrum ofbt is defined byB̄(1/Z)B(Z).
Theamplitude spectrum is the square root of the spectrum. It can be abbreviated
by |B(Z)|. The amplitude spectrum is plotted on the right side of Figure3.1. Or-
dinary integration has a Fourier response 1/(−i ω) that blows up atω = 0. Leaky
integration smooths off the infinite value atω= 0. Thus in the figure, the amplitude
spectrum looks like|1/ω|, except that it is not∞ atω = 0.

Figure 3.1: Left is the impulse response of leaky integration. Right is the amplitude
1/|1−ρZ| in the Fourier domain. zp-leak [NR]

3.1.1. Plots
A pole is a place in the complex plane where a filterB(Zp) becomes infinity. This
occurs where a denominator vanishes. For example, in equation (3.8) we see that
there is one pole and it is located atZp = 1/ρ. In plots like Figure3.1, a pole
location is denoted by a “p” and a zero location by a “z." I chose to display thepole
andzero locations in theω0-plane instead of in theZ0-plane. Thus real frequencies
run along the horizontal axis instead of around the circle of|Z| = 1. I further chose
to superpose the complexω0-plane on the graph of|F(ω)| versusω. This enables
us to correlate the pole and zero locations to the spectrum. I plotted (<ω0,−=ω0) in
order that theω and<ω0 axes would coincide. As we will see later, some poles give
stable filters and some poles give unstable filters. At the risk of some confusion, I
introduced the minus sign to put the stable poles atop the positive spectrum. Since
we will never see a negative spectrum and we will rarely see an unstable pole, this
economizes on paper (or maximizes resolution for a fixed amount of paper).

In Figure3.1, moving the “p” down toward the horizontal axis would cause a
slower time decay and a sharper frequency function.

3.1.2. Two poles
Integration twice is an operation with twopoles. Specifically,

1

(1− Z)2
= (1+Z+Z2

+Z3
+·· ·)(1+Z+Z2

+Z3
+·· ·) = 1+2Z+3Z2

+4Z3
+5Z4

+·· ·

(3.9)
Notice that the signal is (1,2,3,· · ·), which is a discrete representation of the function
f (t) = t step(t). Figure3.2 shows the result when the two integrations are leaky
integrations. We see the signal begin ast but then drop off under some weight
that looks exponential. A second time-derivative filter (−i ω)2 has an amplitude
spectrum|ω2

|. Likewise, a second integration has an amplitude spectrum|1/ω2
|,

which is about what we see in Figure3.2, except that atω = 0 leaky integration has
rounded off the∞.

Instead of allowing two poles to sit on top of each other (which would look like
just one pole), I moved the pole slightly off<ω= 0 so that<ω > 0. As in Figure??,
another pole is included (but not shown) at negative frequency. This extra pole is
required to keep the signal real. Of course the two poles are very close to each other.
The reason I chose to split them this way is to prepare you for filters where the poles
are far apart.

Figure 3.2: A cascade of two leaky integrators.zp-leak2 [NR]

EXERCISES:
1 Show that multiplication by (1− Z) in discretized time is analogous to time

differentiation in continuous time. Show that dividing by (1− Z) is analogous
to integration. What are the limits on the integral?

2 A simple feedback operation isyt = (1− ε)yt−1+ xt . Give a closed-form
expression for the outputyt if xt is an impulse. Estimate the decay timeτ of
your solution (the time it takes foryt to drop toe−1y0)? For smallε, say = 0.1,
.001, or 0.0001, what isτ?

3 Find an analytic expression for the plot on the right side of Figure3.1 as a
function ofω. Show that it is like 1/|ω|.

4 In continuous time, the signal analogous to that in Figure3.2 is te−t . What is
the analogous frequency function?

3.2. SMOOTHING WITH BOX AND TRIANGLE
Simple “smoothing” is a common application of filtering. A smoothing filter is
one with all positive coefficients. On the time axis, smoothing is often done with a

single-pole damped exponential function. On space axes, however, people generally
prefer a symmetrical function. We will begin with rectangle and triangle functions.
When the function width is chosen to be long, then the computation time can be
large, but recursion can shorten it immensely.

3.2.1. Smoothing with a rectangle
The inverse of any polynomial reverberates forever, although it might drop off fast
enough for any practical need. On the other hand, a rational filter can suddenly drop
to zero and stay there. Let us look at a popular rational filter, the rectangle or “box
car”:

1− Z5

1− Z
= 1+ Z+ Z2

+ Z3
+ Z4 (3.10)

The filter (3.10) gives a moving average under arectangularwindow. This is a basic
smoothing filter. A clever way to apply it is to move the rectangle by adding a new
value at one end while dropping an old value from the other end. This approach is
formalized by the polynomial division algorithm, which can be simplified because
so many coefficients are either one or zero. To find the recursion associated with

Y(Z)= X(Z)(1− Z5)/(1− Z), we identify the coefficient ofZt in (1− Z)Y(Z)=
X(Z)(1− Z5). The result is

yt = yt−1+ xt − xt−5 (3.11)

This approach boils down to the programboxconv() /prog:boxconv, which is so

fast it is almost free! boxconv Its last line scales the output by dividing by the
rectangle length. With this scaling, the zero-frequency component of the input is
unchanged, while other frequencies are suppressed.

Let us examine the pole and zero locations in equation (3.10). The denominator
vanishes atZ = 1, so the filter has a pole at zero frequency. Smoothing something is
like boosting frequencies near the zero frequency. The numerator vanishes at the five
roots of unity, i.e.,Z = ei 2πn/5. These five locations are uniformly spaced around
the unit circle. Any sinusoid at exactly one of these frequencies is exactly destroyed
by this filter, because such a sinusoid has an integer number of wavelengths under
the boxcar. An exception is the zero frequency, where the root atZ = 1 is canceled
by a pole at the same location. This cancellation is the reason the right-hand side
ends at the fourth power—there is no infinite series of higher powers.

subroutine boxconv(nb, nx, xx, yy)
inputs: nx, xx(i), i=1,nx the data
nb the box length
output: yy(i),i=1,nx+nb-1 smoothed data
integer nx, ny, nb, i
real xx(nx), yy(1)
temporary real bb(nx+nb)
if(nb < 1 || nb > nx) call erexit(’boxconv’) # "||" means .OR.
ny = nx+nb-1
do i= 1, ny

bb(i) = 0.
bb(1) = xx(1)
do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(Z)/(1-Z)
do i= nx+1, ny

bb(i) = bb(i-1)
do i= 1, nb

yy(i) = bb(i)
do i= nb+1, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)
do i= 1, ny

yy(i) = yy(i) / nb
return; end

Back

3.2.2. Smoothing with a triangle
Triangle smoothing is rectangle smoothing done twice. For a mathematical de-
scription of the triangle filter, we simply square equation (3.10). Convolving a
rectangle function with itself many times yields a result that mathematically tends
towards aGaussianfunction. Despite the sharp corner on the top of the triangle
function, it has a shape that is remarkably similar to a Gaussian, as we can see by
looking at Figure11.2.

With filtering, end effects can be a nuisance. Filtering increases the length
of the data, but people generally want to keep input and output the same length
(for various practical reasons). This is particularly true when filtering a space axis.
Suppose the five-point signal (1,1,1,1,1) is smoothed using theboxconv() program
with the three-point smoothing filter (1,1,1)/3. The output is 5+3−1 points long,
namely, (1,2,3,3,3,2,1)/3. We could simply abandon the points off the ends, but
I like to fold them back in, getting instead (1+ 2,3,3,3,1+ 2). An advantage of
the folding is that a constant-valued signal is unchanged by the smoothing. This is
desirable since a smoothing filter is a low-pass filter which naturally should pass the
lowest frequencyω = 0 without distortion. The result is like a wave reflected by
a zero-slopeend condition. Impulses are smoothed into triangles except near the

boundaries. What happens near the boundaries is shown in Figure3.3. Note that at

Figure 3.3: Edge effects when
smoothing an impulse with a tri-
angle function. Inputs are spikes
at various distances from the
edge. zp-triend [ER]

the boundary, there is necessarily only half a triangle, but it is twice as tall.
Figure3.3 was derived from the routinetriangle() . triangle I frequently

Convolve with triangle
#
subroutine triangle(nr, m1, n12, uu, vv)
input: nr rectangle width (points) (Triangle base twice as wide.)
input: uu(m1,i2),i2=1,n12 is a vector of data.
output: vv(m1,i2),i2=1,n12 may be on top of uu
integer nr,m1,n12, i,np,nq
real uu(m1, n12), vv(m1, n12)
temporary real pp(n12+nr-1), qq(n12+nr+nr-2), tt(n12)
do i=1,n12 { qq(i) = uu(1,i) }
if(n12 == 1)

call copy(n12, qq, tt)
else {

call boxconv(nr, n12, qq, pp); np = nr+n12-1
call boxconv(nr, np , pp, qq); nq = nr+np-1
do i= 1, n12

tt(i) = qq(i+nr-1)
do i= 1, nr-1 # fold back near end

tt(i) = tt(i) + qq(nr-i)
do i= 1, nr-1 # fold back far end

tt(n12-i+1) = tt(n12-i+1) + qq(n12+(nr-1)+i)
}

do i=1,n12 { vv(1,i) = tt(i) }
return; end

Back

smooth by convolving with triangle in two dimensions.
#
subroutine triangle2(rect1, rect2, n1, n2, uu, vv)
integer i1,i2, rect1, rect2, n1, n2
real uu(n1,n2), vv(n1,n2)
temporary real ss(n1,n2)
do i1= 1, n1

call triangle(rect2, n1, n2, uu(i1,1), ss(i1,1))
do i2= 1, n2

call triangle(rect1, 1, n1, ss(1,i2), vv(1,i2))
return; end

Back

use this program, so it is cluttered with extra features. For example, the output
can share the same location as the input. Further, since it is commonly necessary
to smooth along the 2-axis of a two-dimensional array, there are some Fortran-style
pointer manipulations to allow the user to smooth either the 1-axis or the 2-axis. For
those of you unfamiliar with Fortran matrix-handling tricks, I include below another
routine,triangle2() , that teaches how a two-dimensional array can be smoothed
over both its 1-axis and its 2-axis. Some examples of two-dimensional smoothing
are given in chapter11. triangle2

EXERCISES:
1 The Fourier transform of a rectangle function is sin(αt)/αt , also known as a

“sinc” function. In terms ofα, how wide is the rectangle function?

2 ExpressZ−2
+ Z−1

+1+ Z+ Z2 in theω-domain. This is a discrete represen-
tation of a rectangle function. Identify the ways in which it is similar to and
different from the sinc function.

3 Explain the signal second from the bottom in Figure3.3.

4 Sketch the spectral response of the subroutinetriangle() /prog:triangle.

3.3. CAUSAL INTEGRATION FILTER
Begin with a function in discretized timext . The Fourier transform with the substi-
tution Z = ei ω1t is theZ-transform

X(Z) = ·· ·+ x−2 Z−2
+ x−1 Z−1

+ x0 + x1 Z + x2 Z2
+ ·· · (3.12)

Define−i ω̂ (which will turn out to be an approximation to−i ω) by

1

−i ω̂1t
=

1

2

1 + Z

1 − Z
(3.13)

Define another signalyt with Z-transformY(Z) by applying the operator toX(Z):

Y(Z) =
1

2

1 + Z

1 − Z
X(Z) (3.14)

Multiply both sides by (1− Z):

(1 − Z) Y(Z) =
1

2
(1 + Z) X(Z) (3.15)

Equate the coefficient ofZt on each side:

yt − yt−1 =
xt + xt−1

2
(3.16)

Taking xt to be an impulse function, we see thatyt turns out to be a step function,
that is,

xt = ·· ·0,0,0,0,0,1,0,0,0,0,0,0,· · · (3.17)

yt = ·· ·0,0,0,0,0,
1

2
,1,1,1,1,1,1,· · · (3.18)

So yt is the discrete-domain representation of the integral ofxt from minus infinity
to timet . The operator (1+ Z)/(1− Z) is called the “bilinear transform ."

3.3.1. The accuracy of causal integration
The accuracy of the approximation of ˆω to ω can be seen by dividing the top and
bottom of equation (3.13) by

√
Z and substitutingZ = ei ω1t :

− i
ω̂1t

2
=

1− Z

1+ Z
(3.19)

− i
ω̂1t

2
=

1/
√

Z −
√

Z

1/
√

Z +
√

Z
= − i

sin ω1t
2

cosω1t
2

= − i tan
ω1t

2
(3.20)

ω̂1t

2
= tan

ω1t

2
(3.21)

ω̂ ≈ ω (3.22)

This is a valid approximation at low frequencies.

3.3.2. Examples of causal integration
The integration operator has a pole atZ = 1, which is exactly on theunit circle
|Z| = 1. The implied zero division has paradoxical implications (page166) that are
easy to avoid by introducing a small positive numberε and definingρ = 1− ε.
The integration operator becomes

I (Z) =
1

2

1 + ρZ

1 − ρZ
(3.23)

I (Z) =
1

2
(1 + ρZ)

[
1 + ρZ + (ρZ)2 + (ρZ)3 + ·· ·

]
I (Z) =

1

2
+ ρZ + (ρZ)2 + (ρZ)3 + ·· · (3.24)

Becauseρ is less than one, this series converges for any value ofZ on the unit
circle. If ε had been slightly negative instead of positive, a converging expansion
could have been carried out in negative powers ofZ. A plot of I (Z) is found in
Figure3.4.

Figure 3.4: A leaky causal-integration operatorI . zp-cint [NR]

Just for fun I put random noise into an integrator to see an economic simulation,
shown in Figure3.5. With ρ = 1, the difference between today’s price and tomor-

row’s price is a random number. Thus the future price cannot be predicted from the
past. This curve is called a “random walk."

Figure 3.5: Random numbers into an integrator.zp-price [NR]

3.3.3. Symmetrical double integral
Thetwo-sided leaky integralcommonly arises as an even function, which is an or-
dinary leaky integral in one direction followed by another in the opposite direction.
We will see also that the single leaky integral need not be causal; it could be an odd
function.

The causal-integration operator flows one direction in time. Anticausal integra-
tion flows the other. Causal integration followed by anticausal integration makes
a symmetrical smoothing operation, frequently used on the horizontal space axis.
Since the idea of integration is generally associated with a long decay constant, and
since data is generally limited in space, particular attention is usually given to the
side boundaries. The simplest side boundaries are zero values, but these are gen-
erally rejected because people do not wish to assume data is zero beyond where
it is measured. The most popular side conditions are not much more complicated,
however. These are zero-slope side boundaries like those shown in Figure3.6. I
habitually smoothed with damped exponentials, but I switched to triangles after I
encountered several examples where the exponential tails decreased too slowly.

The analysis for double-sided damped leaky integration withzero-slopebound-
aries is found in my previous books and elsewhere, so here I will simply state

Figure 3.6: Pulses at various
distances from a side boundary
smoothed with two-sided leaky
integration and zero-slope side
conditions. Beyond the last value
at the edge is a theoretical value
that is the same as the edge value.
zp-leakend[ER]

keyword: tridiagonal smoothing on 1-axis or 2-axis
subroutine leaky(distance, m1, n12, uu, vv)
integer i, m1, n12
real distance # input: 1. < distance < infinity
real uu(m1,n12) # data in is the vector (uu(1, i), i=1,n12)
real vv(m1,n12) # data out is the vector (vv(1, i), i=1,n12)
real a, b, dc, side
temporary real vecin(n12), vecout(n12)
a = - (1.-1./distance); b = 1.+a*a; dc = b+a+a
a = a/dc; b = b/dc; side = a + b
do i= 1,n12 { vecin(i) = uu(1,i)}
if(distance<=1.|| n12==1) {call copy(n12, vecin, vecout)}
else {call tris(n12, side, a, b, a, side, vecin, vecout)}
do i= 1,n12 { vv(1,i) = vecout(i) }
return; end

Back

tridiagonal simultaneous equations as in FGDP and IEI
#
subroutine tris(n, endl, a, b, c, endr, d, t)
integer i, n
real endl, a, b, c, endr, d(n), t(n)
temporary real e(n), f(n), deni(n)
if(n == 1) { t(1) = d(1) / b; return }
e(1) = - a / endl
do i= 2, n-1 {

deni(i) = 1. / (b + c * e(i-1))
e(i) = - a * deni(i)
}

f(1) = d(1) / endl
do i= 2, n-1

f(i) = (d(i) - c * f(i-1)) * deni(i)
t(n) = (d(n) - c * f(n-1)) / (endr + c * e(n-1))
do i= n-1, 1, -1

t(i) = e(i) * t(i+1) + f(i)
return; end

Back

the result and leave you with a working program. This kind of integration arises
in the numerical solution of wave equations. Mathematically, it means solving
(δxx−α)V(x) = U (x) for V(x) givenU (x). In the limit of smallα, the operation
is simply double integration. Nonzeroα makes itleaky integration. The operation
looks like theHelmholtz equation of physics but is not, because we takeα > 0
for damped solutions, whereas the Helmholtz equation typically takesα < 0 for os-
cillating wave solutions. Figure3.6was created withleaky() , which performs the
smoothing task using a double-sided exponential response with a decay to ampli-
tudee−1 in a givendistance. It invokes the routinetris() , a solver of tridiagonal
simultaneous equations, which is explained in FGDP.leaky tris

It is convenient to refer to the symmetrical doubleintegrationoperator asδxx,
where the superscripts denote integration, in contrast to the usual subscripts, which
denotedifferentiation . Since differentiation is widely regarded as an odd operator,
it is natural also to define the odd integration operatorδx

= δxx
x .

3.3.4. Nonuniqueness of the integration operator
Integration can be thought of as 1/(−i ω). The implied division by zero atω = 0
warns us that this filter is not quite normal. For example, 1/(−i ω) appears to be
an imaginary, antisymmetric function ofω. This implies that the time function is
the real antisymmetricsignum function, namely, sgn(t) = t/|t |. The signum is not
usually thought of as an integration operator, but by adding a constant we have a
step function, and that is causal integration. By subtracting a constant we have
anticausal integration. We can play games with the constant because it is at zero
frequency that the definition contains zero division.

EXERCISES:
1 Show that the mean of the input ofleaky() is the mean of the output, which

demonstrates that the gain of the filter is unity at zero frequency.

3.4. DAMPED OSCILLATION
In polynomial multiplication,zeros of filters indicate frequencies where outputs
will be small. Likewise, in polynomial division, zeros indicate frequencies where

outputs will be large.

3.4.1. Narrow-band filters
It seems we can represent a sinusoid byZ-transforms by setting a pole on the unit
circle. TakingZp = ei ω0, we have the filter

B(Z) =
1

1− Z/Z0
=

1

1− Ze−i ω0
= 1+ Ze−i ω0+ Z2e−i 2ω0+·· ·

(3.25)
The signalbt seems to be the complex exponentiale−i ω0t , but it is not quite that
becausebt is “turned on” att = 0, wherease−i ω0t is nonzero at negative time.

Now, how can we make areal-valued sinusoid starting att = 0? Just as with
zeros, we need to complement the pole at+ωp by one at−ωp. The resulting signal
bt is shown on the left in Figure3.7. On the right is a graphical attempt to plot the
impulse function of dividing by zero atω = ω0.

Next, let us look at a damped case like leaky integration. LetZp = ei ω0/ρ and

Figure 3.7: A pole on the real axis (and its mate at negative frequency) gives an
impulse function at that frequency and a sinusoidal function in time.zp-sinus
[NR]

|ρ|< 1. Then 1/Zp = ρe−i ω0. Define

B(Z) =
1

A(Z)
=

1

1− Z/Zp
= 1+

Z

Zp
+

(
Z

Zp

)2

+ ·· · (3.26)

B(Z) = 1+ Zρe−i ω0+ Z2ρ2e−i 2ω0+·· · (3.27)

The signalbt is zero beforet = 0 and isρte−i ω0t after t = 0. It is a damped sinu-
soidal function with amplitude decreasing with time asρt . We can readily recognize
this as an exponential decay

ρt
= et logρ

≈ e−t(1−ρ) (3.28)

where the approximation is best for values ofρ near unity.
The waveletbt is complex. To have a real-valued time signal, we need another

pole at the negative frequency, sayZp. So the composite denominator is

A(Z) =

(
1−

Z

Zp

) (
1−

Z

Zp

)
= 1− Zρ2cosω0+ρ2Z2 (3.29)

Multiplying the two poles together as we did for roots results in the plots of
1/A(Z) in Figure3.8. Notice the “p” in the figure. It indicates the location of the

Figure 3.8: A damped sinusoidal function of time transforms to a pole near the real
ω-axis, i.e., just outside the unit circle in theZ-plane. zp-dsinus[NR]

pole Zp but is shown in theω0-plane, whereZp = ei ω0. Pushing the “p” left and
right will lower and raise the resonant frequency. Pushing it down and up will raise
and lower the duration of the resonance.

EXERCISES:
1 How far from the unit circle are the poles of 1/(1− .1Z+ .9Z2)? What is the

decay time of the filter and its resonant frequency?

3.4.2. Polynomial division
Convolution with the coefficientsbt of B(Z)= 1/A(Z) is a narrow-banded filtering
operation. If the pole is chosen very close to the unit circle, the filter bandpass
becomes very narrow, and the coefficients ofB(Z) drop off very slowly. A method
exists of narrow-band filtering that is much quicker than convolution withbt . This
is polynomial division by A(Z). We have for the outputY(Z):

Y(Z) = B(Z) X(Z) =
X(Z)

A(Z)
(3.30)

Multiply both sides of (3.30) by A(Z):

X(Z) = Y(Z) A(Z) (3.31)

For definiteness, let us suppose that thext andyt vanish beforet = 0. Now identify
coefficients of successive powers ofZ to get

x0 = y0a0

x1 = y1a0+ y0a1

x2 = y2a0+ y1a1+ y0a2 (3.32)

x3 = y3a0+ y2a1+ y1a2

x4 = y4a0+ y3a1+ y2a2

= ·· · · · · · · · · · · · · · · · ·

Let Na be the highest power ofZ in A(Z). Thek-th equation (wherek > Na) is

yka0 +

Na∑
i=1

yk−i ai = xk (3.33)

Solving for yk, we get

yk =

xk−
Na∑
i=1

yk−i ai

a0
(3.34)

Equation (3.34) may be used to solve foryk onceyk−1, yk−2,· · · are known. Thus the
solution isrecursive. The value ofNa is only 2, whereasNb is technically infinite
and would in practice need to be approximated by a large value. So thefeedback
operation (3.34) is much quicker than convolving with the filterB(Z) = 1/A(Z).
A program for the task is given below. Data lengths such asna in the program
polydiv() include coefficients of allNa powers ofZ as well as 1= Z0, so na =
Na+1. polydiv

3.4.3. Spectrum of a pole
Now that we have seen the single-pole filter and the pole-pair filter in both the time
domain and the frequency domain, let us find their analytical expressions. Taking

polynomial division feedback filter: Y(Z) = X(Z) / A(Z)
#
subroutine polydiv(na, aa, nx, xx, ny, yy)
integer na # number of coefficients of denominator
integer nx # length of the input function
integer ny # length of the output function
real aa(na) # denominator recursive filter
real xx(nx) # input trace
real yy(ny) # output trace, as long as input trace.

integer ia, iy
do iy= 1, ny

if(iy <= nx)
yy(iy) = xx(iy)

else
yy(iy) = 0.

do iy= 1, na-1 { # lead-in terms
do ia= 2, iy

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(iy) / aa(1)
}

do iy= na, ny { # steady state
do ia= 2, na

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(iy) / aa(1)
}

return; end

Back

the pole to beZp = ei ω0/ρ, we have

A(Z) = 1−
Z

Zp
= 1−

ρ

ei ω0
ei ω

= 1−ρei (ω−ω0) (3.35)

The complex conjugate is

A

(
1

Z

)
= 1−ρe−i (ω−ω0) (3.36)

The spectrum of a pole filter is the inverse of

A

(
1

Z

)
A(Z) = (1−ρe−i (ω−ω0)) (1−ρei (ω−ω0))

= 1+ρ2
−ρ(e−i (ω−ω0)

+ei (ω−ω0))

= 1+ρ2
−2ρ cos(ω−ω0)

= 1+ρ2
−2ρ+2ρ[1−cos(ω−ω0)]

= (1−ρ)2+4ρ sin2 ω−ω0

2
(3.37)

With the definition of a smallε = 1−ρ > 0, inverting gives

B

(
1

Z

)
B(Z) ≈

1

ε2+4sin2 ω−ω0
2

(3.38)

Specializing to frequencies close toω0, where the denominator is small and the
function is large, gives

B

(
1

Z

)
B(Z) ≈

1

ε2+ (ω−ω0)2
(3.39)

This is called a “narrow-band filter " because in the Fourier domain the func-
tion is large only in a narrow band of frequencies. SettingB B to half its peak value
of 1/ε2, we find a half-bandwidth of1ω/2= |ω−ω0| = ε. The damping time con-
stant1t of the damped sinusoidbt is shown in the exercises following this section
to be1t = 1/ε.

Naturally we want a real-time function, so we multiply the filter 1/(1− Z/Zp)
times 1/(1− Z/Z̄p). The resulting time function is real because conjugate poles are
like the conjugate roots. The spectrum of the conjugate factor 1/(1− Z/Z̄p) is like
(3.38), except thatω0 is replaced by−ω0. Multiplying the response (3.38) by itself
with −ω0 yields the symmetric function ofω displayed on the right in Figure3.9.

Figure 3.9: A pole near the real axis gives a damped sinusoid in time on the left.
On the right is 1/|A(ω)| for ω real. zp-disappoint[NR]

You might be disappointed if you intend to apply the filter of Figure3.9 as a
narrow-band filter. Notice that the passband is asymmetric and that it passes the
zero frequency. Equation (3.38) is symmetric aboutω0, but taking the product with
its image about−ω0 has spoiled the symmetry. Should we be concerned about this
“edge effect”? The answer is yes, whenever we handle real data. For real data,1t
is usually small enough. Recall thatωradians/sample= ωradians/sec1t . Consider a pole
at a particularωradians/sec: decreasing1t pushesωradians/sampletowards zero, which
is where a pole and its mate at negative frequency create the asymmetrical response
shown in Figure3.9.

So in practice we might like to add a zero at zero frequency and at the Nyquist
frequency, i.e., (1− Z)(1+ Z), as shown in Figure3.10. Compare Figure3.10and
3.9. If the time functions were interchanged, could you tell the difference between
the figures? There are two ways to distinguish them. The most obvious is that the
zero-frequency component is made evident in the time domain by the sum of the
filter coefficients (theoretically,F(Z = 1)). A more subtle clue is that the first half-
cycle of the wave in Figure3.10 is shorter than in Figure3.9; hence, it contains
extra high frequency energy, which we can see in the spectrum.

Figure 3.10: Poles at±ω0; a root atω= 0 and another root atω= π . zp-symdsin
[NR]

EXERCISES:
1 Sketch the function in equation (3.38) over the range−π <= ω <= π , taking

care to distinguish it from Figure3.9.

2 Figure3.9 shows a bump aroundω0 that does not look symmetric because it
is theproductof equation (3.38) with a frequency-reversed copy. Consider the
sum[1/(1− Z/Zp)]+ [1/(1− Z/Z̄p)]. Is the time filter real? Where are its
poles and zeros? How will its amplitude as a function of frequency compare
with the amplitude of Figure3.9? Will the bump look more symmetric?

3.4.4. Rational filters
A general model for filtering includes both convolution (numeratorZ-transforms)
and feedback filtering (denominatorZ-transforms):

Y(Z) =
B(Z)

A(Z)
X(Z) (3.40)

There are a variety of ways to implement equation (3.40) in a computer. We could do
the polynomial divisionX(Z)/A(Z) first and then multiply (convolve) withB(Z),

or we could do the multiplication first and the division later. Alternately, we could
do them simultaneously if we identified coefficients ofA(Z)Y(Z)= B(Z)X(Z) and
solved for recursive equations, as we did for (3.34).

The rational filter is more powerful than either a purely numerator filter or a
purely denominator filter because, like its numerator part, the rational filter can eas-
ily destroy any frequency totally, and, like its denominator part, it can easily enhance
any frequency without limit. Finite-difference solutions of differential equations of-
ten appear as rational filters.

EXERCISES:
1 Consider equation (3.40). What time-domain recurrence (analogous to equa-

tion (3.34)) is implied?

3.5. INSTABILITY
Consider the exampleB(Z)= 1− Z/2. The inverse

A(Z) =
1

1− Z
2

= 1+
Z

2
+

Z2

4
+

Z3

8
+·· · (3.41)

can be found by a variety of familiar techniques, such as (1) polynomial division,
(2) Taylor’s power-series formula, or (3) the binomial theorem. In equation (3.41)
we see that there are an infinite number of filter coefficients, but because they drop
off rapidly, approximation in a computer presents no difficulty.

We are not so lucky with the filterB(Z)= 1−2Z. Here we have

A(Z) =
1

1−2Z
= 1+2Z+4Z2

+8Z3
+16Z4

+32Z5
+·· · (3.42)

The coefficients of this series increase without bound. This is called “instability .”
The outputs of the filterA(Z) depend infinitely on inputs of the infinitely distant
past. (Recall that the present output ofA(Z) is a0 times the present inputx1, plus
a1 times the previous inputxt−1, etc., soan represents memory ofn time units
earlier.) This example shows that some filtersB(Z) will not have useful inverses

A(Z) determined by polynomial division. Two sample plots of divergence are given
in Figure3.11.

For the filter 1− Z/Z0 with a single zero, the inverse filter has a single pole
at the same location. We have seen a stable inverse filter when the pole|Zp| > 1
exceeds unity andinstability when the pole|Zp|< 1 is less than unity. Occasionally
we seecomplex-valued signals. Stability for wavelets with complex coefficients is
as follows: if the solution valueZ0 of B(Z0) = 0 lies inside theunit circle in the
complex plane, then 1/B(Z) will have coefficients that blow up; and if the root lies
outside the unit circle, then the inverse 1/B(Z) will be bounded.

3.5.1. Anticausality
Luckily, unstable filters can be made stable as follows:

1

1−2Z
= −

1

2Z

1

1− 1
2Z

= −
1

2Z

(
1+

1

2Z
+

1

(2Z)2
+·· ·

)
(3.43)

Equation (3.43) is a series expansion in 1/Z—in other words, a series about infinity.
It converges from|Z| =∞ all the way in to a circle of radius|Z| = 1/2. This means

Figure 3.11: Top: the growing time function of a pole inside the unit circle at zero
frequency. Bottom: at a nonzero frequency. Where the time axis is truncated, the
signals are growing, and they will increase indefinitely.zp-diverge [NR]

that the inverse converges on the unit circle where it must, if the coefficients are to
be bounded. In terms of filters, it means that the inverse filter must be one of those
filters that responds to future inputs. Hence, although it is not physically realizable,
it may be used in computer simulation.

Examining equations (3.42) and (3.43), we see that the filter 1/(1−2Z) can be
expanded into powers ofZ in (at least) two different ways. Which one is correct?
The theory of complex variables shows that, given a particular numerical value ofZ,
only one of the sums (3.42) or (3.43) will be finite. We must use the finite one, and
since we are interested in Fourier series, we want the numerical value|Z| = 1 for
which the first series diverges and the second converges. Thus the only acceptable
filter is anticausal.

The spectra plotted in Figure3.11apply to the anticausal expansion. Obviously
the causal expansion, which is unbounded, has an infinite spectrum.

We saw that a polynomialB(Z) of degreeN may be factored intoN subsys-
tems, and that the ordering of subsystems is unimportant. Suppose we have factored
B(Z) and found that some of its roots lie outside the unit circle and some lie inside.
We first invert the outside roots with equation (3.41) and then invert the inside roots
with equation (3.43). If there are any roots exactly on the unit circle, then we have

a special case in which we can try either inverse, but neither may give a satisfactory
result in practice. Implied zero division is nature’s way of telling us that what we
are trying to do cannot be done that way (if at all).

3.5.2. Inverse filters
Let bt denote a filter. Thenat is its “inverse filter” if the convolution ofat with bt
is an impulse function. Filters are said to be inverse to one another if their Fourier
transforms are inverse to one another. So in terms ofZ-transforms, the filterA(Z)
is said to be inverse to the signal ofB(Z) if A(Z)B(Z)= 1. What we have seen so
far is that the inverse filter can be stable or unstable depending on the location of its
poles. Likewise, ifB(Z) is a filter, thenA(Z) is a usable filter inverse toB(Z), if
A(Z)B(Z)= 1 and if A(Z) does not have coefficients that tend to infinity.

Another approach to inverse filters lies in the Fourier domain. There a filter
inverse tobt is theat made by taking the inverse Fourier transform of 1/B(Z(ω)).
If B(Z) has its zeros outside the unit circle, thenat will be causal; otherwise not.
In the Fourier domain the only danger is dividing by a zero, which would be a pole
on the unit circle. In the case ofZ-transforms, zeros should not only be off the

circle but also outside it. So theω-domain seems safer than theZ-domain. Why not
always use the Fourier domain? The reasons we do not always inverse filter in the
ω-domain, along with many illustrations, are given in chapter7.

3.5.3. The unit circle
What is the meaning of a pole? We will see that the location of poles determines
whether filters are stable (have finite output) or unstable (have unbounded output).
Considering both positive and negative values ofρ, we find that stability is associ-
ated with|ρ| < 1. The pole|ρ| < 1 happens to be real, but we will soon see that
poles are complex more often than not. In the case of complex poles, the condition
of stability is that they all should satisfy|Zp| > 1. In the complexZ-plane, this
means that all the poles should be outside a circle of unit radius, the so-calledunit
circle.

3.5.4. The mapping between Z and complex frequency
We are familiar with the fact thatreal values ofω correspond to complex values of
Z = ei ω. Now let us look atcomplexvalues ofω:

Z = <Z+ i=Z = ei (<ω+i=ω)
= e−=ω ei<ω

= amplitudeei phase

(3.44)
Thus, when=ω > 0, |Z| < 1. In words, we transform the upper half of theω-
plane to the interior of the unit circle in theZ-plane. Likewise, the stable region
for poles is the lower half of theω-plane, which is the exterior of the unit circle.
Figure3.12shows the transformation. Some engineering books choose a different
sign convention (Z = e−i ω), but I selected the sign convention of physics.

3.5.5. The meaning of divergence
To prove that one equals zero, take an infinite series such as 1,−1,+1,−1,+1, . . .,
group the terms in two different ways, and add them as follows:

(1−1) + (1−1) + (1−1) + ·· · = 1 + (−1+1) + (−1+1) + ·· ·

0 + 0 + 0 + ·· · = 1 + 0 + 0 + ·· ·

Figure 3.12: Left is the complexω-plane with axes (x, y) = (<ω0,=ω0). Right is
the Z-plane with axes (x, y) = (<Z0,=Z0). The words “Convergent” and “Diver-
gent” are transformed byZ = ei ω. zp-Z [ER]

0 = 1

Of course this does not prove that one equals zero: it proves that care must be
taken with infinite series. Next, take another infinite series in which the terms may
be regrouped into any order without fear of paradoxical results. For example, let
a pie be divided into halves. Let one of the halves be divided in two, giving two
quarters. Then let one of the two quarters be divided into two eighths. Continue
likewise. The infinite series is 1/2, 1/4, 1/8, 1/16,. . .. No matter how the pieces are
rearranged, they should all fit back into the pie plate and exactly fill it.

The danger of infinite series is not that they have an infinite number of terms
but that they may sum to infinity. Safety is assured if the sum of the absolute values
of the terms is finite. Such a series is called “absolutely convergent."

3.5.6. Boundedness
Given different numerical values forZ, we can ask whetherX(Z) is finite or infinite.
Numerical values ofZ of particular interest areZ = +1, Z = −1, and all those
complex values ofZ which are unit magnitude, say|Z| = 1 or Z = ei ω, whereω

is the real Fourier transform variable. Whenω is the variable, theZ-transform is a

Fourier sum.
We can restrict our attention to those signalsut that have a finite amount of

energy by demanding thatU (Z) be finite for all values ofZ on the unit circle|Z| =
1. Filter functions always have finite energy.

3.5.7. Causality and the unit circle
The most straightforward way to say that a filter iscausal is to say that its time-
domain coefficients vanish before zero lag, that is,ut = 0 for t < 0. Another way to
say this isU (Z) is finite for Z = 0. At Z = 0, theZ-transform would be infinite if
the coefficientsu−1, u−2, etc., were not zero.

For a causal function, each term inU (Z) will be smaller if Z is taken to be
inside the circle|Z|< 1 rather than on the rim|Z| = 1. Thus, convergence atZ = 0
and on the circle|Z| = 1 implies convergence everywhere inside the unit circle. So
boundedness combined with causality means convergence in the unit circle.

Convergence atZ = 0 but not on the circle|Z| = 1 would refer to a causal
function with infinite energy, a case of no practical interest. What function con-
verges on the circle, atZ = ∞, but not atZ = 0? What function converges at all

three places,Z = 0, Z = ∞, and|Z| = 1 ?

3.6. MINIMUM-PHASE FILTERS
Let bt denote a filter. Thenat is its inverse filter if the convolution ofat with bt
is an impulse function. In terms ofZ-transforms, an inverse is simply defined by
A(Z) = 1/B(Z). Whether the filterA(Z) is causal depends on whether it is finite
everywhere inside the unit circle, or really on whetherB(Z) vanishesanywhere
inside the circle. For example,B(Z)= 1−2Z vanishes atZ = 1/2. ThereA(Z)=
1/B(Z) must be infinite, that is to say, the seriesA(Z) must be nonconvergent at
Z = 1/2. Thus, as we have just seen,at is noncausal. A most interesting case,
called “minimum phase," occurs when both a filterB(Z) and its inverse are causal.
In summary,

causal: |B(Z)|<∞ for |Z| ≤ 1
causal inverse: |1/B(Z)|<∞ for |Z| ≤ 1
minimum phase: both above conditions

The reason the interesting words “minimum phase” are used is given in chapter10.

3.6.1. Mechanical interpretation
Because of the stringent conditions on minimum-phase wavelets, you might wonder
whether they can exist in nature. A simple mechanical example should convince you
that minimum-phase wavelets are plentiful: denote the stress (pressure) in a material
by xt , and denote the strain (volume change) byyt . Physically, we can specify
either the stress or the strain, and nature gives us the other. So obviously the stress
in a material may be expressed as a linear combination of present and past strains.
Likewise, the strain may be deduced from present and past stresses. Mathematically,
this means that the filter that relates stress to strain and vice versa has all poles and
zeros outside the unit circle. Of the minimum-phase filters that model the physical
world, many conserve energy too. Such filters are called “impedances” and are
described further in FGDP and IEI, especially IEI.

3.6.2. Laurent expansion
Given an unknown filterB(Z), to understand its inverse, we need to factorB(Z)
into two parts: B(Z) = Bout(Z)Bin(Z), whereBout contains all the roots outside
the unit circle andBin contains all the roots inside. Then the inverse ofBout is

expressed as a Taylor series about the origin, and the inverse ofBin is expressed as
a Taylor series about infinity. The final expression for 1/B(Z) is called a “Laurent
expansion” for 1/B(Z), and it converges on a ring including the unit circle. Cases
with zeros exactly on the unit circle present special problems. For example, the
differentiation filter (1− Z) is the inverse of integration, but the converse is not true,
because of the additive constant of integration.

EXERCISES:
1 Find the filter that is inverse to (2−5Z+2Z2). You may just drop higher-order

powers ofZ, but an exact expression for the coefficients of any power ofZ is
preferable. (Partial fractions is a useful, though not a necessary, technique.)
Sketch the impulse response.

2 Describe a general method for determiningA(Z) andB(Z) from a Taylor series
of B(Z)/A(Z)=C0+C1Z+C2Z2

+·· ·+C∞Z∞, whereB(Z) andA(Z) are
polynomials of unknown degreen and m, respectively. Work out the case
C(Z) = 1

2 −
3
4 Z− 3

8 Z2
−

3
16Z3
−

3
32Z4

− ·· ·. Do not try this problem unless
you are familiar with determinants. (HINT: identify coefficients ofB(Z) =
A(Z)C(Z).)

3.7. INTRODUCTION TO ALL-PASS FILTERS
An “all-pass filter” is a filter whose spectral magnitude is unity. Given an input
X(Z) and an outputY(Z), we know that the spectra of the two are the same, i.e.,
X̄(1/Z)X(Z)= Ȳ(1/Z)Y(Z). The existence of an infinitude of all-pass filters tells
us that an infinitude of wavelets can have the same spectrum. Wave propagation
without absorption is modeled by all-pass filters. All-pass filters yield a waveform
distortion that can be corrected by methods discussed in chapter10.

The simplest example of an all-pass filter is the delay operatorZ = ei ω itself.
Its phase as a function ofω is simplyω.

A less trivial example of phase distortion can be constructed from a single root
Zr , whereZr is an arbitrary complex number. The ratio of any complex number to
its complex conjugate, say (x+ iy)/(x− iy), is of unit magnitude, because, taking
x+ iy = ρei φ andx− iy = ρe−i φ , the ratio is|ei 2φ

|. Thus, given a minimum-phase
filter B(ω), we can take its conjugate and make an all-pass filterP(Z) from the ratio
P(Z)= B(ω)/B(ω). A simple case is

B(ω) = 1−
Z

Zr
(3.45)

B(ω) = 1−
1

ZZr
(3.46)

The all-pass filterB/B is not causal because of the presence of 1/Z in B. We can
repair that by multiplying by another all-pass operator, namely,Z. The resulting
causal all-pass filter is

P(Z) =
ZB(1/Z)

B(Z)
=

Z− 1
Zr

1− Z
Zr

(3.47)

Equation (3.47) can be raised to higher powers to achieve a stronger frequency-
dispersion effect. Examples of time-domain responses of various all-pass filters are
shown in Figure3.13.

The denominator of equation (3.47) tells us that we have a pole atZr . Let this
location beZr = ei ω0/ρ. The numerator vanishes at

Z = Z0 =
1

Zr
= ρ ei ω0 (3.48)

In conclusion, the pole is outside the unit circle, and the zero is inside. They face
one another across the circle at the phase angleω0.

Figure 3.13: Examples of causal
all-pass filters with real poles and
zeros. These have high frequen-
cies at the beginning and low fre-
quencies at the end. zp-disper
[ER]

The all-pass filter (3.47) outputs acomplex-valued signal, however. To see
real outputs, we must handle the negative frequencies in the same way as the pos-
itive ones. The filter (3.47) should be multiplied by another like itself but withω0
replaced by−ω0; i.e., with Zr replaced byZr . The result of this procedure is shown
in Figure3.14.

Figure 3.14: All-pass filter with a complex pole-zero pair. The pole and zero are at
equal logarithmic distances from the unit circle.zp-allpass[NR]

A general form for an all-pass filter isP(Z) = ZN A(1/Z)/A(Z), whereA(Z)
is an arbitrary minimum-phase filter. That this form is valid can be verified by
checking thatP(1/Z)P(Z)= 1.

EXERCISES:
1 Verify that P(1/Z)P(Z)= 1 for the general form of an all-pass filterP(Z)=

ZN A(1/Z)/A(Z).

2 Given an all-pass filter

P(Z) =
d+eZ+ f Z2

1+bZ+cZ2

with poles atZp = 2 andZp = 3, what areb, c, d, e, and f ?

3.7.1. Notch filter
A “ notch filter ” rejects a narrow frequency band and leaves the rest of the spectrum
little changed. The most common example is 60-Hz noise from power lines. An-
other is low-frequency ground roll. Such filters can easily be made using a slight

variation on the all-pass filter. In the all-pass filter, the pole and zero have equal
(logarithmic) relative distances from the unit circle. All we need to do is put the
zero closer to the circle. Indeed, there is no reason why we should not put the zero
right on the circle: then the frequency at which the zero is located is exactly can-
celed from the spectrum of input data. Narrow-band filters and sharp cutoff filters
should be used with caution. An ever-present penalty for using such filters is that
they do not decay rapidly in time. Although this may not present problems in some
applications, it will certainly do so in others. Obviously, if the data-collection dura-
tion is shorter than or comparable to the impulse response of the narrow-band filter,
then the transient effects of starting up the experiment will not have time to die out.
Likewise, the notch should not be too narrow in a 60-Hz rejection filter. Even a
bandpass filter (an example of which, a Butterworth filter, is implemented in chap-
ter10) has a certain decay rate in the time domain which may be too slow for some
experiments. In radar and in reflection seismology, the importance of a signal is
not related to its strength. Late arriving echoes may be very weak, but they contain
information not found in earlier echoes. If too sharp a frequency characteristic is
used, then filter resonance from early strong arrivals may not have decayed enough
by the time the weak late echoes arrive.

A curious thing about narrow-band reject filters is that when we look at their
impulse responses, we always see the frequency being rejected! For example, look
at Figure3.15. The filter consists of a large spike (which contains all frequencies)
and then a sinusoidal tail of polarity opposite to that of the frequency being rejected.

The vertical axis in the complex frequency plane in Figure3.15is not exactly
=ω0. Instead it is something like the logarithm of=ω0. The logarithm is not pre-
cisely appropriate either because zeros may be exactly on the unit circle. I could
not devise an ideal theory for scaling=ω0, so after some experimentation, I chose
=ω0 = −(1+ y2)/(1− y2), wherey is the vertical position in a window of vertical
range 0< y < 1. Because of the minus sign, the outside of the unit circle is above
the<ω0 axis, and the inside of the unit circle is below it.

EXERCISES:
1 Find a three-term real feedback filter to reject 59-61 Hz on data that is sampled

at 500 points/s. (Try for about 50% rejection at 59 and 61.) Where are the
poles? What is the decay time of the filter?

Figure 3.15: Top: a zero on the real frequency axis and a pole just above it give a
notch filter; i.e., the zeroed frequency is rejected while other frequencies are little
changed. Bottom: the notch has been broadened by moving the pole further away
from the zero. (This notch is at 60 Hz, assuming1t = .002 s.) zp-notch2 [NR]

3.8. PRECISION EXHAUSTION
As we reach the end of this chapter on poles and feedback filtering, we might be
inclined to conclude that all is well if poles are outside the unit circle and that they
may even come close to the circle. Further, if we accept anticausal filtering, poles
can be inside the unit circle as well.

Reality is more difficult. Big trouble can arise from just a modest clustering
of poles at a moderate distance from the unit circle. This is shown in Figure3.16,
where the result is completely wrong. The spectrum should look like the spectrum
in Figure3.8multiplied by itself about six or seven times, once for each pole. The
effect of such repetitive multiplication is to make the small spectral values become
very small. When I added the last pole to Figure3.16, however, the spectrum sud-
denly became rough. The time response now looks almost divergent. Moving poles
slightly creates very different plots. I once had a computer that crashed whenever I
included one too many poles.

To understand this, notice that the peak spectral values in Figure3.16 come
from theminimumvalues of the denominator. The denominator will not go to a
properly small value if theprecision of its terms is not adequate to allow them
to extinguish one another. Repetitive multiplication has caused the dynamic range

Figure 3.16: A pathological failure when poles cluster too much. This situation
requires more than single-word precision.zp-path [NR]

(the range between the largest and smallest amplitudes as a function of frequency)
of single-precision arithmetic, about 106.

When single-word precision becomes a noticeable problem, the obvious path
is to choose double precision. But considering that most geophysical data has a
precision of less than one part in a hundred, and only rarely do we see precision of
one part in a thousand, we can conclude that the failure of single-word precision
arithmetic, about one part in 10−6, is more a sign of conceptual failure than of
numerical precision inadequacy.

If an application arises for which you really need an operator that raises a
polynomial to a high degree, you may be able to accomplish your goal by ap-
plying the operator in stages. Say, for example, you need the all-pass filter (.2−

Z)100/(1− .2Z)100. You should be able to apply this filter in a hundred stages of
(.2− Z)/(1− .2Z), or maybe in ten stages of (.2− Z)10/(1− .2Z)10.

Other ways around this precision problem are suggested by reflection-coefficient
modeling in a layered earth, described in FGDP.

3.9. MY FAVORITE WAVELET
I will describe my favorite wavelet for seismic modeling, shown in Figure3.17.
Of course the ideal wavelet is an impulse, but the wavelet I describe is intended to
mimic real life. I use some zeros at high frequency to force continuity in the time
domain and a zero at the origin to suppress zero frequency. I like to simulate the
suppression of low-frequency ground roll, so I put another zero not at the origin, but
at a low frequency. Theory demands a conjugate pair for this zero; effectively, then,
there are three roots that suppress low frequencies. I use some poles to skew the
passband toward low frequencies. These poles also remove some of the oscillation
caused by the three zeros. (Each zero is like a derivative and causes another lobe
in the wavelet.) There is a trade-off between having a long low-frequency tail and
having a rapid spectral rise just above the ground roll. The trade-off is adjustable by
repositioning the lower pole. The time-domain wavelet shows its high frequencies
first and its low frequencies only later. I like this wavelet better than the Ricker
wavelet (second derivative of a Gaussian). My wavelet does not introduce as much
signal delay. It looks like an impulse response from the physical world.

Figure 3.17: My favorite wavelet for seismic modeling.zp-favorite [NR]

3.10. IMPEDANCE FILTERS
Impedancefilters are a special class of minimum-phase filters that model energy-
conserving devices and media. The real part of the Fourier transform of an impedance
filter is positive. Impedances play a basic role in mathematical physics. There are
simple ways of making complicated mechanical systems from simple ones, and cor-
responding mathematical rules allow construction of complicated impedances from
simple ones. Also, impedances can be helpful in stabilizing numerical calculations.
Logically, a chapter on impedance filters belongs here, but I have little to add to
what is already found in FGDP and IEI. FGDP describes the impedance concept in
sampled time and its relation to special matrices called “Toeplitz” matrices. IEI de-
scribes impedances in general as well as their role in physical modeling and imaging
with the wave equation.

Chapter 4

Univariate problems

This chapter looks at problems in which there is just one unknown. These “univariate”
problems illustrate some of the pitfalls, alternatives, and opportunities in data anal-
ysis. Following our study of univariate problems we move on, in the next five chap-

187

ters, to problems withmultipleunknowns (which obscure the pitfalls, alternatives,
and opportunities).

4.1. INSIDE AN ABSTRACT VECTOR
In engineering, a vector has three scalar components which correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector is
a one-dimensional array that can contain many different things. Such an array is an
“abstract vector.” For example, in earthquake studies, the vector might contain the
time an earthquake began as well as its latitude, longitude, and depth. Alternately,
the abstract vector might contain as many components as there are seismometers,
and each component might be the onset time of an earthquake. In signal analysis,
the vector might contain the values of a signal at successive instants in time or, al-
ternately, a collection of signals. These signals might be “multiplexed” (interlaced)
or “demultiplexed” (all of each signal preceding the next). In image analysis, the
one-dimensional array might contain an image, which could itself be thought of as
an array of signals. Vectors, including abstract vectors, are usually denoted by bold-
face letters such asp ands. Like physical vectors, abstract vectors areorthogonal

when their dot product vanishes:p · s= 0. Orthogonal vectors are well known in
physical space; we will also encounter them in abstract vector space.

4.2. SEGREGATING P AND S CROSSTALK
Signals can be contaminated by other signals, and images can be contaminated by
other images. This contamination is called “crosstalk." An everyday example in
seismology is the mixing ofpressure waves andshear waves. When waves come
straight up, vertical detectors record their pressure-wave component, and horizontal
detectors record their shear-wave component. Often, however, waves do not come
exactly straight up. In these cases, the simple idealization is contaminated and there
is crosstalk. Here we study a simplified form of this signal-corruption problem, as
given by the equations

v = p+αs+n (4.1)

h = s+α′p+n′ (4.2)

wherev andh represent vertical and horizontal observations of earth motion,p and
s represent theoretical pressure and shear waves,n andn′ represent noises, andα

andα′ are the cross-coupling parameters. You can think ofv, h, p, s, n andn′ as
collections of numbers that can be arranged into a signal or into an image. Math-
ematically, they areabstract vectors. In our notation, boldfacev represents the
vector as a whole, and italicv represents any single component in it. (Traditionally,
a component is denoted byvi .)

• Two univariate problems
Communication channels tend to mix information in the way equations (4.1) and
(4.2) do. This is “crosstalk.” Everything on the right sides of equations (4.1) and
(4.2) is unknown. This problem can be formulated in an elaborate way with esti-
mation theory. Here we will postpone the general theory and leap to guess that the
pressure-wave fieldp will be some linear combination ofv andh, and the shear-
wave components will be something similar:

p = v − αh (4.3)

s = h − α′v (4.4)

We will understand the crosstalk question to ask us to find the constant value ofα

and ofα′. Although I will describe only the mathematics of findingα, each figure

will show you the results of both estimations, by including one part forα and one
part forα′. The results forα andα′ differ, as you will see, because of differences in
p ands.

• The physics of crosstalk
Physically, the value ofα depends on the angle of incidence, which in turn depends
critically on the soil layer. The soil layer is generally ill defined, which is why it is
natural to takeα as an unknown. In real lifeα should be time-dependent, but we
will ignore this complication.

4.2.1. Failure of straightforward methods
The conventional answer to the crosstalk question is to chooseα so thatp= v−αh
has minimum power. The idea is that since adding one signalp to an independent
signals is likely to increase the power ofp, removing as much power as possible
may be a way to separate the independent components. The theory proceeds as
follows. Minimize the dot product

Energy = p ·p = (v−αh) · (v−αh) (4.5)

by differentiating the energy with respect toα, and set the derivative to zero. This
gives

α =
v ·h
h ·h

(4.6)

Likewise, minimizing (s·s) yieldsα′ = (h ·v)/(v ·v).
In equation (4.5) the “fitting function ” is h, because various amounts ofh can

be subtracted to minimize the power in the residual (v− αh). Let us verify the
well-known fact that after the energy is minimized, theresidual is orthogonal to
thefitting function . Take the dot product of the fitting functionh and the residual
(v−αh), and insert the optimum value ofα from equation (4.6):

h · (v−αh) = h ·v−αh ·h

= 0

Results for bothp ands are shown in Figure4.1. At first it is hard to believe the
result: the crosstalk isworseon the output than on the input. Our eyes are drawn to
the weak signals in the open spaces, which are obviously unwanted new crosstalk.
We do not immediately notice that the new crosstalk has a negative polarity. Neg-
ative polarity results when we try to extinguish the strong positive polarity of the

Figure 4.1: Left shows two panels, a “Pressure Wave” contaminated by crosstalk
from “Shear” and vice versa. Right shows a least-squares attempt to remove
the crosstalk. It is disappointing to see that the crosstalk has become worse.
uni-uniform [ER]

main signal. Since the residual misfit issquared,our method tends to ignore small
residuals and focus attention on big ones: hence the wide-scale growth of small
residuals.

The least-squares method is easy to oversimplify, and it is not unusual to see
it give disappointing results. Real-life data are generally more complicated than
artificial data like the data used in these examples. It is always a good idea to
test programs on suchsynthetic datasince the success or failure of a least-squares
method may not be apparent if the method is applied to real data without prior
testing.

• Failure of independence assumption
The example in Figure4.1 illustrates apitfall of classical inversion theory. Hadp
not overlappeds, the crosstalk would have been removed perfectly. We were not
interested in destroyingp with s, and vice versa. This result was just an accidental
consequence of their overlap, which came to dominate the analysis because of the
squaring in least squares. Our failure could be attributed to a tacit assumption that
sincep ands are somehow “independent,” they can be regarded asorthogonal,i.e.,
that p · s= 0. But the (potential) physical independence ofp ands does nothing

to make a short sample ofp and s orthogonal. Even vectors containing random
numbers are unlikely to be orthogonal unless the vectors have an infinite number of
components. Perhaps if the text were as long as the works of Shakespeare

4.2.2. Solution by weighting functions
Examining Figure4.1, we realize that our goals were really centered in the quiet
regions. We need to boost the importance of those quiet regions in the analysis.
What we need is aweighting function. Denote thei -th component of a vector with
the subscripti , sayvi . When we minimize the sums of squares ofvi − αhi , the
weighting function for thei -th component is

wi =
1

v2
i + σ 2

(4.7)

and the minimization itself is

min
α

[∑
i

wi (vi −αhi)
2

]
(4.8)

To findα′, the weighting function would bew = 1/(h2
+σ 2).

The detailed form of these weighting functions is not important here. The form
I chose is somewhat arbitrary and may be far from optimal. The choice of the
constantσ is discussed on page200. What is more important is the idea that in-
stead of minimizing the sum oferrors themselves,we are minimizing something
like the sum ofrelative error s. Weighting makes any region of the data plane as
important as any other region, regardless of whether a letter (big signal) is present
or absent (small signal). It is like saying a zero-valued signal is just as impor-
tant as a signal with any other value. A zero-valued signal carries information.

When signal strength varies over a large range, a nonuniform weighting func-
tion should give better regressions. The task of weighting-function design may
require some experimentation and judgment.

• A nonlinear-estimation method
What I have described above represents my first iteration. It can be called a “linear-
estimation method." Next we will try a “nonlinear-estimation method" and see

that it works better. If we think of minimizing therelativeerror in the residual, then
in linear estimation we used the wrong divisor—that is, we used the squared datav2

where we should have used the squared residual (v−αh)2. Using the wrong divisor
is roughly justified when the crosstalkα is small because thenv2 and (v− αh)2

are about the same. Also, at the outset the residual was unknown, so we had no
apparent alternative tov2, at least until we foundα. Having found the residual, we
can now use it in a second iteration. A second iteration causesα to change a bit, so
we can try again. I found that, using the same data as in Figure4.1, the sequence
of iterations converged in about two iterations. Figure4.2 shows the results of the
various weighting methods. Mathematical equations summarizing the bottom row
of this figure are:

left : min
α

∑
i

(vi −αhi)
2 (4.9)

middle : min
α0

∑
i

1

v2
i +σ 2

(vi −α0hi)
2 (4.10)

right : limn→∞ min
αn

∑
i

1

(vi −αn−1hi)2+σ 2
(vi −αnhi)

2 (4.11)

Figure 4.2: Comparison of weighting methods. Left shows crosstalk as badly
removed by uniformly weighted least squares. Middle shows crosstalk removed by
deriving a weighting function from the inputdata. Right shows crosstalk removed
by deriving a weighting function from the fittingresidual. Press button for movie
over iterations. uni-reswait [ER,M]

For the top row of the figure, these equations also apply, butv and h should be
swapped.

• Clarity of nonlinear picture
You should not have any difficulty seeing on the figure that the uniform weight
leaves the most crosstalk, the nonuniform weights of the linear-estimation method
leave less crosstalk, and the nonlinear-estimation method leaves no visible crosstalk.
If you cannot see this, then I must blame the method of reproduction of the figures,
because the result is clear on the originals, and even clearer on the video screen from
which the figure is derived. On the video screen the first iteration is clearly inferior
to the result of a few more iterations, but on the printed page these different results
are not so easy to distinguish.

• Nonuniqueness and instability
We cannot avoid definingσ 2, because without it, any region of zero signal would get
an infinite weight. This is likely to lead to undesirable performance: in other words,
although with the data of Figure4.2 I found rapid convergence to a satisfactory
answer, there is no reason that this had to happen. The result could also have failed

to converge, or it could have converged to a nonunique answer. This unreliable
performance is why academic expositions rarely mention estimating weights from
the data, and certainly do not promote the nonlinear-estimation procedure. We have
seen here how important these are, however.

I do not want to leave you with the misleading impression that convergence
in a simple problem always goes to the desired answer. With the program that
made these figures, I could easily have converged to the wrong answer merely by
choosing data that contained too much crosstalk. In that case both images would
have converged tos. Such instability is not surprising, because whenα exceeds
unity, the meanings ofv andh are reversed.

• Estimating the noise variance
Choosingσ 2 is a subjective matter; or at least how we chooseσ 2 could be the
subject of a lengthy philosophical analysis. Perhaps that is why so much of the
literature ignores this question. Without any firm theoretical basis, I chose|σ | to be
approximately the noise level. I estimated this as follows.

The simplest method of choosingσ 2 is to find the averagev2 in the plane and
then choose some arbitrary fraction of it, say 10% of the average. Although this

method worked in Figure4.2, I prefer another. I choseσ 2 to be themedian value
of v2. (In other words, we conceptually prepare a list of the numbersv2; then we
sort the list from smallest to largest; and finally we choose the value in the middle.
In reality, median calculation is quicker than sorting.)

Notice that Figure4.2 uses more initial crosstalk than Figure4.1. Without the
extra crosstalk I found that the first iteration worked so well, the second one was not
needed. Thus I could not illustrate the utility of nonlinear estimation without more
crosstalk.

• Colored noise
I made the noise in Figure4.2and4.3from random numbers that I filtered spatially
to give a lateral coherence on a scale something like the size of a letter—which is
somewhat larger than a line (which makes up the letter) width. The noise looks like
paper mottling. The spectralcolor (spatial coherence) of the noise does not affect
the results much, if at all. In other words, independent random numbers of the same
amplitude yield results that are about the same. I chose this particular noise color
to maximize the chance that noise can be recognized on a poor reproduction. We
can see on Figure4.2 that the noise amplitude is roughly one-third of the signal

amplitude. This data thus has a significant amount of noise, but since the signal is
bigger than the noise, we should really call this “good” data.

Next we will make the noise bigger than the signal and see that we can still
solve the problem. We will need more powerful techniques, however.

4.2.3. Noise as strong as signal
First we will make the problem tougher by boosting the noise level to the point
where it is comparable to the signal. This is shown in Figure4.3. Notice that the
attempt to remove crosstalk is only partly successful. Interestingly, unlike in Fig-
ure4.1, the crosstalk retains its original polarity, because of the strong noise. Imag-
ine that the noisen dominated everything: then we would be minimizing something
like (nv − αnh) · (nv − αnh). Assuming the noises were uncorrelated and sample
sizes were infinite, thennv ·nh = 0, and the bestα would be zero. In real life, sam-
ples have finite size, so noises are unlikely to be more than roughly orthogonal, and
the predictedα in the presence of strong noise is a small number of random polarity.
Rerunning the program that produced Figure4.3with different random noise seeds
produced results with significantly more and significantly less estimated crosstalk.

Figure 4.3: Left: data with crosstalk. Right: residuals after attempted crosstalk
removal using uniform weights.uni-neqs [ER]

The results are dominated more by the noise than the difference betweenp ands.
More about random fluctuations with finite sample sizes will follow in chapter11.

4.2.4. Spectral weighting function
Since we humans can do a better job than the mathematical formulation leading up
to Figure4.3, we naturally want to consider how to reformulate our mathematics to
make it work better. Apparently, our eyes sense the difference between thespatial
spectraof the signals and the noise. Visually, we can suppress the noise because of
its noticeably lower frequency. This suggests filtering the data to suppress the noise.

On the filtered data with the noise suppressed, we can estimate the crosstalk
parameterα. Of course, filtering the noise will filter the signal too, but we need not
display the filtered data, only use it to estimateα. That estimatedα is applied to the
raw (unfiltered) data and presented as “the answer.”

Of course, we may as well display both filtered and unfiltered data and label
them accordingly. We might prefer unfiltered noisy images or we might prefer fil-
tered images with less noise. Seismograms present a similar problem. Some people
think they prefer to look at a best image of the earth’s true velocity, impedance, or

whatever, while others prefer to look at a filtered version of the same, especially if
the filter is known and the image is clearer.

Here I chose a simple filter to suppress the low-frequency noise. It may be far
from optimal. (What actually is optimal is a question addressed in chapters7 and8.)

For simplicity, I chose to apply theLaplacian operator ∂2

∂x2 +
∂2

∂y2 to the images to
roughen them, i.e., to make them less predictable. The result is shown in Figure4.4.
The bottom rows are the roughened images. On the left is the input data. Although
the crosstalk is visible on both the raw images and the filtered images, it seems
more clearly visible on the filtered images. “Visibility” is not the sole criterion here
because the human eye can be an effective filter device too. There can be no doubt
that the crosstalk has larger amplitude (above the background noise) on the filtered
images. This larger amplitude is what is important in the dot-product definition of
α. So the bottom panels of filtered data are used to computeα, and the top panels
are computed from thatα. Finally, notice that the unfiltered data looks somewhat
worseafter crosstalk removal. This is because the combination ofv andh contains
noise from each.

Figure 4.4: Estimation on spatially filtered signals. Top: unfiltered signal with
crosstalk. Bottom: filtered signal with crosstalk. Left: input data. Center: residual
using uniform weights. Right: residual using inverse-signal weights.uni-rufn
[ER]

4.2.5. Flame out
The simple crosstalk problem illustrates many of the features of general modeling
and inversion (finding models that fit data). We have learned the importance of
weighting functions—not just their amplitudes, but also their spectral amplitudes.
Certainly we have known for centuries, from the time ofGauss(see Strang, 1986),
that the “proper” weighting function is the “inversecovariance matrix" of the noise
(a generalized relative error, that is, involving the relative amplitudes and relative
spectra), formally defined in chapter11. I do not know that anyone disagrees with
Gauss’s conclusion, but in real life, it is often ignored. It is hard to find the covari-
ance matrix: we set out to measure a merescalar (α), and Gauss tells us we need
to figure out amatrix first! It is not surprising that our illustrious statisticians and
geophysical theoreticians often leave this stone unturned. As we have seen, differ-
ent weighting functions can yield widely different answers. Any inverse theory that
does not tell us how to choose weighting functions is incomplete.

4.3. References
Aki, K., and Richards, P.G., 1980, Quantitative seismology: theory and methods,

vol. 2: W. H. Freeman.

Backus, G.E., and Gilbert, J.F., 1967, Numerical applications of a formalism for
geophysical inverse problems: Geophys. J. R. astr. Soc.,13, 247-276.

Gauss, K.F.: see Strang, 1986.

Menke, W., 1989, Geophysical data analysis: discrete inverse theory, rev. ed.: Aca-
demic Press, Inc.

Strang, G., 1986, Introduction to applied mathematics, p. 144: Wellesley-Cambridge
Press.

Tarantola, A., 1987, Inverse problem theory: methods for data fitting and model
parameter estimation: Elsevier.

4.4. HOW TO DIVIDE NOISY SIGNALS
Another univariate statistical problem arises in Fourier analysis, where we seek a
“best answer” at each frequency, then combine all the frequencies to get a best sig-
nal. Thus emerges a wide family of interesting and useful applications. However,
Fourier analysis first requires us to introduce complex numbers into statistical esti-
mation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. In chapter3 we encountered the
polynomial-division feedback operationX(Z)= Y(Z)/F(Z). This division is chal-
lenging whenF has observational error. By switching from theZ-domain to the
ω-domain we avoid needing to know ifF is minimum phase. Theω-domain has
pitfalls too, however. We may find for some realω that F(Z(ω)) vanishes, so we
cannot divide by thatF . Failure erupts if zero division occurs. More insidious are
the poor results we obtain when zero division is avoided by a near miss.

4.4.1. Dividing by zero smoothly
Think of any real numbersx, y, and f and any program containingx = y/ f . How
can we change the program so that it never divides by zero? A popular answer is to
changex = y/ f to x = y f/(f 2

+ ε2), whereε is any tiny value. When| f |>> |ε|,
then x is approximatelyy/ f as expected. But when the divisorf vanishes, the
result is safely zero instead of infinity. The transition is smooth, but some criterion
is needed to choose the value ofε. This method may not be the only way or the best
way to cope withzero division, but it is a good way, and it permeates the subject of
signal analysis.

To apply this method in the Fourier domain, supposeX, Y, andF are complex
numbers. What do we do then withX = Y/F? We multiply the top and bottom by
the complex conjugateF , and again addε2 to the denominator. Thus,

X(ω) =
F(ω) Y(ω)

F(ω)F(ω) + ε2
(4.12)

Now the denominator must always be a positive number greater than zero, so divi-
sion is always safe.

In preparing figures with equation (4.12), I learned that it is helpful to recast

the equation in a scaled form. First replaceε2, which has physical units of|F |2, by
ε2
= λσ 2

F , whereλ is a dimensionless parameter andσ 2
F is the average value ofF F .

Then I rescaled equation (4.12) to

X(ω) =
F(ω) Y(ω)

F(ω)F(ω) + λσ 2
F

(2+λ/2)σF (4.13)

The result is that the scale ofX is independent of the scale ofF and the scale of
λ. This facilitates plottingX over a range of those parameters. I found the 2s in
the expression by experimentation. Of course, if the plotting software you are using
adjusts a scale factor to fill a defined area, then the scaling may be unimportant.
Equation (4.13) ranges continuously frominverse filtering with X = Y/F to filter-
ing with X = FY, which is called “matched filtering.” Notice that for any complex
numberF , the phase of 1/F equals the phase ofF , so all these filters have the same
phase.

The filter F is called the “matched filter." If nature createdY by random bursts
of energy intoF , then buildingX from Y and F by choosingλ = ∞ in equa-
tion (4.13) amounts toX = YF whichcrosscorrelates F with the randomly placed
copies ofF that are inY.

4.4.2. Damped solution
Equation (4.12) is the solution to an optimization problem that arises in many appli-
cations. Now that we know the solution, let us formally define the problem. First,
we will solve a simpler problem with real values: we will choose to minimize the
quadratic function ofx:

Q(x) = (f x− y)2+ ε2x2 (4.14)

The second term is called a “damping factor" because it preventsx from going to
±∞ when f → 0. Setd Q/dx= 0, which gives

0 = f (f x− y)+ ε2x (4.15)

This yields the earlier answerx = f y/(f 2
+ ε2).

With Fourier transforms, the signalX is a complex number at each frequency
ω. So we generalize equation (4.14) to

Q(X̄, X) = (F X−Y)(F X−Y)+ ε2X̄ X = (X̄ F̄− Ȳ)(F X−Y)+ ε2X̄ X
(4.16)

To minimizeQ we could use a real-values approach, where we expressX = u+ i v
in terms of two real valuesu andv and then set∂Q/∂u = 0 and∂Q/∂v = 0. The

approach we will take, however, is to use complex values, where we set∂Q/∂ X = 0
and∂Q/∂ X̄ = 0. Let us examine∂Q/∂ X̄:

∂Q(X̄, X)

∂ X̄
= F̄(F X−Y)+ ε2X = 0 (4.17)

The derivative∂Q/∂ X is the complex conjugate of∂Q/∂ X̄. So if either is zero, the
other is too. Thus we do not need to specify both∂Q/∂ X = 0 and∂Q/∂ X̄ = 0.
I usually set∂Q/∂ X̄ equal to zero. Solving equation (4.17) for X gives equa-
tion (4.12).

4.4.3. Example of deconvolution with a known wavelet
The top trace of Figure4.5 shows a marine reflection seismic trace from northern
Scandinavia. Its most pronounced feature is a series of multiple reflections from the
ocean bottom seen at .6 second intervals. These reflections share a similar wave-
shape that alternates inpolarity . The alternation of polarity (which will be more
apparent after deconvolution) results from a negativereflection coefficientat the
ocean surface (where the acoustic pressure vanishes). The spectrum of the top trace
has acomb pattern that results from the periodicity of the multiples. In Figure4.5,

Figure 4.5: The signals on the top correspond to the spectra on the bottom. The top
signal is a marine seismogram 4 seconds long. A wavelet windowed between 0.5 s
and 1 s was used to deconvolve the signal with various values ofλ. (Adapted from
Bill Harlan , by personal communication.)uni-dekon [ER]

I let the input trace beY and chose the filterF by extracting (windowing) from
Y the water-bottom reflection, as shown in the second trace. The spectrum of the
windowed trace is like that of the input trace except that the comb modulation is
absent (see chapter9 for the reason for the appearance of the comb). The trace la-
beled “matched” in Figure4.5 is the input after matched filtering, namelyYF . The
trace labeled “damped” shows the result of a value ofλ= .03, my best choice. The
wavelets are now single pulses, alternating in polarity. The trace labeled “inverse”
is actually not the inverse, but the result of a too small damping factorλ = .001.
The inverse trace is noisy at high frequencies. Notice how the spectralbandwidth
increases from the matched to the damped to the undamped. Increasing noise (bad)
is associated with sharpening of the pulse (good).

Bill Harlan and I each experimented with varyingλ with frequency but did not
obtain results interesting enough to show.

Another example of deconvolution with a known wavelet which is more typical
and less successful is shown in Figure4.6. Here a filter designed in a window on
the water-bottom reflection of a single signal fails to succeed in compressing the
wavelets of multiple reflections on the same trace. It also fails to compress the
water-bottom reflection of a nearby trace. We need more sophisticated methods for

finding the appropriate filter.

4.4.4. Deconvolution with an unknown filter
Equation (4.12) solvesY = X F for X, giving the solution for what is called “the
deconvolution problem with a known waveletF ." We can also useY = X F when
the filter F is unknown, but the inputX and outputY are given. Here stabilization
might not be needed but would be necessary if the input and output did not fill the
frequency band. Taking derivatives as above, but with respect toF instead ofX,
gives again equation (4.12) with X andF interchanged:

F(ω) =
X(ω) Y(ω)

X(ω)X(ω) + ε2
(4.18)

4.4.5. Explicit model for noise
In all the signal analysis above there was no explicit model fornoise, but implicitly
the idea of noise was there. Now we will recognize it and solve explicitly for it.
This leads to what is called “linear-estimation theory." Instead of simplyY = F X,

Figure 4.6: Division by water-bottom wavelet.uni-crete [ER]

we add noiseN(ω) into the defining equation:

Y(ω) = F(ω)X(ω)+N(ω) (4.19)

To proceed we need to define the “variance" (described more fully in chapter11)
as

σ 2
X =

1

n

n∑
j=1

X̄(ωj)X(ωj) (4.20)

and likewise the noise varianceσ 2
N .

The general linear-estimation method minimizes something that looks like a
sum ofrelative error s:

Q(X, N) =
X̄ X

σ 2
X

+
N̄ N

σ 2
N

(4.21)

Notice that the variances put both terms of the sum into the same physical units. I
have not derived equation (4.21) but stated it as reasonable: from it we will derive
reasonable answers which we have already seen. The rationale for the minimization
of (4.21) is that we want the noise to be small, but because we must guard against
zero division inX = Y/F , we ask forX to be small too. Actually, by introducing

equation (4.19), we have abandoned the modelX = Y/F and replaced it with the
modelX = (Y−N)/F . Thus, instead of thinking of falsifyingF to avoid dividing
by zero inX = Y/F , we now think of findingN so the numerator in (Y− N)/X
vanishes wherever the denominator does.

By introducing (4.19) into (4.21) we can eliminate eitherN or X. Eliminating
N, we have

Q(X) =
X̄ X

σ 2
X

+
(F X−Y)(F X−Y)

σ 2
N

(4.22)

Minimizing Q(X) by setting its derivative bȳX to zero gives

0 =
X

σ 2
X

+
F̄(F X−Y)

σ 2
N

(4.23)

X =
F̄Y

F̄ F +
σ2

N

σ2
X

(4.24)

Equation (4.24) is the same as equation (4.12), except that it gives us a numerical
interpretation of the value ofε in equation (4.12).

We can find an explicit equation for the noise in terms of the data and filter by
substituting equation (4.24) into equation (4.19) and solving forN.

4.4.6. A self-fulfilling prophecy?
Equation (4.24) and its surrounding theory are easily misunderstood and misused.
I would like to show you apitfall . Equation (4.24) expresses the answer to the
deconvolution problem, but does so in terms of the unknownsσ 2

N andσ 2
X . Given

an initial estimate ofσ 2
N/σ 2

X , we see that equation (4.24) gives usX and (4.19)
gives N, so that we can computeσ 2

N andσ 2
X . Presumably these computed values

are better than our initial guesses. In statistics, the variances in equation (4.24) are
called “priors," and it makes sense to check them, and even more sense to correct
them. From the corrected values we should be able to iterate, further improving the
corrections. Equation (4.24) applies for each of themanyfrequencies, and there is
only a singleunknown, the ratioσ 2

N/σ 2
X . Hence it seems as if we have plenty of

information, and the bootstrapping procedure might work. A pessimist might call
this bootstrapping a self-fulfilling prophecy, but we will see. What do you think?

Truth is stranger than fiction. I tried bootstrapping the variances. With my first

starting value for the ratioσ 2
N/σ 2

X , iterating led to the ratio being infinite. Another
starting value led to the ratio being zero. All starting values led to zero or infinity.
Eventually I deduced that there must be ametastablestarting value. Perhaps the
metastable value is the appropriate one, but I lack a rationale to assert it. It seems
we cannot bootstrap the variances because the solutions produced do not tend to
the correct variance, nor is the variance ratio correct. Philosophically, we can be
thankful that these results failed to converge, since this outcome prevents us from
placing a false confidence in the bootstrapping procedure.

The variance of the solution to a least-squares problem is not usable to boot-
strap to a better solution.

I conclude thatlinear-estimation theory, while it appears to be a universal
guide to practice, is actually incomplete. Its incompleteness grows even more signif-
icant in later chapters, when we apply least squares to multivariate problems where
the scalarσ 2

x becomes a matrix. We continue our search for “universal truth” by
studying more examples.

EXERCISES:
1 Using the chain rule for differentiation, verify that∂Q/∂u= 0 and∂Q/∂v = 0

is equivalent to∂Q/∂ x̄, wherex = u+ i v.

2 Write code to verify the instability in estimating the variance ratio.

4.5. NONSTATIONARITY
Frequencies decrease with time; velocities increase with depth. Reverberation peri-
ods change with offset; dips change with location. Still, we often find it convenient
to presume that the relevant statistical aspects of data remain constant over a large
domain. In mathematical statistics this is called a “stationarity" assumption. To
assume stationarity is to enjoy a simplicity in analysis that has limited applicability
in the real world. To avoid seduction by thestationarity assumption we will solve
here a problem in which stationarity is obviously an unacceptable presumption. We
will gain skill in and feel comfortable with the computer techniques of estimation
in moving windows. The first requirement is to learn reliable ways of limiting the
potentially destructive effects of the edges of windows.

The way to cope with spatial (or temporal) variation in unknown parameters
is to estimate them in moving windows. Formulating the estimation might
require special shrewdness so that window edges do not strongly affect the
result.

To illustrate computation technique in a nonstationary environment, I have cho-
sen the problem ofdip estimation. Before we take up this problem, however, we
will examine a generic program for moving a window around on a wall of data. The
window-moving operation is so cluttered that the first example of it simply counts
the number of windows that hit each point of the wall. Inspecting subroutinenon-

stat() /prog:nonstatwe first notice that the 1-axis is handled identically with the
2-axis. (Ratfor makes this more obvious thanFortran could.) Notice the bottom
of the loops where variables(e1,e2) which will be the ends of the windows are
jumped along in steps of(j1,j2) . Then notice the tops of the loops where pro-
cessing terminates when the ends of the windows pass the ends of the wall. Also
at the tops of the loops, the window count(k1,k2) is incremented, and the starting
points of each window are defined as the window ends(e1,e2) minus their widths
(w1,w2) . nonstat

slide a window around on a wall of data. Count times each data point used.
#
subroutine nonstat(n1,n2, w1,w2, j1,j2, count)
integer n1,n2 # size of data wall
integer w1,w2 # size of window
integer j1,j2 # increments for jumping along the wall
integer s1,s2, e1,e2 # starting and ending points of window on wall
integer k1,k2 # output math size of array of windows
integer i1,i2
real count(n1,n2)
call null(count, n1*n2)
k2=0; e2=w2; while(e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; e1=w1; while(e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= s1, e1 {
do i2= s2, e2 {

count(i1,i2) = count(i1,i2) + 1.
}}

e1=e1+j1 }
e2=e2+j2 }

return; end

Back

A sample result is shown in Figure4.7. Since window widths do not match
window jumps, the count is not a constant function of space. We see ridges where
the rectangles overlapped a little. Likewise, since the windows were not fitted to
the wall, some data values near the end of each axis failed to be used in any win-
dow. Next we address the problem of splicing together data processing outputs

Figure 4.7: Sample output of
nonstat() with n1=100, w1=20,
j1=15, n2=50, w2=20, j2=8.
uni-nonstat[ER]

derived in each window. This could be done with rectangle weights derived from
count in subroutinenonstat() but it is not much more difficult to patch together
triangle weighting functions as shown in subroutinenonstat2() /prog:nonstat2.

nonstat2 Triangles allow for a more gradual transition from one window to an-

slide a window around on a wall of data. Triangle weighting.
#
subroutine nonstat2(n1,n2, w1,w2, j1,j2, data, output, weight)
integer n1,n2, w1,w2, j1,j2, s1,s2, e1,e2, k1,k2, i1,i2
real data(n1,n2), output(n1,n2), weight(n1,n2), triangle1, triangle2, shape
temporary real window(w1,w2), winout(w1,w2)
call null(weight, n1*n2)
call null(output, n1*n2)
k2=0; e2=w2; while(e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; e1=w1; while(e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= 1, w1 {
do i2= 1, w2 { window(i1,i2) = data(s1+i1-1,s2+i2-1)

}}
do i1= 1, w1 { # Trivial data processing
do i2= 1, w2 { winout(i1,i2) = window(i1,i2)

}}
do i1= s1, e1 { triangle1= amax1(0., 1. - abs(i1-.5*(e1+s1)) / (.5*w1))
do i2= s2, e2 { triangle2= amax1(0., 1. - abs(i2-.5*(e2+s2)) / (.5*w2))

shape = triangle1 * triangle2
output(i1,i2) = output(i1,i2) + shape * winout(i1-s1+1,i2-s2+1)
weight(i1,i2) = weight(i1,i2) + shape
}}

e1=e1+j1 }
e2=e2+j2 }

do i1= 1, n1 {
do i2= 1, n2 { if(weight(i1,i2) > 0.)

output(i1,i2) = output(i1,i2) / weight(i1,i2)
}}

return; end

Back

Figure 4.8: Sample output ofnonstat2() with same parameters as Figure4.7. Left
is weight(n1,n2) and right isoutput(n1,n2) for constant data. The flattness of the
output means that in practice we may allow window overlap greater or less than the
triangle half width. uni-nstri [ER]

other. Innonstat2() , data is first pulled from the wall to the window. Next should
be the application-specific operation on the data that processes the data window
into an output window. (This output is often a residual image of a least squares
procedure). To avoid getting into many application-specific details, here we simply
copy the input data window to the output window. Next we devise some triangular
weighting functions. These are used to weight the output window as it is copied
onto the wall of accumulating weighted outputs. Simultaneously, at each point on
the wall, the sum of all applied weights is accumulated. Finally, the effect of weight
shape and window overlap is compensated for by dividing the value at each point
on the wall of outputs by the sum of weights at that point. Figure4.7appliesnon-

stat2() to constant data. As expected, the output is also constant, except at edges
where it is zero because no windows overlap the input data. The flattness of the
output means that in practice we may allow window overlap greater or less than the
triangle half width. Notice that five ridges in Figure4.7 correspond to five valleys
in Figure4.8.

In a typical application, there is one more complication. The filter outputs in
each window are shorter than the input data because the filters themselves may not
run over the edges else there would be truncation transients. Thus some of the

values of the output in each window are undefined. The application-specific filter
program may leave these values undefined or it may set them to zero. If they come
out zeros, it is safe to add them in to the wall of outputs, but care must be taken that
the window weight that is normally accumulated on the wall of weights is omitted.
There is one final complication for those of you who plan to be really meticulous.
The triangles designed innonstat2() /prog:nonstat2taper to zero just beyond the
ends of the window ofdata. They should taper to zero just beyond the ends of the
window ofoutputs.

4.6. DIP PICKING WITHOUT DIP SCANNING
“Picking” is the process of identifying dipping seismic events. Here we will do
something like picking, but in a continuum; i.e., dips will be picked continuously
and set on a uniform mesh. Customarily, dip picking is done by scanning two-
dimensional data along various dips. We will see that our method, based on the
“plane-wave destructor operator," does not have its resolution limited by the spatial
extent of a dip scan.

4.6.1. The plane-wave destructor
A plane wave in a wave fieldu(t ,x)= u(t− px) with stepoutp can be extinguished
with a partial differential operator, which we write as a matrixA, where

0 ≈ v(t ,x)=

(
∂

∂x
+ pi

∂

∂t

)
u(t ,x) (4.25)

0 ≈ v= A u (4.26)

The parameterp is called the “wavenumber" or “Snell parameter," and |p| can
take on any value less than 1/v, wherev is the medium velocity. The angle of
propagation of the wave is sinθ = pv.

We need a method of discretization that allows the mesh fordu/dt to overlay
exactlydu/dx. To this end I chose to represent thet-derivative by

du

dt
≈

1

2

(
u(t+1t ,x)−u(t ,x)

1t

)
+

1

2

(
u(t+1t ,x+1x)−u(t ,x+1x)

1t

)
(4.27)

and thex-derivative by an analogous expression witht andx interchanged. Now
the difference operatorδx+ pi δt is a two-dimensional filter that fits on a 2×2 dif-

ferencing star. As a matrix operation, this two-dimensional convolution is denoted
A. (More details about finite differencing can be found in IEI.)

The programwavekill1() applies the operatoraδx + pδt , which can be spe-
cialized to the operatorsδx, δt , δx+ pi δt . wavekill1 I carefully arranged the side
boundaries so that the filter never runs off the sides of the data. Thus the output is
shorter than the input by one point on both thet-axis and thex-axis. The reason for
using these side boundaries is that large datasets can be chopped into independent
sections without the boundaries themselves affecting the result. By chopping a large
dataset into sections, we can handle curved events aspiecewise linear.

When only one wave is present and the data is adequately sampled, then finding
the best value ofp is a single-parameter, linear least-squares problem. Letx be an
abstract vector whose components are values of∂u/∂x taken on a mesh in (t ,x).
Likewise, lett contain∂u/∂t . Since we wantx+ p t ≈ 0, we minimize the quadratic
function of p,

Q(p) = (x+ p t) · (x+ p t) (4.28)

by setting to zero the derivative. We get

p = −
x · t
t · t

(4.29)

vv = (aa Dx + pp Dt) uu
#
subroutine wavekill1(aa, pp, n1,n2,uu, vv)
integer i1,i2, n1,n2
real aa, pp, s11, s12, s21, s22, uu(n1,n2), vv(n1-1, n2-1)
s11 = -aa-pp; s12 = aa-pp
s21 = -aa+pp; s22 = aa+pp
call null(vv,(n1-1)*(n2-1))
do i1= 1, n1-1 { # vv is one point shorter than uu on both axes.
do i2= 1, n2-1 {

vv(i1,i2) = vv(i1,i2) +
uu(i1 ,i2) * s11 + uu(i1 ,i2+1) * s12 +
uu(i1+1,i2) * s21 + uu(i1+1,i2+1) * s22

}}
return; end

Back

Since data will not always fit the model very well, it may be helpful to have some
way to measure how good the fit is. I suggest

C2
= 1 −

(x+ p t) · (x+ p t)
x ·x

(4.30)

which, on insertingp=−(x · t)/(t · t), leads toC, where

C =
x · t

√
(x ·x)(t · t)

(4.31)

is known as the “normalized correlation.” The program for this calculation is
straightforward. I named the programpuck() to denotepicking on a continuum.
puck

Finally and parenthetically, an undesirable feature of the plane-wave destructor
method is that the residualv has no particular relation to the datau, unlike in time-
series analysis—see chapter7. Another disadvantage, well known to people who
routinely work with finite-difference solutions to partial differential equations, is
that for short wavelengths a difference operator is not the same as a differential
operator; thereby the numerical value ofp is biased.

measure coherency and dip, and compute residual res = (Dx + p Dt) uu
#
subroutine puck (n1, n2, uu, coh, pp, res)
integer i1, i2, n1, n2
real uu(n1,n2), res(n1,n2), xx, xt, tt, coh, pp
temporary real dx(n1,n2-1), dt(n1-1,n2-1)
call wavekill1(1., 0., n1,n2 , uu, dx)
call wavekill1(0., 1., n1,n2 , uu, dt)
xx = 1.e-30; tt = 1.e-30; xt = 0.
do i1= 1, n1-1 {
do i2= 1, n2-1 {

xt = xt + dt(i1,i2) * dx(i1,i2)
tt = tt + dt(i1,i2) * dt(i1,i2)
xx = xx + dx(i1,i2) * dx(i1,i2)
}}

coh = sqrt((xt/tt)*(xt/xx))
pp = - xt/tt
call wavekill1(1., pp, n1,n2 , uu, res)
return; end

Back

4.6.2. Moving windows for nonstationarity
Wavefronts generally curve. But a curved line viewed only over a small range is
barely distinguishable from a straight line. A straight-line wavefront is much easier
to manage than a curved one. If we think of the slope of the line as a parameter
estimated statistically, then it is anonstationaryvariable—it varies from place to
place. So we can work with curved wavefronts by working in a small window that
is moved around. The main thing to beware of about small windows is that unless
we are very careful, their side boundaries may bias the result.

Thepuck() method was designed to be ignorant of side boundaries: it can be
applied in a small window and the window moved freely around the data. A strength
of thepuck() method is that the window can be smaller than a wavelength—it can
be merely two traces wide. A sample based on synthetic data is shown in Figures4.9
through4.11. The synthetic data in4.9mimics a reflection seismic field profile, in-
cluding one trace that is slightly delayed as if recorded on a patch of unconsolidated
soil. Notice a low level of noise in the synthetic data.

Figure 4.10 shows theresidual. The residual is small in the central region
of the data; it is large where there isspatial aliasing; and it is large at the tran-
sient onset of the signal. The residual is rough because of the noise in the signal,

Figure 4.9: Input synthetic data.
uni-puckin [ER]

Figure 4.10: Residuals, i.e.,
an evaluation of Ux + pUt .
uni-residual [ER]

because it is made from derivatives, and because the synthetic data was made by
nearest-neighbor interpolation. Notice that the residual is not particularly large for
the delayed trace.

Figure4.11shows the dips. The most significant feature of this figure is the

Figure 4.11: Output values ofp
are shown by the slope of short
line segments. uni-puckout
[ER]

sharp localization of the dips surrounding the delayed trace. Other methods based
on wave or Fourier concepts might lead us to conclude that the aperture must be
large to resolve a wide range of angles. Here we have a narrow aperture (two traces),
but the dip can change rapidly and widely.

Subroutineslider() /prog:slider below shows the code that generated Fig-

ure4.9through4.11. slider
A disadvantage of thepuck() method is that the finite-difference operator is

susceptible to spatial aliasing as well as to distortions at spatial frequencies that are
high but not yet aliased. This suggests a logical step—estimating missing interlaced
traces—which we take up in chapter8.

EXERCISES:
1 It is possible to reject two dips with the operator

(∂x+ p1∂t)(∂x+ p2∂t) (4.32)

This is equivalent to(
∂2

∂x2
+a

∂2

∂x∂t
+b

∂2

∂t2

)
u(t ,x) = v(t ,x) ≈ 0 (4.33)

slide a window around on a wall of data measuring coherency, dip, residual
#
subroutine slider(n1,n2, w1,w2, k1,k2, data, coh, pp, res)
integer i1,i2, n1,n2, w1,w2, k1,k2, s1,s2, e1,e2
integer p1,p2 # number of subwindows is p1*p2
real data(n1,n2) # input
real res(n1,n2) # outputs. math size (n1-1,n2-1)
real pp(n1,n2), coh(n1,n2) # outputs defined at pp(1..p1, 1..p2)
temporary real count(n1,n2)
temporary real window(w1,w2), tres(w1-1,w2-1)
call null(count, n1*n2)
call null(res, n1*n2)
p2=0; e2=w2; while(e2<=n2) { p2=p2+1; s2=e2-w2+1
p1=1; e1=w1; while(e1<=n1) { p1=p1+1; s1=e1-w1+1

do i1 = 1, w1 {
do i2 = 1, w2 { window(i1,i2) = data(i1+s1-1,i2+s2-1)

}}
call null(tres, (w1-1)*(w2-1))
call puck (w1, w2, window, coh(p1,p2), pp(p1,p2), tres)
do i1= s1, e1-1 {
do i2= s2, e2-1 {

res(i1,i2) = res(i1,i2) + tres(i1-s1+1, i2-s2+1)
count(i1,i2) = count(i1,i2) + 1.
}}

e1=e1+k1 }
e2=e2+k2 }

do i2= 1, n2-1 {
do i1= 1, n1-1 { if(count(i1,i2) > 0.)

res(i1,i2) = res(i1,i2) / count(i1,i2)
}}

return; end

Back

whereu is the input signal andv is the output signal. Show how to solve fora
andb by minimizing the energy inv.

2 Givena andb from the previous exercise, what arep1 and p2?

Chapter 5

Adjoint operators

A great many of the calculations we do in science and engineering are really matrix
multiplication in disguise. The first goal of this chapter is to unmask the disguise
by showing many examples. Second, we will illuminate the meaning of theadjoint

243

operator (matrix transpose) in these many examples.
Geophysical modeling calculations generally use linear operators that predict

data from models. Our usual task is to find the inverse of these calculations, i.e.,
to find models (or make maps) from the data. Logically, the adjoint is the first
step and a part of all subsequent steps in thisinversion process. Surprisingly, in
practice the adjoint sometimes does a better job than the inverse! This is because
the adjoint operator tolerates imperfections in the data and does not demand that the
data provide full information.

Using the methods of this chapter, you will find that once you grasp the rela-
tionship between operators in general and their adjoints, you can have the adjoint
just as soon as you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following
table ofoperators and theiradjoints:

matrix multiply conjugate-transpose matrix multiply
convolution crosscorrelation
stretching squeezing
zero padding truncation
causal integration anticausal integration

add functions do integrals
plane-wave superposition slant stack / beam forming
superposing on a curve summing along a curve
upward continuation downward continuation
diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

The left column above is often called “modeling," and the adjoint operators on
the right are often used in “dataprocessing."

When the adjoint operator isnotan adequate approximation to the inverse, then
you apply the techniques of fitting and optimization which require iterative use of
the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection" operator be-
cause information propagated in one direction (earth to data) is projected backward
(data to earth model). With complex-valued operators the transpose and complex
conjugate go together and in Fourier analysis, taking the complex conjugate of
exp(i ωt) reverses the sense of time. Still assuming poetic license, I will say that

adjoint operatorsundothe time and phase shifts of modeling operators. The inverse
operator does this too, but it also divides out the color. For example, with linear
interpolation high frequencies are smoothed out, so inverse interpolation must re-
store them. You can imagine the possibilities for noise amplification. That is why
adjoints are safer than inverses. But nature determines in each application what is
the best operator to use, whether to stop after the adjoint, to go the whole way to the
inverse, or to stop part-way.

We will see that computation of theadjoint is a straightforward adjunct to
the computation itself, and the computed adjoint should be, and generally can be,
exact (within machine precision). If the application’s operator is computed in an
approximate way, we will see that it is natural and best to compute the adjoint
with adjoint approximations. Much later in this chapter is a formal definition of
adjoint operator. Throughout the chapter we handle an adjoint operator as a matrix
transpose, but we hardly ever write down any matrices or their transposes. Instead,
we always prepare two subroutines, one that performsy = Ax and another that
performsx̃ = A′y, so we need a test that the two subroutines really embody the
essential aspects of matrix transposition. Although the test is an elegant and useful
test and is itself a fundamental definition, curiously, that definition helps us not one

bit in constructing adjoint operators, so I postpone the formal definition of adjoint
until after we have seen many examples.

5.1. FAMILIAR OPERATORS
The operationyi =

∑
j bi j xj is multiplication of a matrixB times a vectorx. The

adjoint operation is̃xj =
∑

i bi j yi . The operation adjoint to multiplying by a matrix
is multiplying by the transposed matrix (unless the matrix has complex elements, in
which case we need the complex-conjugated transpose). The followingpseudocode
does matrix multiplicationy = Bx and multiplication by the transpose matrixx̃ =
B′y:

if operator itself
then erase y

if adjoint
then erase x

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

}}

Notice that the “bottom line” in the program is thatx andy are simply interchanged.
The above example is a prototype of many to follow, so observe carefully the simi-
larities and differences between the operation and its adjoint.

A formal program for matrix multiply and its adjoint is found below. The first
step is erasing the output. That may seem like too trivial a function to put in a
separate library routine, but, at last count, 15 other routines in this book use the

subroutine adjnull(adj, add, x, nx, y, ny)
integer ix, iy, adj, add, nx, ny
real x(nx), y(ny)
if(add == 0)

if(adj == 0)
do iy= 1, ny

y(iy) = 0.
else

do ix= 1, nx
x(ix) = 0.

return; end

Back

matrix multiply and its adjoint
#
subroutine matmult(adj, bb, nx,x, ny,y)
integer ix, iy, adj, nx, ny
real bb(ny,nx), x(nx), y(ny)
call adjnull(adj, 0, x,nx, y,ny)
do ix= 1, nx {
do iy= 1, ny {

if(adj == 0)
y(iy) = y(iy) + bb(iy,ix) * x(ix)

else
x(ix) = x(ix) + bb(iy,ix) * y(iy)

}}
return; end

Back

output-erasing subroutineadjnull() below. adjnull The subroutinematmult()

/prog:matmult for matrix multiply and its adjoint exhibits a style that we will use

repeatedly. matmult

5.1.1. Transient convolution
When the matrix has a special form, such as

y1
y2
y3
y4
y5
y6
y7


=



b1 0 0 0 0
b2 b1 0 0 0
b3 b2 b1 0 0
0 b3 b2 b1 0
0 0 b3 b2 b1
0 0 0 b3 b2
0 0 0 0 b3




x1
x2
x3
x4
x5

 (5.1)

then the matrix multiplication and transpose multiplication still fit easily in the same
computational framework. The operationBx convolvesbt with xt , whereas the op-
erationB′y crosscorrelatesbt with yt . I will leave it to you to verify the pseudocode

do ix = 1, nx {
do ib = 1, nb {

iy = ib + ix – 1
if operator itself (convolution)

y(iy) = y(iy) + b(ib) × x(ix)
if adjoint (correlation)

x(ix) = x(ix) + b(ib) × y(iy)
}}

Again, notice that the “bottom line” in the program is thatx andy are simply inter-
changed.

Equation (5.1) could be rewritten as

y1
y2
y3
y4
y5
y6
y7


=



x1 0 0
x2 x1 0
x3 x2 x1
x4 x3 x2
x5 x4 x3
0 x5 x4
0 0 x5


 b1

b2
b3

 (5.2)

which we abbreviate byy= Xb. So we can choose betweeny= Xb andy= Bx. In
one case the outputy is dual to the filterb, and in the other case the outputy is dual
to the inputx. In applications, sometimes we will solve forb and sometimes forx;
so sometimes we will use equation (5.2) and sometimes (5.1).

The programcontran() /prog:contrancan be used with either equation (5.1)
or equation (5.2), because the calling program can swap thexx andbb variables.
The namecontran() denotes convolution with “transpose” and with “transient”
end effects. contran

Convolve and correlate (adjoint convolve).
#
subroutine contran(adj, add, nx, xx, nb, bb, yy)
integer ix, ib, ny, adj, add, nx, nb
real xx(nx) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx+nb-1) # filtered signal (or second input signal)
ny = nx + nb - 1 # length of filtered signal
call adjnull(adj, add, bb, nb, yy, ny)
do ib= 1, nb {
do ix= 1, nx {

if(adj == 0)
yy(ib+ix-1) = yy(ib+ix-1) + xx(ix) * bb(ib)

else
bb(ib) = bb(ib) + xx(ix) * yy(ib+ix-1)

}}
return; end

Back

5.1.2. Zero padding is the transpose of truncation.
Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the ex-
tended data (truncation). Let us see why this is so. Set a signal in a vectorx, and
then make a longer vectory by adding some zeros at the end ofx. This zero padding
can be regarded as the matrix multiplication

y =

[
I
0

]
x (5.3)

The matrix is simply an identity matrixI above a zero matrix0. To find the transpose
to zero padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (5.4)

So the transpose operation to zero padding data is simplytruncatingthe data back
to its original length.

5.1.3. Product of operators
We will look into details of Fourier transformation elsewhere. Here we use it as
an example of any operator containing complex numbers. For now, we can think of

Fourier transform as a square matrixF. We denote the complex-conjugate transpose
(or adjoint) matrix with a prime, i.e.,F′. The adjoint arises naturally whenever we
consider energy. The statement that Fourier transforms conserve energy isy′y= x′x
wherey = Fx. Substituting givesF′F = I which shows that the inverse matrix to
Fourier transform happens to be the complex conjugate of the transpose ofF.

With Fourier transforms,zero padding andtruncation are particularly preva-
lent. Most programs transform a dataset of length of 2n, whereas dataset lengths are
often of lengthm×100. The practical approach is therefore to pad given data with
zeros. Padding followed by Fourier transformationF can be expressed in matrix
algebra as

Program = F
[

I
0

]
(5.5)

According to matrix algebra, the transpose of a product, sayAB =C, is the product
C′ = B′A′ in reverse order. So the adjoint program is given by

Program′ =
[

I 0
]

F′ (5.6)

Thus the adjoint programtruncatesthe dataafter the inverse Fourier transform.

signal advance: y(iy) = x(iy+jump)
#
subroutine advance(adj, add, jump, nx, xx, ny, yy)
integer ix, iy, adj, add, jump, nx, ny
real xx(nx), yy(ny)
call adjnull(adj, add, xx,nx, yy,ny)
do iy= 1, ny {

ix = iy + jump
if(ix >= 1)

if(ix <= nx)
if(adj == 0)

yy(iy) = yy(iy) + xx(ix)
else

xx(ix) = xx(ix) + yy(iy)
}

return; end

Back

5.1.4. Convolution end effects
In practice, filtering generally consists of three parts: (1)convolution, (2) shifting
to some preferred time alignment, and (3)truncating so the output has the same
length as the input. An adjoint program for this task, is easily built from an ear-
lier program. We first make a simple time-shift programadvance() . advance
Although the code is bulky for such a trivial program, it is easy to read, works for
any size of array, and works whether the shift is positive or negative. Since filtering
ordinarily delays, theadvance() routine generally compensates.

Mergingadvance() with the earlier programcontran() according to the trans-
pose rule (AB)′ = B′A′, we getcontrunc() . contrunc For a symmetrical filter, a
lag parameter half of the filter length would be specified. The output of a minimum-
phase filter is defined to be at the beginning of the filter,ff(1) , so thenlag=1 . The
need for an adjoint filtering program will be apparent later, when we design filters
for prediction and interpolation. The program variableadd happens to be useful
when there are many signals. Our first real use ofadd will be found in the subrou-
tine stack1() /prog:stack1.

Another goal of convolution programs is that zero data not be assumed beyond
the interval for which the data is given. This can be important in filter design and

Convolve, shift, and truncate output.
#
subroutine contrunc(conj, add, lag, np,pp, nf,ff, nq,qq)
integer ns, conj, add, lag, np, nf, nq
real pp(np) # input data
real ff(nf) # filter (output at ff(lag))
real qq(nq) # filtered data
temporary real ss(np+nf-1)
ns = np + nf - 1
if(conj == 0) {

call contran(0, 0, np,pp, nf,ff, ss)
call advance(0, add, lag-1, ns,ss, nq,qq)

}
else { call advance(1, 0, lag-1, ns,ss, nq,qq)

call contran(1, add, np,pp, nf,ff, ss)
}

return; end

Back

Convolve and correlate with no assumptions off end of data.
#
subroutine convin(adj, add, nx, xx, nb, bb, yy)
integer ib, iy,ny, adj, add, nx, nb
real xx(nx) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx-nb+1) # filtered signal (or second input signal)
ny = nx - nb + 1 # length of filtered signal
if(ny < 1) call erexit(’convin() filter output negative length.’)
call adjnull(adj, add, bb, nb, yy, ny)
if(adj == 0)

do iy= 1, ny {
do ib= 1, nb {

yy(iy) = yy(iy) + bb(ib) * xx(iy-ib+nb)
}}

else
do ib= 1, nb {
do iy= 1, ny {

bb(ib) = bb(ib) + yy(iy) * xx(iy-ib+nb)
}}

return; end

Back

Figure 5.1: Example of con-
volution end effects. From top
to bottom: (1) input; (2) filter;
(3) output ofconvin() ; (4) out-
put of contrunc() with no lag
(lag=1); and (5) output ofcon-

tran() . conj-conv [ER]

spectral estimation, when we do not want thetruncation at the end of the data to
have an effect. Thus the output data is shorter than the input signal. To meet this
goal, I prepared subroutineconvin() . convin By now you are probably tired of
looking at so many variations on convolution; but convolution is the computational
equivalent of ordinary differential equations, its applications are vast, and end ef-
fects are important. Theend effects of the convolution programs are summarized
in Figure5.1.

5.1.5. Kirchhoff modeling and migration
Components of a vector can be summed into a scalar. The adjoint is taking the
scalar and distributing it out to a vector (also called “scattering" or “spraying").
Alternately, values to be summed can come from a trajectory in a plane, such as a
hyperbolic trajectory.

When reflectors in the earth are dipping, or broken into point scatterers, time-
to-depth conversion is not simply a stretching of the time axis. Modeling is done
in a variety of ways, one of which is to model each point in the depth (x,z)-plane
by a hyperbola in the data (x,t)-plane. The adjoint operation consumes much com-

puter power in the petroleum-prospecting industry and is called “migration." Many
migration methods exist, most of which are taken up in IEI, but that book does not
describe the adjoint property I discuss below.

Hyperbola superposition is the adjoint to hyperbola recognition by summing
along hyperbolas. The summing is called “Kirchhoff migration ” or “ imaging,”
and the spraying is called “Kirchhoff modeling." The name comes from Kirchhoff’s
diffraction integral.

In the pseudocode below, the parameterih refers to the separation of a point on
a hyperbola from its top atix . Ignoring “if index off data” tests, I show Kirchhoff
modeling and migration in the pseudocode following:

do iz = 1,nz
do ix = 1,nx

do ih = –25, 25
it = sqrt(iz∗iz + ih∗ih)/velocity
ig = ix + ih
if not adjoint

zz(iz,ix) = zz(iz,ix) + tt(it,ig) # imaging
if adjoint

tt(it,ig) = tt(it,ig) + zz(iz,ix) # modeling

We can speed up the program by moving theix loop to the inside of the square root
and interpolation overheads.

5.1.6. Migration defined
“Migration ” is a word in widespread use in reflection seismology to define any
data-processing program that converts a data plane to an image. IEI offers several
descriptive definitions of migration. Here I offer you a mathematical definition of

a migration operator: given any (diffraction) modeling operatorB, its adjointB′

defines a migration operator. This raises the interesting question, what is the inverse
to B, and how does it differ from the adjointB′?

An adjoint operator is not the same as an inverse operator. Most people think
of migration as theinverseof modeling, but mathematically it is theadjoint of
modeling. In many wave-propagation problems,B−1 andB′ are nearly the same.
A formula for B−1 (from (5.14)) is B−1

= (B′B)−1B′. So the difference between
B′ and B−1 is in the factorB′B. Theoreticians that work in the continuum find
something likeB′B in the form of a weighting function in the physical domain or
a weighting function in the spectral domain or both. Since it is merely a weighting
function, it is not very exciting to practitioners who are accustomed to weighting
functions in both domains for other purposes, principally for enhancing data display.
Indeed, it could be a pitfall to introduce the weighting function of inversion, because
it could interfere with the data display. The opportunity that I see for inversion lies
in practice whereB′B is quite far from an identity matrix for another reason—that
data is not a continuum and has aliasing, truncation, and noise.

A curious aspect of migration arises from the reflectionamplitude versus off-
set (AVO) along the hyperbola. The effect of changing AVO is to change the dip

filtering. Notice that effort expended to get the correct AVO in the modeling opera-
tor affects the migration operator (the adjoint) without necessarily making it closer
to the inverse. It is apitfall to imagine that carefully constructing the correct ampli-
tude versus offset in a diffraction operator will make the corresponding migration
operator more effective. The question of whether an inverse operator is better than
an adjoint has no simple answer; its answer depends on circumstances. So the
phrase “true amplitude migration” has questionable meaning.

You might look at the Kirchhoff migration code above and ask, what is the
modelling matrix that is transposed? We don’t see it. We started by defining “adjoint
operator” as the transpose of a matrix, but now we seem to be defining it by a certain
programming style. The abstract vector for Kirchhoff migration is packed with data
values from a two-dimensional (t ,x)-plane. The abstract matrix is hard to visualize.
How can we know whether we have defined the adjoint operator correctly? The
answer is given next by the dot-product test.

5.2. ADJOINT DEFINED: DOT-PRODUCT TEST
There is a huge gap between the conception of an idea and putting it into practice.
During development, things fail far more often than not. Often, when something
fails, many tests are needed to track down the cause of failure. Maybe the cause
cannot even be found. More insidiously, failure may be below the threshold of
detection and poor performance suffered for years. I find thedot-product test to be
an extremely valuable checkpoint.

Conceptually, the idea of matrix transposition is simplya′i j = aj i . In practice,
however, we often encounter matrices far too large to fit in the memory of any
computer. Sometimes it is also not obvious how to formulate the process at hand
as a matrix multiplication. What we find in practice is that an application and its
adjoint amounts to two subroutines. The first subroutine amounts to the matrix
multiplicationAx. The adjoint subroutine computesA′y, whereA′ is the transpose
matrix. In a later chapter we will be solving huge sets of simultaneous equations.
Then both subroutines are required. We are doomed from the start if the practitioner
provides an inconsistent pair of subroutines. The dot product test is a simple test for
verifying that the two subroutines are adjoint to each other.

The associative property of linear algebra says that we do not need parenthe-

ses in a vector-matrix-vector product likey′Ax because we get the same result no
matter where we put the parentheses. They serve only to determine the sequence of
computation. Thus,

y′(Ax) = (y′A)x (5.7)

y′(Ax) = (A′y)′x (5.8)

(In general, the matrix is not square.) For the dot-product test, load the vectorsx
andy with random numbers. Compute the vectorỹ=Ax using your program forA,
and computẽx= A′y using your program forA′. Inserting these into equation (5.8)
gives you two scalars that should be equal.

y′(Ax) = y′ỹ = x̃′x = (A′y)′x (5.9)

The left and right sides of this equation will be computationally equal only if the
program doingA′ is indeed adjoint to the program doingA (unless the random
numbers do something miraculous).

I tested (5.9) on many operators and was surprised and delighted to find that it is
often satisfied to an accuracy near the computing precision. More amazing is that on
some computers, equation (5.9) was sometimes satisfied down to and includingthe

least significant bit.I do not doubt that larger rounding errors could occur, but so far,
every time I encountered a relative discrepancy of 10−5 or more, I was later able to
uncover a conceptual or programming error. Naturally, when I do dot-product tests,
I scale the implied matrix to a small dimension in order to speed things along, and
to be sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. Such
errors in the definition of the original operator should be identically matched by
truncation errors in the adjoint. If your code passes thedot-product test, then you
really have coded the adjoint operator. In that case, you can take advantage of the
standard methods of mathematics to obtain inverse operators.

We can speak of a continuous functionf (t) or a discrete oneft . For continu-
ous functions we use integration, and for discrete ones we use summation. In formal
mathematics the dot-product testdefinesthe adjoint operator, except that the sum-
mation in the dot product may need to be changed to an integral. The input or the
output or both can be given either on a continuum or in a discrete domain. So the
dot-product testy′ỹ = x̃′x could have an integration on one side of the equal sign
and a summation on the other. Linear-operator theory is rich with concepts, but I
will not develop it here. I assume that you studied it before you came to read this

book, and that it is my job to show you how to use it.

5.2.1. What is an adjoint operator?
In mathematics the word “adjoint ” has three meanings. One of them, the so-called
Hilbert adjoint, is the one generally found in Physics and Engineering and it is the
one used in this book. In Linear Algebra is a different matrix, called theadjugate
matrix. It is a matrix whose elements are signed cofactors (minor determinants).
For invertible matrices, this matrix is the determinant times the inverse matrix. It
is computable without ever using division, so potentially the adjugate can be useful
in applications where an inverse matrix cannot. Unfortunately, the adjugate matrix
is sometimes called the adjoint matrix particularly in the older literature. Because
of the confusion of multiple meanings of the word adjoint, in the first printing of
this book I avoided the use of the word, substituting the definition, “conjugate trans-
pose”. Unfortunately this was often abbreviated to “conjugate” which caused even
more confusion.

EXERCISES:
1 Suppose a linear operatorA has its input in the discrete domain and its output

in the continuum. How does the operator resemble a matrix? Describe the
operatorA′ which has its output in the discrete domain and its input in the con-
tinuum. To which do you apply the words “scales and adds some functions,”
and to which do you apply the words “does a bunch of integrals”? What are
the integrands?

2 Examine the end effects in the programscontran() andconvin() . Interpret
differences in the adjoints.

3 An operator is “self-adjoint” if it equals its adjoint. Only square matrices can
beself-adjoint. Prove by a numerical test that subroutineleaky() /prog:leaky
is self-adjoint.

4 Prove by a numerical test that the subroutinetriangle() /prog:triangle, which
convolves with atriangle and then folds boundary values back inward, isself-
adjoint .

5.3. NORMAL MOVEOUT AND OTHER MAP-
PINGS

Many times we simply deform or stretch a wave field or a map. A curious mapping
I once made was a transformation of world topography (including ocean depth).
Great circles play an important role in global surface-wave propagation because
waves travel on the great circles. In my transformed map, the great circle from
Stanford University to the east is plotted as an equator on a Mercator projection.
North at Stanford is plotted vertically as usual. Figure5.2shows it.

Deformations can either stretch or shrink or both, and different practical prob-
lems arise in each of these cases.

5.3.1. Nearest-neighbor interpolation
Deformations begin from the task of selecting a valueval from an arrayvec(ix),

ix=1,nx . The points of the array are at locationsx = x0+dx*(ix-1) . Given the
location x of the desired value we backsolve forix . In Fortran, conversion of a
real value to an integer is done by truncating the fractional part of the real value.

Figure 5.2: The world as Gerhardus Mercator might have drawn it if he had lived at
Stanford University. Press button for movie (and be patient).conj-great [NR,M]

Nearest neighbor interpolation, essentially: val = vec(1.5 + (t-t0)/dt)
#
subroutine spot0(adj, add, nt,t0,dt, t, val, vec)
integer it, adj, add, nt
real t0,dt, t, val, vec(nt)
call adjnull(adj, add, val, 1, vec, nt)
it = 1.5 + (t-t0) / dt
if(0 < it && it <= nt)

if(adj == 0) # add value onto vector
vec(it) = vec(it) + val

else # take value from vector
val = val + vec(it)

return; end

Back

To get rounding up as well as down, we add a half before conversion to an integer,
namelyix=int(1.5+(x-x0)/dx) . This gives the nearest neighbor. The adjoint to
extracting a value from a vector is putting it back. A convenient subroutine for
nearest-neighbor interpolation isspot0() . spot0

Recall subroutineadvance() /prog:advance. For jump==0 its matrix equiv-
alent is an identity matrix. For other values ofjump , the identity matrix has its
diagonal shifted up or down. Now examine subroutinespot0() /prog:spot0and
think about its matrix equivalent. Since its input is a single value and its output is
a vector, that means its matrix is a column vector so the adjoint operator is a row
vector. The vector is all zeros except for somewhere where there is a “1”.

5.3.2. A family of nearest-neighbor interpolations
Let an integerk range along a survey line, and let data valuesxk be packed into a
vectorx. (Each data pointxk could also be a seismogram.) We plan to resample
the data more densely, say from 4 to 6 points. For illustration, I follow a crude
nearest-neighbor interpolationscheme by sprinkling ones along the diagonal of a

rectangular matrix that is
y = Bx (5.10)

where 
y1
y2
y3
y4
y5
y6

 =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


 x1

x2
x3
x4

 (5.11)

The interpolated data is simplyy = (x1,x2,x2,x3,x4,x4). The matrix multiplica-
tion (5.11) would not be done in practice. Instead there would be a loop running
over the space of the outputsy that picked up values from the input.

• Looping over input space
The obvious way to program a deformation is to take each point from theinput
space and find where it goes on the output space. Naturally, many points could land
in the same place, and then only the last would be seen. Alternately, we could first
erase the output space, then add in points, and finally divide by the number of points

that ended up in each place. The biggest aggravation is that some places could end
up with no points. This happens where the transformationstretches. There we
need to decide whether to interpolate the missing points, or simply low-pass filter
the output.

• Looping over output space
The alternate method that is usually preferable to looping over input space is that our
program have a loop over the space of theoutputs,and that each output find its input.
The matrix multiply of (5.11) can be interpreted this way. Where the transformation
shrinks is a small problem. In that area many points in the input space are ignored,
where perhaps they should somehow be averaged with their neighbors. This is not
a serious problem unless we are contemplating iterative transformations back and
forth between the spaces.

We will now address interesting questions about the reversibility of these de-
formation transforms.

5.3.3. Formal inversion
We have thought of equation (5.10) as a formula for findingy from x. Now consider
the opposite problem, findingx from y. Begin by multiplying equation (5.11) by
thetranspose matrix to define a new quantitỹx:

 x̃1
x̃2
x̃3
x̃4

 =

 1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1




y1
y2
y3
y4
y5
y6

 (5.12)

Obviously, x̃ is not the same asx, but at least these two vectors have the same
dimensionality. This turns out to be the first step in the process of findingx from y.
Formally, the problem is

y = Bx (5.13)

And the formal solution to the problem is

x = (B′B)−1B′ y (5.14)

Formally, we verify this solution by substituting (5.13) into (5.14).

x = (B′B)−1 (B′B)x = Ix = x (5.15)

In applications, the possible nonexistance of an inverse for the matrix (B′B) is al-
ways a topic for discussion. For now we simply examine this matrix for the inter-
polation problem. We see that it is diagonal:

B′B =

 1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1




1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 =

 1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2


(5.16)

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to dividex̃ by the
diagonal matrixB′B. Thus, matrix inversion is easy here.

Equation (5.14) has an illustrious reputation, which arises in the context of
“least squares.”Least squaresis a general method for solving sets of equations
that have more equations than unknowns.

Recoveringx from y using equation (5.14) presumes the existence of the in-
verse ofB′B. As you might expect, this matrix is nonsingular whenB stretches
the data, because then a few data values are distributed among a greater number of
locations. Where the transformationsqueezesthe data,B′B must become singular,
since returning uniquely to the uncompressed condition is impossible.

We can now understand why an adjoint operator is often an approximate in-
verse. This equivalency happens in proportion to the nearness of the matrixB′B
to an identity matrix. The interpolation example we have just examined is one in
whichB′B differs from an identity matrix merely by a scaling.

5.3.4. Nearest-neighbor NMO
Normal-moveout correction (NMO) is a geometrical correction of reflection data
that stretches the time axis so that data recorded at nonzero separationx0 of shot and
receiver, after stretching, appears to be atx0 = 0. See Figure5.3. NMO correction
is roughly like time-to-depth conversion with the equationv2t2

= z2
+ x2

0. After
the data atx0 is stretched fromt to z, it should look like stretched data from any
otherx (assuming plane horizontal reflectors, etc.). In practice,z is not used; rather,

Figure 5.3: A sound emitter
at locations on the earth’s sur-
facez= 0, and rays from a hori-
zontal reflector at depthz reflect-
ing back to surface locationsxi .
conj-geometry[ER]

traveltime depth τ is used, whereτ = z/v; sot2
= τ2
+ x2

0/v2.
To show how surfaces deform under moveout correction, I took a square of text

and deformed it according to the NMO correction equation and its inverse. This is
shown in Figure5.4. The figure assumes a velocity of unity, so the asymptotes of the

Figure 5.4: Roughly, NMO takes each panel to the one on its right.conj-frazer
[ER]

hyperbolas lie at 45◦. The main thing to notice is thatNMO stretches information
at wide offsets and early time, whereas modeling, its inverse, squeezes it. More

precisely, starting from the center panel, adjoint NMO created the left panel, and
NMO created the right panel. Notice that adjoint NMO throws away data at late
time, whereas NMO itself throws away data at early time. Otherwise, adjoint NMO
in this example is the same as inverse NMO.

Normal moveout is a linear operation. This means that data can be decom-
posed into any two parts, early and late, high frequency and low, smooth and rough,
steep and shallow dip, etc.; and whether the two parts are NMO’ed either separately
or together, the result is the same, i.e.,N(a+b)= Na+Nb.

Figure5.5shows a marine dataset before and after NMO correction at the water
velocity. You can notice that the wave packet reflected from the ocean bottom is ap-
proximately a constant width on the raw data. After NMO, however, this waveform
broadens considerably—a phenomenon known as “NMO stretch."

The NMO transformationN is representable as a square matrix. The matrixN
is a (τ ,t)-plane containing all zeros except an interpolation operator centered along
the hyperbola. The dots in the matrix below are zeros. The input signalxt is put
into the vectorx. (This xt should not be confused with thex0 denoting distance in
the hyperbolat2

= τ2
+ x2

0/v2.) The output vectory—i.e., the NMO’ed signal—is
simply (x6,x6,x6,x7,x7,x8,x8,x9,x10,0). In real life, the subscript would go up to

Figure 5.5: Marine data moved
out with water velocity. In-
put on the left, output on the
right. Press button for movie
sweeping through velocity (actu-
ally through slowness squared).
conj-stretch[ER,M]

about one thousand instead of merely to ten.

y = Nx =



y1
y2
y3
y4
y5
y6
y7
y8
y9
y10


=



. 1

. 1

. 1

. 1 . . .

. 1 . . .

. 1 . .

. 1 . .

. 1 .

. 1

.





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10


(5.17)

You can think of the matrix as having a horizontalt-axis and a verticalτ -axis. The
1’s in the matrix are arranged on the hyperbolat2

= τ2
+ x2

0/v2. The transpose
matrix defining somẽx from y gives pseudodatãx from the zero-offset (or stack)

modely, namely,

x̃ = N′y =



x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8
x̃9
x̃10


=



.

.

.

.

.
1 1 1
. . . 1 1
. 1 1 . . .
. 1 . .
. 1 .





y1
y2
y3
y4
y5
y6
y7
y8
y9
y10


(5.18)

A program fornearest-neighbor normal moveoutas defined by equations (5.17)
and (5.18) is nmo1() . Because of the limited alphabet of programming languages, I
used the keystrokez to denoteτ . nmo1

subroutine nmo1(adj, add, slow, x, t0, dt, n,zz, tt)
integer it, iz, adj, add, n
real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n), wt
call adjnull(adj, add, zz,n, tt,n)
do iz= 1, n { z = t0 + dt*(iz-1)

xs = x * slow(iz)
t = sqrt (z * z + xs * xs) + 1.e-20
wt = z/t * (1./sqrt(t)) # weighting function
it = 1 + .5 + (t - t0) / dt
if(it <= n)

if(adj == 0)
tt(it) = tt(it) + zz(iz) * wt

else
zz(iz) = zz(iz) + tt(it) * wt

}
return; end

Back

5.3.5. Stack
Typically, many receivers record every shot. Each seismogram can be transformed
by NMO and the results all added. This is called “stacking” or “NMO stacking.”
The adjoint to this operation is to begin from a model that is identical to the near-
offset trace and spray this trace to all offsets. There is no “official” definition of
which operator of an operator pair is the operator itself and which is the adjoint. On
the one hand, I like to think of the modeling operation itself asthe operator. On
the other hand, the industry machinery keeps churning away at many processes that
have well-known names, so I often think of one of them astheoperator. Industrial
data-processing operators are typicallyadjoints to modeling operators.

Figure5.6 illustrates the operator pair, consisting of spraying out a zero-offset
trace (the model) to all offsets and the adjoint of the spraying, which isstacking.
The moveout and stack operations are in subroutinestack1() . stack1 Let S
denote NMO, and let the stack be defined by invokingstack1() with theconj=0 ar-
gument. ThenS′ is the modeling operation defined by invokingstack1() with the
conj=1 argument. Figure5.6 illustrates both. Notice the roughness on the wave-
forms caused by different numbers of points landing in one place. Notice also the
increase ofAVO as the waveform gets compressed into a smaller space. Finally, no-

subroutine stack1(adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)
integer ix, adj, add, nt,nx
real x, slow(nt), t0,dt, x0,dx, stack(nt), gather(nt,nx)
call adjnull(adj, add, stack,nt, gather,nt*nx)
do ix= 1, nx {

x = x0 + dx * (ix-1)
call nmo1(adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))
}

return; end

Back

Figure 5.6: Top is a model trace
m. Center shows the spraying
to synthetic traces,S′m. Bottom
is the stack of the synthetic data,
SS′m. conj-stack [ER]

tice that the stack is a little rough, but the energy is all in the desired time window.
We notice a contradiction of aspirations. On the one hand, an operator has

smooth outputs if it “loops over output space” and finds its input where-ever it may.
On the other hand, it is nice to have modeling and processing be exact adjoints of
each other. Unfortunately, we cannot have both. If you loop over the output space of
an operator, then the adjoint operator has a loop over input space and a consequent
roughness of its output.

Unfortunately, the adjoint operatorN′ defined by the subroutinenmo1() /prog:nmo1
is not a good operator for seismogram modeling—notice the roughness of the syn-
thetic seismograms in Figure5.6. This roughness isnot an inevitable consequence
of nearest-neighbor interpolation. It is a consequence of defining the NMO program
as a loop over the output spaceτ . Instead, we can define inverse NMO as a loop
over its output space, which is notτ but t . This is done inimo1() /prog:imo1.

imo1 imospray

subroutine imo1(adj, add, xs, t0, dt, nt, zz, tt)
integer adj, add, nt, it, iz
real t0, dt, zz(nt), tt(nt), t, xs, zsquared
call adjnull(adj, add, zz,nt, tt,nt)
do it= 1, nt { t = t0 + dt*(it-1)

zsquared = t * t - xs * xs
if (zsquared >= 0.) { iz = 1.5 + (sqrt(zsquared) - t0) /dt

if (iz > 0) { if(adj == 0)
tt(it) = tt(it) + zz(iz)

else
zz(iz) = zz(iz) + tt(it)

}
}

}
return; end

Back

inverse moveout and spray into a gather.
#
subroutine imospray(adj, add, slow, x0,dx, t0,dt, nx,nt, stack, gather)
integer ix, adj, add, nx,nt
real xs, slow, x0,dx, t0,dt, stack(nt), gather(nt,nx)
call adjnull(adj, add, stack,nt, gather, nt*nx)
do ix= 1, nx {

xs = (x0 + dx * (ix-1)) * slow
call imo1(adj, 1, xs, t0, dt, nt, stack, gather(1,ix))
}

return; end

Back

5.3.6. Pseudoinverse to nearest-neighbor NMO
Examine the matrixN′N:

N′N =



.

.

.

.

.

. 3

. 2 . . .

. 2 . .

. 1 .

. 1


(5.19)

Any mathematician will say that equation (5.19) is not invertible because the zeros
on the diagonal make it singular. But as a geophysicist, you know better. Our

inverse, called a “pseudoinverse,” is

(N′N)−1
=



.

.

.

.

.

. 1
3

. 1
2 . . .

. 1
2 . .

. 1 .

. 1


(5.20)

We could write code for inverse NMO, which is an easy task, or we could try to
write code for inverse NMO and stack, which has no clean solution known to me.
Instead, we move to other topics.

5.3.7. Null space and inconsistency
The normal-moveout transformation is a textbook example of some of the patholo-
gies of simultaneous equation solving. Reexamine equation (5.17), thinking of it as
a set of simultaneous equations forxi given yi . First, (5.17) shows that there may
exist a set ofyi for which no solutionxi is possible—any set containingy10 6= 0,
for example. This is an example ofinconsistencyin simultaneous equations. Sec-
ond, there arex vectors that satisfyNx = 0, so any number of such vectors can be
added into any solution and it remains a solution. These solutions are called the
“null space." Here these solutions are the arbitrary values ofx1, x2, x3, x4, andx5
that obviously leavey unaffected. Typical matrices disguise their inconsistencies
and null spaces better than does the NMO transformation. To make such a trans-
formation, we could start from the NMO transformation and apply any coordinate
transformation to the vectorsx andy.

EXERCISES:
1 A succession of normal-moveout operators is called “cascaded NMO.” Con-

sider NMO from timet ′′ to traveltime deptht ′ by t ′′2 = t ′2+ x2/v2
2, fol-

lowed by another NMO transform which uses the transformation equation

t ′2 = t2
+ x2/v2

1. Show that the overall transformation is another NMO trans-
formation. What is its velocity? Notice that cascaded NMO can be used to
correct an NMO velocity. Thus it can be called residual velocity analysis or
residual normal moveout.

5.3.8. NMO with linear interpolation
NMO with linear interpolation implies that the matrixN is a two-band matrix.
Each row has exactly two elements that interpolate between two elements on the
input. I will sketch the appearance of the matrix, using the lettersa andb for the

elements. Eacha andb is different numerically, but on a given row,a+b= 1.

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10


=



. . . . a b

. . . . a b

. . . . a b

. a b . . .

. a b . . .

. a b . .

. a b . .

. a b .

. a b

. a





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10


(5.21)

Here the matrixN′N is tridiagonal, but I am going to let you work out the details
by yourself. The original data can be recovered by solving the tridiagonal system.
This method can be used to program an invertible NMO or to program an invertible
trace interpolation. I do not want to clutter this book with the many details. Instead,
I presentspot1() , a convenient subroutine for linear interpolation that can be used
in many applications. spot1

Nearest neighbor interpolation would do this: val = vec(1.5 + (t-t0)/dt)
This is the same but with _linear_ interpolation.
#
subroutine spot1(adj, add, nt,t0,dt, t, val, vec)
integer it, itc, adj, add, nt
real tc, fraction, t0,dt, t, val, vec(nt)
call adjnull(adj, add, val, 1, vec,nt)
tc = (t-t0) / dt
itc = tc
it = 1 + itc; fraction = tc - itc
if(1 <= it && it < nt)

if(adj == 0) { # add value onto vector
vec(it) = vec(it) + (1.-fraction) * val
vec(it+1) = vec(it+1) + fraction * val
}

else # take value from vector
val = val + (1.-fraction) * vec(it) + fraction * vec(it+1)

return; end

Back

5.4. DERIVATIVE AND INTEGRAL
Differentiation and integration are very basic operations. Their adjoints are best
understood when they are represented in the sampled-time domain, rather than the
usual time continuum.

5.4.1. Adjoint derivative
Given a sampled signal, its time derivative can be estimated by convolution with the
filter (1,−1)/1t . This could be done with any convolution program. For example
if we choose to ignore end effects we might selectconvin() /prog:convin. This
example arises so frequently that I display the matrix multiply below:

y1
y2
y3
y4
y5

 =


−1 1
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1




x1
x2
x3
x4
x5
x6

 (5.22)

The filter impulse response is seen in any column in the middle of the matrix,
namely (1,−1). In the transposed matrix the filter impulse response is time reversed
to (−1,1). So, mathematically, we can say that the adjoint of the time derivative
operation is the negative time derivative. This corresponds also to the fact that the
complex conjugate of−i ω is i ω. We can also speak of the adjoint of the bound-
ary conditions: we might say the adjoint of “no boundary condition” is “specified
value” boundary conditions.

Banded matrices like in (5.21) and (5.22) arise commonly, and subroutines like
convin() /prog:convin are awkward and over-general because they sum with a
do loop where a mere statement of the two terms is enough. This is illustrated in
subroutineruffen1() . Notice the adjoint calculation resembles that inspot1()

/prog:spot1. ruffen1

5.5. CAUSAL INTEGRATION RECURSION
Causal integration is defined as

y(t) =

∫ t

−∞

x(t) dt (5.23)

subroutine ruffen1(adj, n, xx, yy)
integer i, adj, n
real xx(n), yy(n-1)
call adjnull(adj, 0, xx,n, yy, n-1)
do i= 1, n-1 {

if(adj == 0)
yy(i) = yy(i) + xx(i+1) - xx(i)

else {
xx(i+1) = xx(i+1) + yy(i)
xx(i) = xx(i) - yy(i)
}

}
return; end

Back

Sampling the time axis gives a matrix equation which we should call causal sum-
mation, but we often call it causal integration.

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9


=



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9


(5.24)

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integration is
the simplest prototype of a recursive operator. The coding is trickier than operators
we considered earlier. Notice when you computey5 that it is the sum of 6 terms,
but that this sum is more quickly computed asy5 = y4+ x5. Thus equation (5.24)

is more efficiently thought of as the recursion

yt = yt−1+ xt for increasingt (5.25)

(which may also be regarded as a numerical representation of the differential equa-
tion dy/dt = x.)

When it comes time to think about the adjoint, however, it is easier to think
of equation (5.24) than of (5.25). Let the matrix of equation (5.24) be calledC.
Transposing to getC′ and applying it toy gives us something back in the space of
x, namelyx̃= C′y. From it we see that the adjoint calculation, if done recursively,
needs to be done backwards like

x̃t−1 = x̃t + yt−1 for decreasingt (5.26)

We can sum up by saying that the adjoint of causal integration is anticausal integra-
tion.

A subroutine to do these jobs iscausint() /prog:causint. The code for anti-
causal integration is not obvious from the code for integration and the adjoint coding
tricks we learned earlier. To understand the adjoint, you need to inspect the detailed
form of the expressioñx= C′y and take care to get the ends correct.causint

causal integration (1’s on diagonal)
#
subroutine causint(adj, add, n,xx, yy)
integer i, n, adj, add; real xx(n), yy(n)
temporary real tt(n)
call adjnull(adj, add, xx,n, yy,n)
if(adj == 0){ tt(1) = xx(1)

do i= 2, n
tt(i) = tt(i-1) + xx(i)

do i= 1, n
yy(i) = yy(i) + tt(i)

}
else { tt(n) = yy(n)

do i= n, 2, -1
tt(i-1) = tt(i) + yy(i-1)

do i= 1, n
xx(i) = xx(i) + tt(i)

}
return; end

Back

Figure 5.7: in1 is an input
pulse. C in1 is its causal inte-
gral. C’ in1 is the anticausal in-
tegral of the pulse.in2 is a sepa-
rated doublet. Its causal integra-
tion is a box and its anticausal in-
tegration is the negative.CC in2

is the double causal integral of
in2 . How can a triangle be built?
conj-causint[ER]

Later we will consider equations to march wavefields up towards the earth’s
surface, a layer at a time, an operator for each layer. Then the adjoint will start from
the earth’s surface and march down, a layer at a time, into the earth.

EXERCISES:
1 Modify the calculation in Figure5.7to make a triangle waveform on the bottom

row.

5.5.1. Readers’ guide
Now we have completed our discussion of most of the essential common features
of adjoint operators. You can skim forward to the particular operators of interest to
you without fear of missing anything essential.

5.6. UNITARY OPERATORS
The nicest operators are unitary. Let us examine the difference between a unitary
operator and a nonunitary one.

5.6.1. Meaning of B’B
A matrix operation likeB′B arises whenever we travel from one space to another
and back again. The inverse of this matrix arises when we ask to return from the
other space with no approximations. In general,B′B can be complicated beyond
comprehension, but we have seen some recurring features. In some cases this matrix
turned out to be a diagonal matrix which is a scaling function in the physical domain.
With banded matrices, theB′B matrix is also a banded matrix, being tridiagonal for
B operators of both (5.22) and (5.21). The banded matrix for the derivative operator
(5.22) can be thought of as the frequency domain weighting factorω2. We did not
examineB′B for the filter operator, but if you do, you will see that the rows (and the
columns) ofB′B are theautocorrelation of the filter. A filter in the time domain is
simply a weighting function in the frequency domain.

The tridiagonal banded matrix for linearly-interpolated NMO is somewhat more
complicated to understand, but it somehow represents the smoothing inherent to the
composite process of NMO followed by adjoint NMO, so although we may not
fully understand it, we can think of it as some multiplication in the spectral domain
as well as some rescaling in the physical domain. SinceB′B clusters on the main
diagonal, it never has a “time-shift” behavior.

5.6.2. Unitary and pseudounitary transformation
A so-calledunitary transformationU conserves energy. In other words, ifv= Ux,
thenx′x= v′v, which requiresU′U= I . Imagine an application where the transfor-
mation seems as if it should not destroy information. Can we arrange it to conserve
energy? The conventional inversion

y = Bx (5.27)

x = (B′B)−1B′y (5.28)

can be verified by direct substitution. Seeking a more symmetrical transformation
betweeny andx than the one above, we define

U = B(B′B)−1/2 (5.29)

and the transformation pair

v = Ux (5.30)

x = U′v (5.31)

where we can easily verify thatx′x= v′v by direct substitution. In practice, it would
often be found thatv is a satisfactory substitute fory, and further that the unitary

property is often a significant advantage.
Is the operatorU unitary? It would not be unitary for NMO, because equa-

tion (5.19) is not invertible. Remember that we lost (x1,x2,x3,x4, andx5) in (5.17).
U is unitary, however, except for lost points, so we call it “pseudounitary." A trip
into and back from the space of a pseudounitary operator is like a pass through a
bandpass filter. Something is lost the first time, but no more is lost if we do it again.
Thus,x 6=U′Ux, butU′Ux=U′U(U′Ux) for anyx. Furthermore, (U′U)2=U′U, but
U′U 6= I . In mathematics the operatorsU′U andUU′ are called “idempotent" oper-
ators. Another example of an idempotent operator is that of subroutineadvance()

/prog:advance

5.6.3. Pseudounitary NMO with linear interpolation
It is often desirable to work with transformations that are as nearly unitary as pos-
sible, i.e., their transpose is their pseudoinverse. These transformations are pseu-
dounitary. Let us make NMO withlinear interpolation into a pseudounitary trans-
formation. We need to factor the tridiagonal matrixN′N= T into bidiagonal parts,
T = B′B. One such factorization is the well-knownCholesky decomposition;

which is like spectral factorization. (We never really need to look at square roots of
matrices). Then we will definepseudounitary NMO asU = NB−1. To confirm
the unitary property, we check thatU′U = B′−1N′NB−1 = B′−1B′BB−1

= I . An
all-pass filter is a ratio of two terms, both with the same color, the denominator
minimum phase, and the numerator not. Analogously, inU= NB−1, the numerator
time shifts, and the denominator corrects the numerator’s color.

EXERCISES:
1 Explain why normal moveout is not generally invertible where velocity de-

pends on depth.

2 What adaptations should be made to equation (5.17) to make it pseudounitary?

3 Extend subroutinewavekill1() /prog:wavekill1 to include the adjoint con-
sidering the waveinput to be dual to its output (not considering thefilter to be
dual to the output).

5.7. VELOCITY SPECTRA
An important transformation in exploration geophysics is from data as a function of
shot-receiver offset to data as a function of apparent velocity. To go from offset to
velocity, the transformation sums along hyperbolas of many velocities. The adjoint
is a superposition of hyperbolas of all the different velocities. Pseudocode for these
transformations is

dov

do τ

do x
t =

√
τ2+ x2/v2

if hyperbola superposition
data(t ,x)= data(t ,x) + vspace(τ ,v)

else if velocity analysis
vspace(τ ,v)=vspace(τ ,v)+data(t ,x)

5.8. INTRODUCTION TO TOMOGRAPHY
Tomography is the reconstruction of a function from line integrals through the
function. Tomography has become a routine part of medicine, and an experimental
part of earth sciences. For illustration, a simple arrangement is well-to-well tomog-
raphy. A sound source can be placed at any depth in one well and receivers placed
at any depth in another well. At the sender well, we have sender depthss, and at the
receiver well, we have receiver depthsg. Our data is a tablet(s,g) of traveltimes
from s to g. The idea is to try to map the area between the wells. We divide the area
between wells into cells in (x,z)-space. The map could be one of material velocities
or one of absorptivity. The traveltime of a ray increases by adding theslownessesof
cells traversed by the ray. Our model is a tables(x,z) of slownesses in the plane be-
tween wells. (Alternately, the logarithm of the amplitude of the ray is a summation
of absorptivities of the cells traversed.) The pseudocode is

dos = range of sender locations
do g = range of receiver locations

z= z(s) # depth of sender.
θ = θ(s,g) # ray take-off angle.
do x = range from senders to receivers.

z= z+1x tanθ # ray tracing
if modeling

tsg = tsg+sxz 1x/cosθ
else tomography

sxz = sxz+ tsg 1x/cosθ

In the pseudocode above, we assumed that the rays were straight lines. The problem
remains one of linear operators even if the rays curve, making ray tracing more
complicated. If the solutions(x,z) is used to modify the ray tracing then the problem
becomes nonlinear, requiring the complexities of nonlinear optimization theory.

5.8.1. Units
Notice that the physical units of an operator (such as the meters or feet implied by
1x) are thesameas the physical units of the adjoint operator. The units of an inverse
operator, however, areinverseto the units of the original operator. Thus it is hard to
imagine that an adjoint operator could ever be a satisfactory approximation to the
inverse. We know, however, that adjoints often are a satisfactory approximation to
an inverse, which means then that either (1) such operators do not have physical
units, or (2) a scaling factor in the final result is irrelevant. With the tomographic
operator, the adjoint is quite far from the inverse so practicioners typically work
from the adjoint toward the inverse.

Some operators are arrays with different physical units for different array ele-
ments. For these operators the adjoint is unlikely to be a satisfactory approximation
to the inverse since changing the units changes the adjoint. A way to bring all com-
ponents to the same units is to redefine each member of data space and model space
to be itself divided by its variance. Alternately, again we can abandon the idea of
finding immediate utility in the adjoint of an operator and and we could progress
from the adjoint toward the inverse.

EXERCISES:
1 Show how to adapt tomography for “fat” rays of thicknessNz points along the

z-axis.

5.9. STOLT MIGRATION
NMO is based on the quadratic equationv2t2

= z2
+ x2 (as explained in IEI).Stolt

migration is based on the quadratic equationω2/v2
= k2

z + k2
x, which is the dis-

persion relation of the scalar wave equation. Stolt migration is NMO in the Fourier
domain (see IEI). Denote the Fourier transform operator byF and the Stolt operator
by S, where

S = F′NF (5.32)

A property of matrix adjoints is (ABC)′ = C′B′A′. We know the transpose
of NMO, and we know that the adjoint of Fourier transformation is inverse Fourier
transformation. So

S′ = F′N′F (5.33)

We see then that the transpose to Stolt modeling is Stolt migration. (There are a few
more details with Stolt’sJacobian.)

5.10. References
Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J.

Comp. Phys.,61, 463-482.

Thorson, J.R., 1984, Velocity stack and slant stack inversion methods: Ph.D. thesis,
Stanford University.

Chapter 6

Model fitting by least squares

The first level of computer use in science and engineering is “modeling." Beginning
from physical principles and design ideas, the computer mimics nature. After this,
the worker looks at the result and thinks a while, then alters the modeling program

317

and tries again. The next, deeper level of computer use is that the computer itself
examines the results of modeling and reruns the modeling job. This deeper level is
variously called “fitting " or “ inversion." The term “processing" is also used, but it
is broader, including the use of adjoint operators (as discussed in chapter5). Usually
people are more effective than computers at fitting or inversion, but some kinds of
fitting are more effectively done by machines. A very wide range of methods comes
under the heading of “least squares,” and these methods are the topic of this chapter
and chapters7 through??.

A part of basic education in mathematics is the fitting of scattered points on
a plane to a straight line. That is a simple example of inversion, a topic so grand
and broad that some people think of learning to do inversion as simply “learning.”
Although I will be drawing many examples from my area of expertise, namely, earth
soundings analysis, the methods presented here are much more widely applicable.

6.1. MULTIVARIATE LEAST SQUARES
As described at the beginning of chapter4, signals and images will be specified here
by numbers packed into abstract vectors. We consider first a hypothetical applica-

tion with one data vectord and two fitting vectorsb1 andb2. Each fitting vector is
also known as a “regressor." Our first task is to try to approximate the data vector
d by a scaled combination of the two regressor vectors. The scale factorsx1 andx2
should be chosen so that the model matches the data, i.e.,

d ≈ b1x1+b2x2 (6.1)

For example, if I print the characters “P” and “b” on top of each other, I get “Pb,”
which looks something like an image of the letter “B.” This is analogous tod ≈
b1+b2. More realistically,d could contain a sawtooth function of time, andb1 and
b2 could be sinusoids. Still more realistically,d could be an observed 2-D wave
field, andb1 andb2 could be theoretical data in two parts, where the contribution of
each part is to be learned by fitting. (One part could be primary reflections and the
other multiple reflections.)

Notice that we could take the partial derivative of the data in (6.1) with respect
to an unknown, sayx1, and the result is the regressorb1.

Thepartial derivative of all data with respect toanymodel parameter gives a
regressor. A regressoris a column in the partial-derivative matrix.

Equation (6.1) is often expressed in the more compact mathematical matrix no-
tation d ≈ Bx, but in our derivation here we will keep track of each component
explicitly and use mathematical matrix notation to summarize the final result. Fit-
ting the datad to its two theoretical components can be expressed as minimizing
the length of the residual vectorr , where

r = d−b1x1−b2x2 (6.2)

So we construct a sum of squares (also called a “quadratic form ") of the compo-
nents of the residual vector by using a dot product:

Q(x1,x2) = r · r (6.3)

= (d−b1x1−b2x2) · (d−b1x1−b2x2) (6.4)

The gradient ofQ(x1,x2)/2 is defined by its two components:

∂Q

∂x1
= −b1 · (d−b1x1−b2x2)− (d−b1x1−b2x2) ·b1 (6.5)

∂Q

∂x2
= −b2 · (d−b1x1−b2x2)− (d−b1x1−b2x2) ·b2 (6.6)

Setting these derivatives to zero and using (b1 ·b2)= (b2 ·b1) etc., we get

(b1 ·d) = (b1 ·b1)x1+ (b1 ·b2)x2 (6.7)

(b2 ·d) = (b2 ·b1)x1+ (b2 ·b2)x2 (6.8)

which two equations we can use to solve for the two unknownsx1 andx2. Writing
this expression in matrix notation, we have[

(b1 ·d)
(b2 ·d)

]
=

[
(b1 ·b1) (b1 ·b2)
(b2 ·b1) (b2 ·b2)

] [
x1
x2

]
(6.9)

It is customary to use matrix notation without dot products. For this we need some
additional definitions. To clarify these definitions, I choose the number of compo-
nents in the vectorsb1, b2, andd to be three. Thus I can explicitly write a matrixB
in full as

B = [b1 b2] =

 b11 b12
b21 b22
b31 b32

 (6.10)

Likewise, thetransposedmatrixB′ is defined by

B′ =
[

b11 b21 b31
b12 b22 b32

]
(6.11)

The matrix in equation (6.9) contains dot products. Matrix multiplication is an
abstract way of representing the dot products:[

(b1 ·b1) (b1 ·b2)
(b2 ·b1) (b2 ·b2)

]
=

[
b11 b21 b31
b12 b22 b32

] b11 b12
b21 b22
b31 b32

 (6.12)

Thus, equation (6.9) without dot products is[
b11 b21 b31
b12 b22 b32

]  d1
d2
d3

 =

[
b11 b21 b31
b12 b22 b32

] b11 b12
b21 b22
b31 b32

[x1
x2

]
(6.13)

which has the matrix abbreviation

B′d = (B′ B)x (6.14)

Equation (6.14) is the classic result of least-squares fitting of data to a collection
of regressors. Obviously, the same matrix form applies when there are more than
two regressors and each vector has more than three components. Equation (6.14)
leads to an analytic solution forx using an inverse matrix. To solve formally for the
unknownx, we premultiply by the inverse matrix (B′ B)−1:

x = (B′ B)−1 B′d (6.15)

Equation (6.15) is the central result ofleast-squaresanalysis. We see it every-
where.

Equation (6.12) is an example of what is called a “covariance matrix.” Such
matrices usually need to be inverted, and in equation (6.15) you already see an
example of the occurrence of an inverse covariance matrix. Any description of an
application of least-squares fitting will generally include some discussion of the
covariance matrix—how it will be computed, assumed, or estimated, and how its
inverse will be found or approximated. In chapter4 we found the need to weight
residuals by the inverse of their scale. That was our first example of the occurrence
of an inverse covariance matrix—although in that case the matrix size was only

1×1.
In our first manipulation of matrix algebra, we move around some parentheses

in (6.14):
B′d = B′ (Bx) (6.16)

Moving the parentheses implies a regrouping of terms or a reordering of a compu-
tation. You can verify the validity of moving the parentheses by writing (6.16) in
full as the set of two equations it represents. Equation (6.14) led to the “analytic”
solution (6.15). In a later section on conjugate gradients, we will see that equation
(6.16) expresses better than (6.15) the philosophy of computation.

Notice how equation (6.16) invites us to cancel the matrixB′ from each side.
We cannot do that of course, becauseB′ is not a number, nor is it a square matrix
with an inverse. If you really want to cancel the matrixB′, you may, but the equation
is then only an approximation that restates our original goal (6.1):

d ≈ Bx (6.17)

A speedy problem solver might ignore the mathematics covering the previous
page, study his or her application until he or she is able to write the statement of
wishes (6.17) = (6.1), premultiply byB′, replace≈ by =, getting (6.14), and take

(6.14) to a simultaneous equation-solving program to getx.
The formal literature does not speak of “statement of wishes” but of “regression,"

which is the same concept. In a regression, there is an abstract vector called the
residualr = d−Bx whose components should all be small. Formally this is often
written as:

min
x
||d−Bx|| (6.18)

The notation above with two pairs of vertical lines looks like double absolute value,
but we can understand it as a reminder to square and sum all the components. This
notation is more explicit about what is being minimized, but I often find myself
sketching out applications in the form of a “statement of wishes,” which I call a
“ regression.”

6.1.1. Inverse filter example
Let us take up a simple example oftime-series analysis. Given the input, say
(· · · ,0,0,2,1,0,0,· · ·), to some filter, sayf = (f0, f1), then the output is necessarily
c= (2 f0, f0+2 f1, f1). To design an inverse filter, we would wish to havec come

out as close as possible to (1,0,0). So the statement of wishes (6.17) is 1
0
0

 ≈

 2 0
1 2
0 1

 [
f0
f1

]
(6.19)

The method of solution is to premultiply by the matrixB′, getting[
2 1 0
0 2 1

]  1
0
0

 =

[
2 1 0
0 2 1

] 2 0
1 2
0 1

[f0
f1

]
(6.20)

Thus, [
2
0

]
=

[
5 2
2 5

] [
f0
f1

]
(6.21)

and theinverse filter comes out to be[
f0
f1

]
=

1

21

[
5 −2
−2 5

] [
2
0

]
=

[10
21
−

4
21

]
(6.22)

Inserting this value of (f0, f1) back into (6.19) yields the actual output (20
21,+ 2

21,− 4
21),

which is not a bad approximation to (1,0,0).

6.1.2. Normal equations
The basic least-squares equations are often called the “normal" equations. The
word “normal" means perpendicular. We can rewrite equation (6.16) to emphasize
the perpendicularity. Bring both terms to the left, and recall the definition of the
residualr from equation (6.2):

B′(d−Bx) = 0 (6.23)

B′r = 0 (6.24)

Equation (6.24) says that theresidual vectorr is perpendicular to each row in the
B′ matrix. These rows are thefitting function s. Therefore, the residual, after it has
been minimized, is perpendicular to the fitting functions.

6.1.3. Differentiation by a complex vector
Complex numbers frequently arise in physical problems, particularly with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-
valued unknownsx. First recall how complex numbers were handled with single-
variable least squares, i.e., as in the discussion leading up to equation (??). Use

prime, such asx′, to denote the complex conjugate of the transposed vectorx. Now
write the positivequadratic form as

Q(x′,x) = (Bx−d)′(Bx−d) = (x′B′−d′)(Bx−d) (6.25)

In chapter4 (after equation (4.16)), we minimized a quadratic formQ(X̄, X) by
setting to zero both∂Q/∂ X̄ and∂Q/∂ X. We noted that only one of∂Q/∂ X̄ and
∂Q/∂ X is necessary because they are conjugates of each other. Now take the deriva-
tive of Q with respect to the (possibly complex, row) vectorx′. Notice that∂Q/∂x′

is the complex conjugate transpose of∂Q/∂x. Thus, setting one to zero sets the
other also to zero. Setting∂Q/∂x′ = 0 gives the normal equations:

0 =
∂Q

∂x′
= B′(Bx−d) (6.26)

The result is merely the complex form of our earlier result (6.14). Therefore, dif-
ferentiating by a complex vector is an abstract concept, but it gives the same set of
equations as differentiating by each scalar component, and it saves much clutter.

6.1.4. Time domain versus frequency domain
Equation (??) is a frequency-domain quadratic form that we minimized by varying
a single parameter, a Fourier coefficient. Now we will look at the same problem in
the time domain. The time domain offers new flexibility with boundary conditions,
constraints, and weighting functions. The notation will be that a filterft has input
xt and outputyt . In Fourier space this isY = X F. There are two problems to look
at, unknown filterF and unknown inputX.

• Unknown filter
Given inputs and outputs, the problem of finding an unknown filter appears to be
overdetermined, so we writey≈ Xf where the matrixX is a matrix of downshifted
columns like (6.19). Thus the quadratic form to be minimized is a restatement of
equation (6.25) using filter definitions:

Q(f′,f) = (Xf −y)′(Xf −y) (6.27)

The solutionf is found just as we found (6.26), and it is the set of simultaneous
equations0= X′(Xf −y).

• Unknown input: deconvolution with a known filter
For the unknown input problem we put the known filterft in a matrix of downshifted
columnsF. Our statement of wishes is now to findxt so thaty≈ Fx. We can expect
to have trouble finding unknown filter inputsxt when we are dealing with certain
kinds of filters, such as bandpass filters. If the output is zero in a frequency band,
we will never be able to find the input in that band and will need to preventxt from
diverging there. We do this by the statement that we wish0≈ ε x, whereε is a
parameter that is small and whose exact size will be chosen by experimentation.
Putting both wishes into a single, partitioned matrix equation gives[

0
0

]
≈

[
r1
r2

]
=

[
y
0

]
−

[
F
ε I

]
x (6.28)

To minimize the residualsr1 andr2, we can minimize the scalarr ′r = r ′1r1+ r ′2r2.
This is

Q(x′,x) = (Fx−y)′(Fx−y)+ ε2x′x

= (x′F′−y′)(Fx−y)+ ε2x′x (6.29)

We have already solved this minimization in chapter4 in the frequency domain
(beginning from equation (4.16)).

Formally the solution is found just as with equation (6.26), but this solution
looks unappealing in practice because there are so many unknowns and because
the problem can be solved much more quickly in the Fourier domain. To moti-
vate ourselves to solve this problem in the time domain, we need either to find an
approximate solution method that is much faster, or to discover that constraints or
time-variable weighting functions are required in some applications.

EXERCISES:
1 Try other lags in (6.19) such as (0,1,0)′ and (0,0,1)′. Which works best? Why?

2 Using matrix algebra, what value ofx minimizes thequadratic form Q(x)=
(y−Ax)′M−1

nn (y−Ax)+ (x− x0)′M−1
xx (x− x0)? In applications,x0 is called

the prior model,M xx its covariance matrix, andMnn the noisecovariance
matrix .

3 Let y(t) constitute a complex-valued function at successive integer values of
t . Fit y(t) to a least-squares straight liney(t) ≈ α+βt , whereα = αr + i αt

andβ = βr + iβt . Do it two ways: (a) assumeαr , αt , βi , andβr are four
independent variables, and (b) assumeα, ᾱ, β, andβ̄ are independent variables.
(Leave the answer in terms ofsn =

∑
t tn.)

4 Ocean tides fit sinusoidal functions of known frequencies quite accurately. As-
sociated with the tide is an earth tilt. A complex time series can be made from
the north-south tilt plus

√
−1 times the east-west tilt. The observed complex

time series can be fitted to an analytical form
∑N

j=1 Aj ei ωj t . Find the set of
equations which can be solved for theAj that gives the best fit of the formula
to the data. Show that some elements of the normal equation matrix are sums
that can be summed analytically.

5 The general solution to Laplace’s equation in cylindrical coordinates (r ,θ) for
a potential fieldP which vanishes atr =∞ is given by

P (r ,θ)=<
∞∑

m=0

Am
eimθ

r m+1

Find the potential field surrounding a square object at the origin which is at
unit potential. Do this by findingN of the coefficientsAm by minimizing

the squared difference betweenP(r ,θ) and unity integrated around the square.
Give the answer in terms of an inverse matrix of integrals. Which coefficients
Am vanish exactly by symmetry?

6.2. ITERATIVE METHODS
The solution time for simultaneous linear equations grows cubically with the num-
ber of unknowns. There are three regimes for solution; which one is applicable de-
pends on the number of unknownsn. Forn three or less, we use analytical methods.
We also sometimes use analytical methods on matrices of size 4×4 if the matrix
contains many zeros. Forn < 500 we use exact numerical methods such as Gauss
reduction. A 1988 vintage workstation solves a 100×100 system in a minute, but a
1000×1000 system requires a week. At aroundn= 500, exact numerical methods
must be abandoned anditerative methods must be used.

An example of a geophysical problem withn > 1000 is a missing seismogram.
Deciding how to handle a missing seismogram may at first seem like a question
of missingdata, not excess numbers ofmodelpoints. In fitting wave-field data to
a consistent model, however, the missing data is seen to be just more unknowns.

In real life we generally have not one missing seismogram, but many. Theory in
2-D requires that seismograms be collected along an infinite line. Since any data-
collection activity has a start and an end, however, practical analysis must choose
between falsely asserting zero data values where data was not collected, or implic-
itly determining values for unrecorded data at the ends of a survey.

A numerical technique known as the “conjugate-gradient method" (CG) works
well for all values ofn and is our subject here. As with most simultaneous equation
solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And ifn is too large to allown3 computations, the CG method can be
interrupted at any stage, the partial result often proving useful. Whether or not a
partial result actually is useful is the subject of much research; naturally, the results
vary from one application to the next.

The simple form of the CG algorithm covered here is a sequence of steps. In
each step the minimum is found in the plane given by two vectors: the gradient
vector and the vector of the previous step.

6.2.1. Method of random directions and steepest descent
Let us minimize the sum of the squares of the components of theresidual vector
given by

residual = data space− transform model space (6.30) R

 =

 Y

 −

 A


[

x

]
(6.31)

Fourier-transformed variables are often capitalized. Here we capitalize vectors
transformed by theA matrix. A matrix such asA is denoted byboldfaceprint.

A contour plot is based on an altitude function of space. The altitude is the dot
productR·R. By finding the lowest altitude we are driving the residual vectorR as
close as we can to zero. If the residual vectorR reaches zero, then we have solved
the simultaneous equationsY = Ax. In a two-dimensional world the vectorx has
two components, (x1,x2). A contour is a curve of constantR · R in (x1,x2)-space.
These contours have a statistical interpretation as contours of uncertainty in (x1,x2),
given measurement errors inY.

Starting fromR= Y−Ax, let us see how a random search direction can be
used to try to reduce the residual. Letg be an abstract vector with the same number
of components as the solutionx, and letg contain arbitrary or random numbers. Let
us add an unknown quantityα of vectorg to vectorx, thereby changingx to x+αg.
The new residualR+d Rbecomes

R+d R = Y−A(x+αg) (6.32)

= Y−Ax−αAg (6.33)

= R−αG (6.34)

We seek to minimize the dot product

(R+d R) · (R+d R) = (R−αG) · (R−αG) (6.35)

Setting to zero the derivative with respect toα gives

α =
(R·G)

(G ·G)
(6.36)

Geometrically and algebraically the new residualR+ = R−αG is perpendicular to
the “fitting function” G. (We confirm this by substitution leading toR+ ·G= 0.)

In practice, random directions are rarely used. It is more common to use the
gradient vector. Notice also that a vector of the size ofx is

g = A′R (6.37)

Notice also that this vector can be found by taking the gradient of the size of the
residuals:

∂

∂x′
R· R =

∂

∂x′
(Y′ − x′A′) (Y − A x) = −A′ R (6.38)

Descending by use of the gradient vector is called “the method ofsteepest descent."

6.2.2. Conditioning the gradient
Often people do calculations by the method of steepest descent without realizing it.
Often a result is improved in a single step, or with a small number of steps, many
fewer than the number needed to achieve convergence. This is especially true with
images where the dimensionality is huge and where a simple improvement to the
adjoint operator is sought. Three-dimensional migration is an example. In these
cases it may be worthwhile to make some ad hoc improvements to the gradient that

acknowledge the gradient will be a perturbation to the imagex and so should prob-
ably have an amplitude and spectrum like that ofx. A more formal mathematical
discussion of preconditioning is on page347.

6.2.3. Why steepest descent is so slow
Before we can understand why theconjugate-gradient methodis so fast, we need
to see why thesteepest-descent methodis so slow. The process of selectingα is
called “line search," but for a linear problem like the one we have chosen here,
we hardly recognize choosingα as searching a line. A more graphic understanding
of the whole process is possible in a two-dimensional space where the vector of
unknownsx has just two components,x1 and x2. Then the size of the residual
vectorR·R can be displayed with a contour plot in the plane of (x1,x2). Visualize a
contour map of a mountainous terrain. The gradient is perpendicular to the contours.
Contours and gradients arecurved lines. In the steepest-descent method we start at a
point and compute the gradient direction at that point. Then we begin astraight-line
descent in that direction. The gradient direction curves away from our direction of
travel, but we continue on our straight line until we have stopped descending and

are about to ascend. There we stop, compute another gradient vector, turn in that
direction, and descend along a new straight line. The process repeats until we get to
the bottom, or until we get tired.

What could be wrong with such a direct strategy? The difficulty is at the stop-
ping locations. These occur where the descent direction becomesparallel to the
contour lines. (There the path becomes horizontal.) So after each stop, we turn 90◦,
from parallel to perpendicular to the local contour line for the next descent. What if
the final goal is at a 45◦ angle to our path? A 45◦ turn cannot be made. Instead of
moving like a rain drop down the centerline of a rain gutter, we move along a fine-
toothed zigzag path, crossing and recrossing the centerline. The gentler the slope of
the rain gutter, the finer the teeth on the zigzag path.

6.2.4. Conjugate gradient
In the conjugate-gradient method, not a line, but rather a plane, is searched. A
plane is made from an arbitrary linear combination of two vectors. One vector
will be chosen to be the gradient vector, sayg. The other vector will be chosen
to be the previous descent step vector, says= xj − xj−1. Instead ofα g we need

a linear combination, sayαg+βs. For minimizing quadratic functions the plane
search requires only the solution of a two-by-two set of linear equations forα and
β. The equations will be specified here along with the program. (Fornonquadratic
functions a plane search is considered intractable, whereas a line search proceeds
by bisection.)

6.2.5. Magic
Some properties of the conjugate-gradient approach are well known but hard to
explain. D. G. Luenberger’s book,Introduction to Linear and Nonlinear Program-
ming, is a good place to look for formal explanations of this magic. (His book also
provides other forms of the conjugate-gradient algorithm.) Another helpful book is
Strang’sIntroduction to Applied Mathematics. Known properties follow:

1. The conjugate-gradient method gets the exact answer (assuming exact
arithmetic) inn descent steps (or less), wheren is the number of unknowns.

2. Since it is helpful to use the previous step, you might wonder why not use
the previous two steps, since it is not hard to solve a three-by-three set of

simultaneous linear equations. It turns out that the third direction does not
help: the distance moved in the extra direction is zero.

6.2.6. Conjugate-gradient theory for programmers
Define the solution, the solution step (from one iteration to the next), and the gradi-
ent by

X = A x (6.39)

Sj = A sj (6.40)

Gj = A gj (6.41)

A linear combination in solution space, says+ g, corresponds toS+G in the
conjugate space, becauseS+G = As+Ag = A(s+ g). According to equation
(6.31), the residual is

R = Y − A x = Y − X (6.42)

The solutionx is obtained by a succession of stepssj , say

x = s1 + s2 + s3 + ·· · (6.43)

The last stage of each iteration is to update the solution and the residual:

solution update: x ← x + s
residual update: R ← R − S

Thegradientvectorg is a vector with the same number of components as the
solution vectorx. A vector with this number of components is

g = A′ R = gradient (6.44)

G = A g = conjugate gradient (6.45)

The gradientg in the transformed space isG, also known as the “conjugate gradi-
ent.”

The minimization (6.35) is now generalized to scan not only the line withα,
but simultaneously another line withβ. The combination of the two lines is a plane:

Q(α,β) = (R−αG−βS) · (R−αG−βS) (6.46)

The minimum is found at∂Q/∂α = 0 and∂Q/∂β = 0, namely,

0 = G · (R−αG−βS) (6.47)

0 = S · (R−αG−βS) (6.48)

The solution is[
α

β

]
=

1

(G ·G)(S·S)− (G ·S)2

[
(S·S) −(S·G)
−(G ·S) (G ·G)

] [
(G · R)
(S· R)

]
(6.49)

6.2.7. First conjugate-gradient program
Theconjugate-gradient program can be divided into two parts: an inner part that
is used almost without change over a wide variety of applications, and an outer
part containing the initializations. SinceFortran does not recognize the difference
between upper- and lower-case letters, the conjugate vectorsG and S in the pro-
gram are denoted bygg andss . The inner part of the conjugate-gradient task is in
subroutinecgstep() . cgstep

This program was used to produce about 50 figures in this book. The first
example of its use is the solution of the 5×4 set of simultaneous equations below.
Observe that the “exact” solution is obtained in the last step. Since the data and
answers are integers, it is quick to check the result manually.

y transpose

A step of conjugate-gradient descent.
#
subroutine cgstep(iter, n, x, g, s, m, rr, gg, ss)
integer i, iter, n, m
real x(n), rr(m) # solution, residual
real g(n), gg(m) # gradient, conjugate gradient
real s(n), ss(m) # step, conjugate step
real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta
if(iter == 0) {

do i= 1, n
s(i) = 0.

do i= 1, m
ss(i) = 0.

if(dot(m,gg,gg)==0) call erexit(’cgstep: grad vanishes identically’)
alfa = dot(m,gg,rr) / dot(m,gg,gg)
beta = 0.
}

else { # search plane by solving 2-by-2
gdg = dot(m,gg,gg) # G . (R - G*alfa - S*beta) = 0
sds = dot(m,ss,ss) # S . (R - G*alfa - S*beta) = 0
gds = dot(m,gg,ss)
determ = gdg * sds - gds * gds + (.00001 * (gdg * sds) + 1.e-15)
gdr = dot(m,gg,rr)
sdr = dot(m,ss,rr)
alfa = (sds * gdr - gds * sdr) / determ
beta = (-gds * gdr + gdg * sdr) / determ
}

do i= 1, n # s = model step
s(i) = alfa * g(i) + beta * s(i)

do i= 1, m # ss = conjugate
ss(i) = alfa * gg(i) + beta * ss(i)

do i= 1, n # update solution
x(i) = x(i) + s(i)

do i= 1, m # update residual
rr(i) = rr(i) - ss(i)

return; end

real function dot(n, x, y)
integer i, n; real val, x(n), y(n)
val = 0.; do i=1,n { val = val + x(i) * y(i) }
dot = val; return; end

Back

3.00 3.00 5.00 7.00 9.00

A transpose

1.00 1.00 1.00 1.00 1.00

1.00 2.00 3.00 4.00 5.00

1.00 0.00 1.00 0.00 1.00

0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

x 0.43457383 1.56124675 0.27362058 0.25752524

res 0.73055887 -0.55706739 -0.39193439 0.06291389 0.22804642

x 0.51313990 1.38677311 0.87905097 0.56870568

res 0.22103608 -0.28668615 -0.55250990 0.37106201 0.10523783

x 0.39144850 1.24044561 1.08974123 1.46199620

res 0.27836478 0.12766024 -0.20252618 0.18477297 -0.14541389

x 1.00001717 1.00006616 1.00001156 2.00000978

res -0.00009474 -0.00014952 -0.00022683 -0.00029133 -0.00036907

x 0.99999994 1.00000000 1.00000036 2.00000000

res -0.00000013 -0.00000003 0.00000007 0.00000018 -0.00000015

Initialization of theconjugate-gradient methodtypically varies from one ap-
plication to the next, as does the setting up of the transformation and its adjoint.
The problem above was set up with thematmul() program given in chapter5. The
programcgmeth() below initializes a zero solution and the residual of a zero so-
lution. cgmeth Then it loops over iterations, invoking matrix multiply, conjugate
transpose multiply, and the conjugate-gradient stepper. In subroutinecgmeth() ,
the variabledx is like g in equation (6.44), and the variabledr is like G in equa-
tion (6.45).

6.2.8. Preconditioning
Like steepest descent, CG methods can be accelerated if a nonsingular matrixM
with known inverse can be found to approximateA. Then, instead of solving
Ax ≈ y, we solveM−1Ax ≈M−1y = c, which should converge much faster since
M−1A ≈ I . This is called “preconditioning.”

In my experience the matrixM is rarely available, except in the crude approxi-

setup of conjugate gradient descent, minimize SUM rr(i)**2
nx
rr(i) = yy(i) - sum aaa(i,j) * x(j)
j=1
subroutine cgmeth(nx,x, nr,yy,rr, aaa, niter)
integer i, iter, nx, nr, niter
real x(nx), yy(nr), rr(nr), aaa(nr,nx)
temporary real dx(nx), sx(nx), dr(nr), sr(nr)
do i= 1, nx

x(i) = 0.
do i= 1, nr

rr(i) = yy(i)
do iter= 0, niter {

call matmult(1, aaa, nx,dx, nr,rr) # dx= dx(aaa,rr)
call matmult(0, aaa, nx,dx, nr,dr) # dr= dr(aaa,dx)
call cgstep(iter, nx, x,dx,sx, _

nr,rr,dr,sr) # x=x+s; rr=rr-ss
}

return; end

Back

mation of scaling columns, so the unknowns have about equal magnitude. As with
signals and images, spectral balancing should be helpful.

EXERCISES:
1 Remove lines from the conjugate-gradient program to convert it to a program

that solves simultaneous equations by the method of steepest descent. Per
iteration, how many dot products are saved, and how much is the memory
requirement reduced?

2 A precision problem can arise with the CG method when many iterations are
required. What happens is thatR drifts away fromAr and X drifts away
from Ax. Revise the programcgmeth() to restore consistency every twentieth
iteration.

6.3. INVERSE NMO STACK
Starting from a hypothetical, ideal, zero-offset model, Figure5.6 shows synthetic
data and the result of adjoint modeling (back projection), which reconstructs an

imperfect model. Inversion should enable us to reconstruct the original model. Let
us see howback projectioncan be upgraded towardsinversion.

Unfortunately, the adjoint operatorN′ defined by the subroutinenmo1() /prog:nmo1
is not a good operator for seismogram modeling—notice the roughness of the syn-
thetic seismograms in Figure5.6. This roughness isnot an inevitable consequence
of nearest-neighbor interpolation. It is a consequence of defining the NMO program
as a loop over the output spaceτ . Instead, we can define inverse NMO as a loop
over its output space, which is notτ but t . This is done inimo1() /prog:imo1 and

imospray() /prog:imospray.

If we plan an upgrade from back projection towards inversion, we must be
aware that the accuracy of the original modeling operator can become an issue.

The new seismograms at the bottom of Figure6.1show the first four iterations
of conjugate-gradient inversion. You see the original rectangle-shaped waveform
returning as the iterations proceed. Notice also on thestack that the early and late
events have unequal amplitudes, but after iteration they are equal, as they began.
Mathematically, we can denote the top trace as the modelm, the synthetic data sig-

Figure 6.1: Top is a model trace
m. Next are the synthetic data
traces,d = Mm . Then, labeled
niter=0 is thestack, a result of
processing by adjoint modeling.
Increasing values ofniter show
x as a function of iteration count
in the regressiond≈Mx . (Carlos
Cunha-Filho) ls-invstack [ER]

NMO stack by inverse of forward modeling
#
subroutine invstack(nt,model,nx,gather,rr,t0,x0,dt,dx,slow,niter)
integer it, ix, iter, nt, nx, niter
real t0,x0,dt,dx,slow, gather(nt,nx), rr(nt,nx), model(nt)
temporary real dmodel(nt), smodel(nt), dr(nt,nx), sr(nt,nx)
do it= 1, nt

model(it) = 0.0
do it= 1, nt

do ix= 1, nx
rr(it,ix) = gather(it,ix)

do iter = 0, niter {
call imospray(1,0,slow,x0,dx,t0,dt,nx,nt,dmodel,rr) # nmo-stack
call imospray(0,0,slow,x0,dx,t0,dt,nx,nt,dmodel,dr) # modeling
call cgstep(iter, nt, model, dmodel, smodel, _

nt*nx, rr, dr, sr)
}

return; end

Back

nals asd=Mm , and the stack asM ′d. The conjugate-gradient algorithm solves the
regressiond≈Mx by variation ofx, and the figure showsx converging tom. Since
there are 256 unknowns inm, it is gratifying to see good convergence occurring
after the first four iterations. The CG subroutine used isinvstack() , which is just
like cgmeth() /prog:cgmethexcept that the matrix-multiplication operatormat-

mul() /prog:matmulhas been replaced byimospray() /prog:imospray. Studying
the program, you can deduce that, except for a scale factor, the output atniter=0

is identical to the stackM ′d. All the signals in Figure6.1are intrinsically the same
scale. invstack

This simple inversion is inexpensive. Has anything been gained over conven-
tional stack? First, though we used nearest-neighbor interpolation, we managed to
preserve the spectrum of the input, apparently all the way to the Nyquist frequency.
Second, we preserved the true amplitude scale without ever bothering to think about
(1) dividing by the number of contributing traces, (2) the amplitude effect of NMO
stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at
wide offset. NMO soon fails, but wave-equation forward modeling offers inter-
esting opportunities for inversion.

6.4. MARINE DEGHOSTING
The marineghostpresents a problem that is essentially insoluble; but because it is
always with us, we need to understand how to do the best we can with it. Even if
anairgun could emit a perfect impulse, the impulse would reflect from the nearby
water surface, thereby giving a second pulse of oppositepolarity . The energy going
down into the earth is therefore a doublet when we would prefer a single pulse.
Likewise, hydrophones see the upcoming wave once coming up, and an instant
later they see the wave with opposite polarity reflecting from the water surface.
Thus the combined system is effectively a second derivative wavelet (1,−2,1) that
is convolved with signals of interest. Our problem is to remove this wavelet by
deconvolution. It is an omnipresent problem and is cleanly exposed on marine data
where the water bottom is hard and deep.

Theoretically, a double integration of the second derivative gives the desired
pulse. A representation in the discrete time domain is the product of (1− Z)2 with
1+2Z+3Z2

+4Z3
+5Z4

+·· ·, which is 1. Double integration amounts to spectral
division by−ω2. Mathematically the problem is that−ω2 vanishes atω = 0. In
practice the problem is that dividing byω2 where it is small amplifies noises at
those low frequencies. (Inversion theorists are even more frustrated because they

are trying to create something like a velocity profile, roughly a step function, and
they need to do something like a third integration.) Old nuts like this illustrate the
dichotomy between theory and practice.

Chapter4 provides a theoretical solution to this problem in the Fourier domain.
Here we will express the same concepts in the time domain. Define as follows:

yt Given data.
bt Known filter.
xt Excitation (to be found).
nt = yt − xt∗bt Noise: data minus filtered excitation.

With Z-transforms the problem is given byY(Z)= B(Z)X(Z)+N(Z). Our primary
wish is N ≈ 0. Our secondary wish is thatX not be infinity asX = Y/B threatens.
This second wish is expressed asεX ≈ 0 and is called “stabilizing" or “damping."
In the Fourier domain the wishes are

Y ≈ B X (6.50)

0 ≈ εX (6.51)

The formal expression of theregressionis

min
X

(||Y− B X|| + ε2
||X||) (6.52)

In the time domain the regression is much more explicit:

y0
y1
y2
y3
y4
y5
y6
0
0
0
0
0
0
0



≈



1
−2 1

1 −2 1
. 1 −2 1 . . .
. . 1 −2 1 . .
. . . 1 −2 1 .
. . . . 1 −2 1
ε
. ε
. . ε
. . . ε . . .
. . . . ε . .
. ε .
. ε





x0
x1
x2
x3
x4
x5
x6


(6.53)

subroutine ident(adj, add, epsilon, n, pp, qq)
integer i, adj, add, n
real epsilon, pp(n), qq(n) # equivalence (pp,qq) OK
if(adj == 0) {

if(add == 0) { do i=1,n { qq(i) = epsilon * pp(i) } }
else { do i=1,n { qq(i) = qq(i) + epsilon * pp(i) } }
}

else { if(add == 0) { do i=1,n { pp(i) = epsilon * qq(i) } }
else { do i=1,n { pp(i) = pp(i) + epsilon * qq(i) } }
}

return; end

Back

where “·” denotes a zero. Since it is common to addεI to an operator to stabilize it,
I prepared subroutineident() for this purpose. It is used so frequently that I coded
it in a special way to allow the input and output to overlie one another.ident

We can use any convolution routine we like, but for simplicity, I selectedcon-

trunc() so the output would be the same length as the input. The two operators
ident() and contrunc() could be built into a new operator. I found it easier to
simply cascade them in the deghosting subroutinedeghost() below. deghost

6.4.1. Synthetics
I made some synthetic marine data and added 5% noise. This, along with an at-
tempted deconvolution, is shown in Figure6.2. The plot in Figure6.2 is for the
value ofε that I subjectively regarded as best. The result is pleasing because the
doublets tend to be converted to impulses. Unfortunately, the low-frequency noise
in xt is significantly stronger than that inyt , as expected.

Taking ε larger will decrease||X|| but increase the explicit noise||Y− B X||.
To decrease the explicit noise, I chose a tiny value ofε = .001. Figure6.3shows the
result. The explicit noisent appears to vanish, but the low-frequency noise implicit

deghost: min |rrtop| = | y - bb (contrunc) xx |
x |rrbot| | 0 - epsilon I xx |
subroutine deghost(eps, nb,bb, n, yy, xx, rr, niter)
integer iter, nb, n, niter
real bb(nb), yy(n), eps # inputs. typically bb=(1,-2,1)
real xx(n), rr(n+n) # outputs.
temporary real dx(n), sx(n), dr(n+n), sr(n+n)
call zero(n, xx)
call copy(n, yy, rr(1)) # top half of residual
call zero(n , rr(1+n)) # bottom of residual
do iter= 0, niter {

call contrunc(1,0,1,nb,bb, n,dx,n,rr); call ident(1,1,eps, n,dx,rr(1+n))
call contrunc(0,0,1,nb,bb, n,dx,n,dr); call ident(0,0,eps, n,dx,dr(1+n))
call cgstep(iter, n,xx,dx,sx, _

n+n,rr,dr,sr)
}

return; end

Back

Figure 6.2: Top is the syn-
thetic datayt . Middle is the de-
convolved dataxt . Bottom is
the noisent . This choice of
ε = .2 gave my preferred result.
ls-syn+.2 [ER]

Figure 6.3: As before, the
signals from top to bottom are
yt , xt , and nt . Choosing a
small ε = .001 forces the noise
mostly into the outputxt . Thus
the noise is essentially implicit.
ls-syn+.001[ER]

to the deconvolved outputxt has grown unacceptably.
Finally, I chose a larger value ofε = .5 to allow more noise in the explicitnt ,

hoping to get a lower noise implicit toxt . Figure6.4 shows the result. Besides
the growth of the explicit noise (which is disturbingly correlated to the input), the
deconvolved signal has the same unfortunate wavelet on it that we are trying to
remove from the input.

Results of a field-data test shown in Figure6.5 do not give reason for encour-
agement.

In conclusion, all data recording has an implicit filter, and this filter is arranged
to make the data look good. Application of a theoretical filter, such asω−2, may
achieve some theoretical goals, but it does not easily achieve practical goals.

EXERCISES:
1 The (1,−2,1) signature is an oversimplification. In routine operations the

hydrophones are at a depth of 7-10 meters and the airgun is at a depth of 5-
6 meters. Assuming a sampling rate of .004 s (4 milliseconds) and a water
velocity of 1500 m/s, what should the wavelet be?

2 Rerun the figures with the revised wavelet of the previous exercise.

Figure 6.4: Noise essentially ex-
plicit. ε = .5. ls-syn+.5 [ER]

Figure 6.5: Field-data test.
As before, the signals from top
to bottom are yt , xt , and nt .
ls-field+.3 [ER]

6.5. CG METHODOLOGY
The conjugate-gradient method is really a family of methods. Mathematically these
algorithms all converge to the answer inn (or fewer) steps where there aren un-
knowns. But the various methods differ in numerical accuracy, treatment of un-
derdetermined systems, accuracy in treating ill-conditioned systems, space require-
ments, and numbers of dot products. I will call the method I use in this book the
“book3” method. I chose it for its clarity and flexibility. I caution you, however,
that among the various CG algorithms, it may have the least desirable numerical
properties.

The “conjugate-gradient method” was introduced byHestenesand Stiefel in
1952. A popular reference book, “Numerical Recipes,” cites an algorithm that is
useful when the weighting function does not factor. (Weighting functions are not
easy to come up with in practice, and I have not found any examples ofnonfac-
torable weighting functions yet.) A high-quality program with which my group
has had good experience is the Paige and Saunders LSQR program. A derivative
of the LSQR program has been provided by Nolet. A disadvantage of thebook3
method is that it uses more auxiliary memory vectors than other methods. Also, you
have to tell thebook3program how many iterations to make.

There are a number ofnonlinear optimization codes that reduce toCG in the
limit of a quadratic function.

According to Paige and Saunders, accuracy can be lost by explicit use of vectors
of the formA′Ax, which is how thebook3 method operates. An algorithm with
better numerical properties, invented byHestenesand Stiefel, can be derived by
algebraic rearrangement. This rearrangement (adapted from Paige and Saunders by
Lin Zhang) for the problemAx ≈ Y is

• Setx = 0, R= Y, g= A′Y, s= g andγ− = ‖g‖2.

• For each iteration, repeat the following:

S = As

α = γ−/‖S‖2

x = x+αs

R = R−αS

g = A′R

γ = ‖g‖2

β = γ /γ−

γ− = γ

s = g+βs

where‖v‖ stands for theL2 norm of vectorv. A program that implements this
algorithm in a manner consistent with a blending ofcgmeth() /prog:cgmethand

cgstep() /prog:cgstepis hestenes() . hestenesI have not used theHestenes
and Stiefel version of the CG method for the tutorial programs in this book because
I wish to isolate features of geophysical analysis from features of solution by the
CG method. The blending of geophysical features with solution details is worsened
by the combination ofFortran and this improved version of theCG algorithm.

6.5.1. Programming languages and this book
A valuable goal is to isolate the CG solving program from all physical aspects of the
linear operator. We wish to abstract the CG solver, to put it in a compiled subroutine
library where we can feed it inputs and get back the outputs, and never again to
see the internals of how it works (like the fast Fourier transform). Unfortunately,
the primitive nature of theFortran -Ratfor language does not appear to allow this

subroutine hestenes(nx,x, nr,yy,rr, aaa, niter)
integer i, iter, nx, nr, niter
real alpha, beta, gamma, gammam
real dot
real x(nx), yy(nr), rr(nr), aaa(nr,nx)
temporary real g(nx), s(nx), ss(nr)
do i= 1, nx

x(i) = 0.
do i= 1, nr

rr(i) = yy(i)
call matmult(1, aaa, nx,g, nr,yy)
do i= 1, nx

s(i) = g(i)
gammam = dot(nx,g,g)
do iter= 0, niter {

call matmult(0, aaa, nx,s, nr,ss)
alpha = gammam / dot(nr,ss,ss)
do i = 1, nx

x(i) = x(i) + alpha*s(i)
do i = 1, nr

rr(i) = rr(i) - alpha*ss(i)
call matmult(1, aaa, nx,g, nr,rr)
gamma = dot(nx,g,g)
beta = gamma / gammam
gammam = gamma
do i = 1, nx

s(i) = g(i) + beta*s(i)
}

return; end

Back

abstraction. The reason is that the CG program needs to call your linear operator
routine and, to do this, it needs to know not only the name of your routine but
how to supply its arguments. (I recall from years ago aFortran where subroutines
could have several entry points. This might help.) Thus, everywhere in this book
where I solve a model-fitting problem, we must see some of the inner workings of
CG. To keep this from becoming too objectionable, I found the nonstandard CG
method we have been using and coupled it with BillHarlan ’s idea of isolating
its inner workings intocgstep() . Because of this we can see complete code for
many examples, and the code is not awfully cluttered. Unfortunately, my CG is not
Hestenes’ CG.

In many of theFortran codes you see in this book it is assumed that the abstract
vector input and vector output correspond to physical one-dimensional arrays. In
real life, these abstract vectors are often matrices, or matrices in special forms, such
as windows on a wall of data (nonpacked arrays), and they may contain complex
numbers. Examining equation (6.53), we notice that the space of residuals for a
damped problem is composed of two parts, the residual of the original problem
and a partεx the size of the unknowns. These two parts are packed, somewhat
uncomfortably, into the abstract residual vector.

A linear operator really consists of (at least) four subroutines, one for applying
the operator, one for its adjoint, one for a dot product in the space of inputs, and
one for a dot product in the space of outputs. Modern programming theory uses the
terms “data abstraction” and “object-oriented programming (OOP)” to describe
methods and languages that are well suited to the problems we are facing here.
The linear-operator object is what the CG solver needs to be handed, along with
an instance of the input abstract vector and a pointer to space for the output vector.
(The linear-operator object, after it is created, could also be handed to a universal
dot-product test routine. WithFortran I write a separate dot-product test program
for each operator.)

Another abstraction thatFortran cannot cope with is this: the CG program
must allocate space for the gradient and past-steps vectors. But the detailed form
of these abstract vectors should not be known to the CG program. So the linear-
operator object requires four more routines (called “methods" in OOP) that the CG
routine uses to allocate and free memory (tocreateanddestroy objectsfrom the
physical space of inputs and outputs). In this way OOP allows us to isolate concepts,
so that each concept need only be expressed once. A single version of a concept can
thus be reused without being replicated in a form blended with other concepts.

As I am going along generating examples for this book, and as the examples
get more complicated, I am wondering just where I will drop the idea of exhibiting
complete codes. Obviously, if I switched fromFortran to a more modern language,
such asC++, I could get further. The disadvantages of C++ are that I am not experi-
enced in it, few of my readers will know it, and its looping statements are cluttered
and do not resemble mathematics. Instead ofdo i=1,n , C and C++ usefor(i=0;

i<=n; i++) . It would be fun to do the coding in a better way, but for now, I am
having more fun identifying new problems to solve.

6.6. References
Gill, P.E., Murray, W., and Wright, M.H., 1981, Practical optimization: Academic

Press.

Gorlen, K.E., Orlow, S.M., and Plexico, P.S., 1990, Data abstraction and object-
oriented programming in C++: J. Wiley.

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving
linear systems: J. Res. Natl. Bur. Stand.,49, 409-436.

Luenberger, D.G., 1973, Introduction to linear and nonlinear programming: Addison-
Wesley.

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J.
Comp. Phys.,61, 463-482.

Paige, C.C., and Saunders, M.A., 1982a, LSQR: an algorithm for sparse linear equa-
tions and sparse least squares: Assn. Comp. Mach. Trans. Mathematical Soft-
ware,8, 43-71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm 583, LSQR: sparse linear equa-
tions and least squares problems: Assn. Comp. Mach. Trans. Mathematical
Software,8, 195-209.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cam-
bridge University Press.

Strang, G., 1986, Introduction to applied mathematics: Wellesley-Cambridge Press.

Chapter 7

Time-series analysis

In chapter5 we learned about many operators and how adjoints are a first approx-
imation to inverses. In chapter6 we learned how to make inverse operators from
adjoint operators by the least-squares (LS) method using conjugate gradients (CG).

373

The many applications of least squares to the convolution operator constitute the
subject known as “time-series analysis." In this chapter we examine applications
of time-series analysis to reflection seismograms. These applications further illumi-
nate the theory of least squares in the area ofweighting functions and stabilization.

In the simplest applications, solutions can be most easily found in the frequency
domain. When complications arise, it is better to use the time domain, directly
applying the convolution operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary in
the time domain, such as that between past and future, or requirements that a filter
be nonzero in a stated time interval. Another factor that attracts us to the time
domain rather than the Fourier domain is weighting functions. As we saw in the
beginning of chapter6 weighting functions are appropriate whenever a signal or
image amplitude varies from place to place. Most of the literature ontime-series
analysisapplies to the limited case of uniform weighting functions. Such time series
are said to be “stationary.” This means that their statistical properties do not change
in time. In real life, particularly in the analysis of echos, signals are never stationary
in time and space. Astationarity assumption is a reasonable starting assumption,
but we should know how to go beyond it so we can take advantage of the many

opportunities that do arise. In order of increasing difficulty in the frequency domain
are the following complications:

1. A time boundary such as between past and future.

2. More time boundaries such as delimiting a filter.

3. Nonstationary signal, i.e., time-variable weighting.

4. Time-axis stretching such as normal moveout.

We will not have difficulty with any of these complications here because we
will stay in the time domain and set up and solve optimization problems using the
conjugate-gradient method. Thus we will be able to cope with great complexity in
problem formulation and get the right answer without approximations. By contrast,
analytic or partly analytic methods can be more economical, but they generally solve
somewhat different problems than those given to us by nature.

7.1. SHAPING FILTER
A shaping filter is a simple least-squares filter that converts one waveform to an-
other. Shaping filters arise in a variety of contexts. In the simplest context, predict-
ing one infinitely long time series from another, the shaping filter can be found in
the Fourier domain.

7.1.1. Source waveform and multiple reflections
Figure7.1shows some reflection seismic data recorded at nearly vertical incidence
from anarctic ice sheet. Apparently the initial waveform is somewhat complex,
but the water-bottom reflection does not complicate it further. You can confirm this
by noticing the water-bottommultiple reflection, i.e., the wave that bounces first
from the water bottom, then from the water surface, and then a second time from
the water bottom. This multiple reflection is similar to but haspolarity opposite
to the shape of the primary water-bottom reflection. (The opposite polarity results
from the reflection at the ocean surface, where the acoustic pressure, the sum of the
downgoing wave plus the upgoing wave, vanishes.)

Other data in water of similar depth shows a different reflection behavior. The

Figure 7.1: Some of the inner offset seismograms from Arctic dataset 24 (Yilmaz
and Cumro). tsa-wz24[NR]

bottom gives back not a single reflection, but a train of reflections. Let this train of
reflections from the oceanfloor be denoted byF(Z). Instead of looking like−F(Z),
the firstmultiple reflection can look like−F(Z)2. The ray sketch in Figure7.2
shows a simple multiple reflection. There is only one water-bottom path, but there
are two paths to a slightly deeper layer. I will call the first arrival the soft-mud arrival
and the second one themudstonearrival. If these two arrivals happen to have the
same strength, an expression forF(Z) is 1+ Z. The expression for the first multiple
is−F(Z)2=−(1+ Z)2=−1+2Z− Z2 where the 2Z represents the two paths in
Figure7.2. The waveform of the second water bottom multiple is (1− Z)3 in which
the mudstone would be three times as strong as the soft mud. In thenth wave train
the mudstone isn times as strong as the soft mud. Figure7.3 is a textbook quality
example of this simple concept.

Figures7.3and7.1 illustrate how arctic data typically contrasts with data from
temperate or tropic regions. The arctic water-bottom reflection is generally hard,
indicating that the bottom is in a constant state of erosion from the scraping of the
ice floes and the carrying away of sediments by the bottom currents. In temperate
and tropical climates, the bottom is often covered with soft sediments: the top layer
is unconsolidated mud, and deeper layers are mud consolidated into mudstone.

Figure 7.2: Water bottom soft-
mud multiple (left) and similar
travel times to mudstone (center
and right). tsa-peg[NR]

Figure 7.3: Two displays of a common-shot collection of seismograms from off-
shore Crete (Yilmaz and Cumro dataset 30). Top display is called “raster” and
bottom display “wiggle.” Raw data scaled byt2. tsa-wz30[NR]

Now we devise a simple mathematical model for the multiple reflections in
Figures7.1and7.3. There are two unknown waveforms, the source waveformS(Z)
and the ocean-floor reflectionF(Z). The water-bottom primary reflectionP(Z) is
the convolution of the source waveform with the water-bottom response; soP(Z)=
S(Z)F(Z). The first multiple reflectionM(Z) sees the same source waveform, the
ocean floor, a minus one for the free surface, and the ocean floor again. Thus the
observationsP(Z) andM(Z) as functions of the physical parameters are

P(Z) = S(Z) F(Z) (7.1)

M(Z) = −S(Z) F(Z)2 (7.2)

In Figure7.1it appears thatF(Z) is nearly an impulse, whereas Figure7.3is domi-
nated by the nonimpulsive aspect ofF(Z). Algebraically the solutions of equations
(7.1) and (7.2) are

F(Z) = −M(Z)/P(Z) (7.3)

S(Z) = −P(Z)2/M(Z) (7.4)

These solutions can be computed in the Fourier domain. The difficulty is that
the divisors in equations (7.3) and (7.4) can be zero, or small. This difficulty can be

attacked by using a positive numberε to stabilize it. Equation (7.3), for example,
could be written

F(Z) = −
M(Z)P(1/Z)

P(Z)P(1/Z)+ ε
(7.5)

We can easily understand what this means asε tends to infinity, where, because
of the 1/Z, the matched filter has a noncausal response. Thus, although theε

stabilization seems nice, it apparently produces a nonphysical model. Forε large or
small, the time-domain response could turn out to be of much greater duration than
is physically reasonable. This should not happen with perfect data, but in real life,
data always has a limited spectral band of good quality.

Functions that are rough in the frequency domain will be long in the time do-
main. This suggests making a short function in the time domain by local smoothing
in the frequency domain. Let the notation< · · ·> denote smoothing by local aver-
aging. Thus we can specify filters whose time duration is not unreasonably long by
revising equation (7.5) to

F(Z) = −
< M(Z)P(1/Z) >

< P(Z)P(1/Z)+ ε >
(7.6)

where it remains to specify the method and amount of smoothing.

These time-duration difficulties do not arise in a time-domain formulation. First
express (7.3) and (7.4) as

P(Z)F(Z) ≈ −M(Z) (7.7)

M(Z)S(Z) ≈ −P(Z)2 (7.8)

To imagine these in the time domain, refer back to equation (??). Think of Pf≈m
wheref is a column vector containing the unknown sea-floor filter,m is a column
vector containing the portion of a seismogram in Figure7.1 labeled “multiple,” and
P is a matrix of down-shifted columns, each column being the same as the signal
labeled “primary” in Figure7.1. The time-domain solutions are called “shaping fil-
ters.” For a simple filter of two coefficients,f0 and f1, we solved a similar problem,
equation (6.19), theoretically. With longer filters we use numerical methods.

In the time domain it is easy and natural to limit the duration and location of
the nonzero coefficients inF(Z) and S(Z). The required program for this task is
shaper() , which operates likecgmeth() /prog:cgmethandinvstack() /prog:invstack

except that the operator needed here iscontran() /prog:contran. shaper
The goal of finding the filtersF(Z) and S(Z) is to best model the multiple

reflections so that they can be subtracted from the data, enabling us to see what

shaping filter
minimize SUM rr(i)**2 by finding ff and rr where
#
rr = yy - xx (convolve) ff
#
subroutine shaper(nf,ff, nx,xx, ny, yy, rr, niter)
integer i, iter, nf, nx, ny, niter
real ff(nf), xx(nx), yy(ny), rr(ny)
temporary real df(nf), dr(ny), sf(nf), sr(ny)
if(ny != nx+nf-1) call erexit(’data length error’)
do i= 1, nf

ff(i) = 0.
do i= 1, ny

rr(i) = yy(i)
do iter= 0, niter {

call contran(1, 0, nx,xx, nf,df, rr) # df=xx*rr
call contran(0, 0, nx,xx, nf,df, dr) # dr=xx*df
call cgstep(iter, nf,ff,df,sf, ny,rr,dr,sr) # rr=rr-dr; ff=ff+df
}

return; end

Back

primary reflections have been hidden by the multiples. An important practical aspect
is merging the analysis of many seismograms (see exercises).

Typical data includes not only that shown in Figures7.1and7.3, but also wider
source-receiver separation, as well as many other nearby shots and their receivers.
Corrections need to be made for hyperbolic traveltime resulting from lateral separa-
tion between shot and receiver. Diffractions are a result of lateral imperfections in
the generally flat sea floor. The spatial aspects of this topic are considered at great
length in IEI. We will investigate them here in only a limited way.

7.1.2. Shaping a ghost to a spike
An exasperating problem in seismology is the “ghost” problem, in which a wave-
form is replicated a moment after it occurs because of a strong nearby reflection. In
marine seismology the nearby reflector is the sea surface. Because the sea surface
is near both theairgun and thehydrophones, it creates two ghosts. Upgoing and
downgoing waves at the sea surface have opposite polarity because their pressures
combine to zero at the surface. Thus waves seen in the hydrophone encounter the
ghost operatorgt = (1,0,0,· · · ,−1) twice, once for the surface near the source and

once for the surface near the hydrophone. The number of zeros is typically small,
depending on the depth of the device. The sound receivers can be kept away from
surface-water wave noise by positioning them deeper, but that extends the ghost de-
lay; and as we will see, this particular ghost is very hard to eliminate by processing.
For simplicity, let us analyze just one of the two ghosts. Take it to beG(Z)= 1−Z2.
Theoretically, the inverse is of infinite duration, namely, (1,0,1,0,1,0,1,0,1,· · ·).

Since an infinitely long operator is not satisfactory, I used the programshaper()

above to solve a least-squares problem for an antighost operator of finite duration.
Since we know that the least-squaresmethod abhors large errors and thus tends to
equalize them, we should be able to guess the result.

The filter (.9, .0, .8, .0, .7, .0, .6, .0, .5, .0, .4, .0, .3, .0, .2, .0, .1), when convolved with
(1,0,−1), produces the desiredspike (impulse) along with equal squared errors of
.01 at each output time. Thus, the least-squares filter has the same problem as the
analytical one—it is very long. This disappointment can be described in the Fourier
domain by the many zeros in the spectrum of (1,0,−1). Since we cannot divide by
zero, we should not try to divide by 1− Zn, which has zeros uniformly distributed
on the unit circle. The method of least squares prevents disaster, but it cannot per-
form miracles.

I consider ghosts to be a problem in search of a different solution. Ghosts also
arise when seismograms are recorded in a shallow borehole. As mentioned, the
total problem generally includes many waveforms propagating in more than one
direction; thus it is not as one-dimensional as it may appear in Figures7.3and7.1,
in which I did not display the wide-offset signals.

EXERCISES:
1 What inputs to subroutineshaper() /prog:shapergive the filter (.9,0, .8,· · · .1)

mentioned above?

2 Figure 7.1 shows many seismograms that resemble each other but differ in
the x location of the receiver. Sketch the overdetermined simultaneous equa-
tions that can be used to find the best-fitting source functionS(Z), where
Mx(Z)S(Z)≈ Px(Z)2 for variousx.

3 Continue solving the previous problem by defining acontranx() subroutine
that includes several signals going through the same filter. In order to sub-
stitute yourcontranx() into shaper() /prog:shaperto replacecontran()

/prog:contran, you will need to be sure that the output and thefilter are adjoint

(not the output and theinput). Suggestion: definereal xx(nt,nx) , etc.

7.2. SYNTHETIC DATA FROM FILTERED NOISE
A basic way to describe the random character of signals is to model them by putting
random numbers into a filter. Practical work often consists of the reverse: deducing
the filter and deconvolving it to see the input.

7.2.1. Gaussian signals versus sparse signals
Most theoretical work is based on random numbers from a Gaussian probability
function. The basic theoretical model is that ateverytime point aGaussianrandom
number is produced. In real life we do observe such signals, but we also observe
signals with less frequent noise bursts. Such signals, called “sparse signals” or
“bursty signals,” can be modeled in many ways, two of which are (1) that many
points can have zero value (or a value that is smaller than expected from a Gaussian);
and (2) that the Gaussian probability function describes the many smaller values, but
some larger values also occur from time to time.

It turns out that the Gaussian probability function generates more cryptic signals
than any other probability function. It also turns out that theory is best developed for
the Gaussian case. Thus, Gaussian theory, which is the most pessimistic, tends to be
applied to both Gaussian and sparser data. Sparse signals derive from diverse mod-
els, and usually there is not enough information to establish a convincing model.
In practical work, “non-Gaussian” generally means “sparser than Gaussian.” Fig-
ure7.4illustrates random signals from a Gaussian probability function and a sparser
signal made by cubing the random numbers that emerge from a Gaussian random-
number generator.

7.2.2. Random numbers into a filter
Figure7.5showsrandom numbers fed throughleaky integration and the resulting
spectral amplitude. The output spectral amplitude of an integrator should be|ω|−1,
but the decay constant in the leaky integrator gives instead the amplitude (ω2

+

ε2)−1/2. Since the random numbers are sparse, you can see damped exponents
in the data itself. This enables us to confirm the direction of the time axis. If the
random numbers had been Gaussian, the spectrum would be the same, but we would

Figure 7.4: Left are random numbers from a Gaussian probability function. (The
random numbers are connected by lines.) Right, the random numbers are cubed,
making a signal in which large spikes are sparser.tsa-spikes[ER]

Figure 7.5: Left is sparse random noise passed through a leaky integrator. Right is
the amplitude spectrum of the output.tsa-leaky [ER]

be able neither to see the damped exponents nor detect the direction of time.

7.2.3. Random numbers into the seismic spectral band
Figure7.6shows synthetic data designed to look like real seismic noise. Here some
Gaussian random numbers were passed into a filter to simulate the seismic pass-
band. Two five-term Butterworth filters (see chapter10) were used, a highcut at .4
of the Nyquist and a lowcut at .1 of the Nyquist.

7.3. THE ERROR FILTER FAMILY
A simple regression for aprediction filter (f1, f2) is x2

x3
x4
x5

 ≈

 x1 x0
x2 x1
x3 x2
x4 x3

 [
f1
f2

]
(7.9)

Figure 7.6: Left is Gaussian random noise passed through Butterworth filters
to simulate the seismic passband. Right is the amplitude spectrum of the output.
tsa-band[ER]

Notice that each row in this equation says thatxt fits a linear combination ofx at
earlier times; hence the description off as a “prediction" filter. The error in the
prediction is simply the left side minus the right side. Rearranging the terms, we get 0

0
0
0

 ≈

 x2 x1 x0
x3 x2 x1
x4 x3 x2
x5 x4 x3


 1
− f1
− f2

 (7.10)

We have already written programs for regressions like (7.9). Regressions like (7.10),
however, often arise directly in practice. They are easier to solve directly than by
transforming them to resemble (7.9).

Multiple reflections are predictable. It is the unpredictable part of a signal, the
prediction residual, that contains the primary information. The output of the filter
(1,− f1,− f2) is the unpredictable part of the input. This filter is a simple example of
a “prediction-error" (PE) filter. It is one member of a family of filters called “error
filters."

The error-filter family are filters with one coefficient constrained to be unity and
various other coefficients constrained to be zero. Otherwise, the filter coefficients
are chosen to have minimum power output. Names for various error filters follow:

(1,a1,a2,a3,· · · ,an) prediction-error (PE) filter
(1,0,0,a3,a4,· · · ,an) gapped PE filter with a gap of 2
(a−m,· · · ,a−2,a−1,1,a1,a2,a3,· · · ,an) interpolation-error (IE) filter
(a−m,· · · ,a−4,a−3,0,0,1,0,0,a3,a4,· · · ,an) a gapped IE filter

A program for computing all the error filters will be presented after we examine
a collection of examples.

7.3.1. Prediction-error filters on synthetic data
The idea of using agap in a prediction filter is to relax the goal of converting realistic
signals into perfect impulses. Figure7.7 shows synthetic data, sparse noise into a
leaky integrator, and deconvolutions with prediction-error filters. Theoretically, the
filters should turn out to be 1− (.9Z)gap. Varying degrees of success are achieved
by the filters obtained on the different traces, but overall, the results are good.

To see what happens when an unrealisticdeconvolutiongoal is set for predic-
tion error, we can try to compress a wavelet that is resistant to compression—for
example, the impulse response of a Butterworth bandpass filter. The perfect filter to
compress any wavelet is its inverse. But a wide region of the spectrum of aButter-

Figure 7.7: Deconvolution of leaky integrator signals with PE filters of various
prediction-gap sizes. Inputs and outputs on alternate traces. Gap size increases
from left to right. tsa-dleak[NR]

worth filter is nearly zero, so any presumed inverse must require nearly dividing by
that range of zeros. Compressing a Butterworth filter is so difficult that I omitted the
random numbers used in Figure7.7and applied prediction error to the Butterworth
response itself, in Figure7.8. Thus, we have seen that gapped PE filters sometimes

Figure 7.8: Butterworth de-
convolution by prediction error.
tsa-dbutter[NR]

are able to compress a wavelet, and sometimes are not. In real life, resonances arise

in the earth’s shallow layers; and as we will see, the resonant filters can be shortened
by PE filters.

7.3.2. PE filters on field data
Figure7.9 is a nice illustration of the utility ofprediction-error filter s. The input
is quasi-sinusoidal, which indicates thatPE filter ing should be successful. Indeed,
some events are uncovered that probably would not have been identified on the
input. In this figure, a separate problem is solved for each trace, and the resulting
filter is shown on the right.

7.3.3. Prediction-error filter output is white.
The most important property of aprediction-error filter is that its output tends to a
white spectrum. No matter what the input to this filter, its output tends to whiteness
as the number of the coefficientsn→∞ tends to infinity. Thus, thePE filter
adapts itself to the input by absorbing all itscolor. If the input is already white, the
aj coefficients vanish. The PE filter is frustrated because with a white input it can

Figure 7.9: Data from offshore Texas (extracted from Yilmaz and Cumro dataset
14). Wiggle display above and raster below. Inputs above outputs. Filters displayed
on the right. tsa-wz14[NR]

predict nothing, so the output is the same as the input. Thus, if we were to cascade
one PE filter after another, we would find that only the first filter does anything. If
the input is a sinusoid, it is exactly predictable by a three-term recurrence relation,
and all the color is absorbed by a three-term PE filter (see exercises). The power
of a PE filter is that a short filter can often extinguish, and thereby represent the
information in, a long filter.

That the output spectrum of a PE filter iswhite is very useful. Imagine the
reverberation of thesoil layer, highly variable from place to place, as the resonance
between the surface and deeper consolidated rocks varies rapidly with surface lo-
cation as a result of geologically recent fluvial activity. The spectralcolor of this
erratic variation on surface-recorded seismograms is compensated for by a PE filter.
Of course, we do not want PE-filtered seismograms to be white, but once they all
have the same spectrum, it is easy to postfilter them to any desired spectrum.

Because the PE filter has an output spectrum that is white, the filter itself has
a spectrum that is inverse to the input. Indeed, an effective mechanism of spectral
estimation, developed by John P.Burg and described inFGDP, is to compute a PE
filter and look at the inverse of its spectrum.

Another interesting property of the PE filter is that it isminimum phase.

The best proofs of this property are found in FGDP. These proofs assume uniform
weighting functions.

7.3.4. Proof that PE filter output is white
1 The basic idea of least-squares fitting is that the residual is orthogonal to the fitting
functions. Applied to the PE filter, this idea means that the output of a PE filter is
orthogonal to lagged inputs. The orthogonality applies only for lags in the past
because prediction knows only the past while it aims to the future. What we want
to show is different, namely, that the output is uncorrelated withitself (as opposed
to the input) for lags inbothdirections; hence the output spectrum iswhite.

We are given a signalyt and filter it by

xt = yt −
∑
τ>0

aτ yt−τ (7.11)

1I would like to thank John P.Burg for this proof.

We foundaτ by setting to zerod(
∑

x2
t)/daτ :∑

t

xt yt−τ = 0 for τ > 0 (7.12)

We interpret this to mean that the residual is orthogonal to the fitting function, or the
present PE filter output is orthogonal to its past inputs, or one side of the crosscorre-
lation vanishes. Taking an unlimited number of time lags and filter coefficients, the
crosscorrelation vanishes not only forτ > 0 but for larger values, sayτ + s where
τ ≥ 0 ands> 0. In other words, the future PE filter outputs are orthogonal to present
and past inputs:∑

t

xt+syt−τ = 0 for τ ≥ 0 ands > 0 (7.13)

Recall that ifr ·u = 0 andr · v = 0, thenr · (a1u±a2v) = 0 for anya1 anda2. So
for anyaτ we have∑

t

xt+s(yt ±aτ yt−τ) = 0 for τ ≥ 0 ands > 0 (7.14)

and for any linear combination we have∑
t

xt+s(yt −
∑
τ>0

aτ yt−τ) = 0 for τ ≥ 0 ands > 0 (7.15)

Therefore, substituting from (7.11), we get∑
t

xt+sxt = 0 for s > 0 (7.16)

which is anautocorrelation function and must be symmetric. Thus,∑
t

xt+sxt = 0 for s 6= 0 (7.17)

Since the autocorrelation of the prediction-error output is an impulse, its spectrum
is white. This has many interesting philosophical implications, as we will see next.

7.3.5. Nonwhiteness of gapped PE-filter output
When a PE filter is constrained so that a few near-zero-lag coefficients are zero, the
output no longer tends to bewhite as the number of coefficients in the filter tends to

infinity. If f1, the filter coefficient ofZ = ei ω1t , vanishes, thenF(ω) lacks the slow
variation inω that this term provides. It lacks just the kind of spectral variation that
could boost weak near-Nyquist noises up to the strength of the main passband. With
such variation made absent by the constraint, the growth of Nyquist-region energy
is no longer a necessary byproduct of PE filtering.

Figure7.10illustrates aPE filter with a longgap. (The gap was chosen to be
a little less than the water depth.) This example nicely shows the suppression of
some multiple reflections, but unfortunately I do not see that any primary reflec-
tions have been uncovered. Because the prediction gap is so long, the filter causes
no visible change to the overall spectrum. Notice how much more the spectrum was
broadened by the filter with a shorter gap in Figure7.9. The theoretical associa-
tion of prediction gap width with spectral broadening is examined next. Another
interesting feature of Figure7.10, which we will investigate later, is a geometrical
effect. This shows up as poor multiple removal on and above the diagonal lines and
happens because of the nonzero separation of the sound source and receiver.

Figure 7.10: Data from offshore Canada (extracted from Yilmaz and Cumro dataset
27) processed by gapped prediction error. Inputs above outputs; filters displayed on
the right. Nicely suppressed multiples appear in boxes. Badly suppressed multiples
are shown above diagonal lines.tsa-wz27[NR]

7.3.6. Postcoloring versus prewhitening
The output of a PE filter, as we know, iswhite (unless it is gapped), but people do
not like to look at white signals. Signals are normally sampled at adequate density,
which means that they are small anywhere near the Nyquist frequency. There is
rarely energy above the half-Nyquist and generally little but marine noises above the
quarter-Nyquist. To avoid boosting these noises, the ungapped PE filter is generally
altered or accompanied by other filters. Three common approaches follow:

• Use a gapped filter.

• Deconvolve, then apply a filter with the desired spectrumS(ω).

• Prefilter the input withS(ω)−1, then deconvolve with an ungapped PE filter,
and finally postfilter withS(ω).

The last process is called “prewhitening” for some complicated reasons: the idea
seems to be that the prefilter removes known color so that the least-squares coef-
ficients are not “wasted” on predicting what is already known. Thus the prefilter
spectrumS(ω)−1 is theoretically the inverse of the prior estimate of the input spec-
trum. In real life, that is merely an average of estimates from other data. If the
desired output spectrum does not happen to beS(ω), it does not matter, since any

final display filter can be used. Although this is a nice idea, I have no example to
illustrate it.

There is also the question of what phase the postfilter should have. Here are
some cautions against the obvious two choices:

• Zero phase: a symmetrical filter has a noncausal response.

• Causal: if a later step of processing is to make a coherency analysis for
velocity versus time, then the effective time will be more like the signal
maximum than the first break.

Since the postfilter is broadband, its phase is not so important as that of the decon-
volution operator, which tries to undo the phase of a causal and resonant earth.

7.4. BLIND DECONVOLUTION
Theprediction-error filter solves the “blind-deconvolution” problem. So far little
has been said about the input data to the PE filter. A basic underlying model is that
the input data results from white noise into a filter, where the filter is some process
in nature. Since the output of the PE filter is white, it has the same spectrum as the

original white noise. The natural hypothesis is that the filter in nature is the inverse
of our PE filter. Both filters are causal, and their amplitude spectra are mutually
inverse. Theoretically, if the model filter were minimum phase, then its inverse
would be causal, and it would be our PE filter. But if the model filter were an all-
pass filter, or had anall-pass filter as a factor, then its inverse would not be causal,
so it could not be our PE filter.

The blind-deconvolution problem can be attacked without PE filters by going
to the frequency domain. Figure7.11 shows sample spectra for the basic model.
We see that the spectra of the random noise are random-looking. In chapter11 we
will study random noise more thoroughly; the basic fact important here is that the
longer the random time signal is, the rougher is its spectrum. This applies to both
the input and the output of the filter. Smoothing the very rough spectrum of the
input makes it tend to a constant; hence the common oversimplification that the
spectrum of random noise is a constant. Since forY(Z) = F(Z)X(Z) we have
|Y(ω)| = |F(ω)||X(ω)|, the spectrum of the output of random noise into a filter is
like the spectrum of the filter, but the output spectrum is jagged because of the noise.
To estimate the spectrum of the filter in nature, we begin with data (like the output in
Figure7.11) and smooth its spectrum, getting an approximation to that of the filter.

Figure 7.11: Spectra of random
numbers, a filter, and the output
of the filter. tsa-model[ER]

Forblind deconvolution we simply apply the inverse filter. The simplest way to get
such a filter is to inverse transform the smoothed amplitude spectrum of the data to
a time function. This time-domain wavelet will be a symmetrical signal, but in real
life the wavelet should be causal. Chapter10 shows a Fourier method, called the
“Kolmogoroff method," for finding a causal wavelet of a given spectrum. Chapter
11 shows that the length of the Kolmogoroff wavelet depends on the amount of
spectral smoothing, which in this chapter is like the ratio of the data length to the
filter length.

In blind deconvolution, Fourier methods determine the spectrum of the un-
known wavelet. They seem unable to determine the wavelet’s phase by measure-
ments, however—only to assert it by theory. We will see that this is a limitation of
the “stationarity ” assumption, that signal strengths are uniform in time. Where sig-
nal strengths are nonuniform, better results can be found with weighting functions
and time-domain methods. In Figure7.14we will see that theall-pass filter again
becomes visible when we take the trouble to apply appropriate weights.

7.5. WEIGHTED ERROR FILTERS
What I have described above is “industrial standard” material. A great many com-
panies devote much human and computer energy to it. Now we will see what new
opportunities are promised by a formulation that includes weighting functions.

7.5.1. Automatic gain control
Echos get weaker with time, though the information content is unrelated to the sig-
nal strength. Echos also vary in strength as different materials are encountered by
the outgoing wave. Programs for echo analysis typically divide the data by a scaling
factor that is a smoothed average of the signal strength. This practice is nearly uni-
versal, although it is fraught with hazards. An example ofautomatic gain control
(AGC) is to compute the divisor by forming the absolute value of the signal strength
and then smoothing with the programtriangle() /prog:triangle or the program

leaky() /prog:leaky. Pitfalls are the strange amplitude behavior surrounding the
water bottom, and the overall loss of information contained in amplitudes. Person-
ally, I have found that the gain functiont2 nearly always eliminates the need for
AGC on raw field data, but I have no doubt that AGC is occasionally needed. (A

theoretical explanation fort2 is given in IEI.)

7.5.2. Gain before or after convolution
It is a common but questionable practice to applyAGC to echo soundings before
filter analysis. A better practice is first to analyze according to the laws of physics
and only at the last stage to apply gain functions for purposes of statistical estimation
and final display. Here we will examine correct and approximate ways of setting up
deconvolution problems with gain functions. Then we will use CG to solve the
proper formulation.

Solving problems in the time domain offers an advantage over the frequency
domain because in the time domain it is easy to control the interval where the so-
lution should exist. Another advantage of the time domain arises when weighting
functions are appropriate. I have noticed that people sometimes use Fourier solu-
tions inappropriately, forcing themselves to use uniform weighting when another
weighting would work better. Since we look at echos, it is unavoidable that we ap-
ply gain functions. Weighting is always justified on the processoutputs, but it is an
approximation of unknown validity on the data that isinput to those processes. I

will clarify this approximation by an equation with two filter points and an output of
four time points. In real-life applications, the output is typically 1000-2000 points
and the filter 5-50 points. The valid formulation of a filtering problem is 0

0
0
0

 ≈

 w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4



 d1

d2
d3
d4

 −
 x1 0

x2 x1
x3 x2
0 x3

 [
f1
f2

]
(7.18)

The weightswt are any positive numbers we choose. Typically thewt are chosen
so that the residual components are about equal in magnitude.

If, instead, the weighting function is applied to theinputs, we have an approxi-
mation that is somewhat different: 0

0
0
0

 ≈

 w1d1
w2d2
w3d3
w4d4

 −
 w1x1 0

w2x2 w1x1
w3x3 w2x2

0 w3x3

 [
f1
f2

]
(7.19)

Comparing the weighted output-residual equation (7.18) to the weighted input-data

equation (7.19), we note that their right-hand columns do not match. The right-hand
column in (7.18) is (0,w2x1,w3x2,w4x3)′ but in (7.19) is (0,w1x1,w2x2,w3x3)′.
The matrix in (7.19) is a simple convolution, so some fast solution methods are
applicable.

7.5.3. Meet the Toeplitz matrix
The solution to any least-squares problem proceeds explicitly or implicitly by find-
ing the inverse to acovariance matrix. Recall the basic filtering equation (??),

y1
y2
y3
y4
y5
y6
y7


=



x1 0 0
x2 x1 0
x3 x2 x1
x4 x3 x2
x5 x4 x3
0 x5 x4
0 0 x5


 f1

f2
f3

 (7.20)

which we can abbreviate byy = Xf . To gain some understanding of your cultural
heritage in time-series analysis, form thecovariance matrix X′X,

X′X =

 s0 s1 s2
s1 s0 s1
s2 s1 s0

 (7.21)

where the elementsst are lags of theautocorrelation of xt . This covariance ma-
trix is an example of aToeplitz matrix. When an application is formulated in the
frequency domain, you may encounter a spectrum as a divisor. When the same ap-
plication is formulated in the time domain, you will see an autocorrelation matrix
that needs inversion.

The Toeplitz matrix is highly structured. Whereas ann×n matrix could con-
tain n2 different elements, the Toeplitz matrix contains onlyn elements that are
different from each other. When computers had limited memory, this memory
savings was important. Also, there are techniques for solving least-squares prob-
lems with Toeplitz covariance matrices that are much faster than those for solv-
ing problems with arbitrary matrices. The effort for arbitrary matrices is propor-
tional to n3, whereas for Toeplitz matrices it isn2. These advantages of Toeplitz

matrices were once overwhelming, although now they are rarely significant. But
because old methods linger on, we need to decide if they are warranted. Recall
that we wrote three convolution programs,contran() /prog:contran, contrunc()

/prog:contrunc, andconvin() /prog:convin. You can verify that a Toeplitz matrix
arises only in the first of these. The other two represent different ways of handling
boundaries. LetW be a diagonal matrix of weighting functions. You can also verify
that the covariance matrixB′WB is not Toeplitz. Thus, Toeplitz matrices only arise
with uniform weighting and transient boundary conditions. If the only tool you have
is a hammer, then everything you see starts to look like a nail. In earlier days, and
by inertia even today, convolution applications tend to be formulated as uniformly
weighted with transient boundaries. This is apitfall .

Toeplitz matrices are associated with elegant mathematics and rapid numerical
solutions. Applications that are solvable by standard methods have historically
been cast in Toeplitz form by imposing simplifying assumptions. This is risky.

The approximation (7.19) becomes reasonable when the weights are slowly
variable, i.e., whenwt is a slowly variable function oft . In practice, I think the

approximation is often justified for slowt2 gain but questionable for automatic gains
that are faster. Compared to Toeplitz methods of solving equation (7.19), the CG
method of solving (7.18) is slower. Here we are going to see how to solve the
problem correctly. If you want to solve the correct problem rapidly, perhaps you
can do so by solving the approximate problem first by a quasi-analytic method and
then doing a few steps of CG.

7.5.4. Setting up any weighted CG program
Equation (7.18) is of the form0≈W(d−Bf). This can be converted to a new prob-
lem without weights by defining a new data vectorWd and a new operatorWB sim-
ply by carryingW through the parentheses to0≈Wd− (WB)f. Convolution fol-
lowed by weighting is implemented in subroutinewcontrunc() /prog:wcontrunc.

wcontrunc

filter and weight.
#
subroutine wcontrunc(adj, add, ww, lag, nx, xx, nf,ff, nn,yy)
integer i, adj, add, lag, nx, nf, nn
real ww(nn), xx(nx), ff(nf), yy(nn)
temporary real ss(nn)
call adjnull(adj, add, ff,nf, yy,nn)
if(adj == 0) { call contrunc(0,0, lag, nx,xx, nf,ff, nn,ss)

do i= 1, nn
yy(i) = yy(i) + ss(i) * ww(i)

}
else { do i= 1, nn

ss(i) = yy(i) * ww(i)
call contrunc(1,1, lag, nx,xx, nf,ff, nn,ss)
}

return; end

Back

7.6. CALCULATING ERROR FILTERS
Theerror in prediction (or interpolation) is often more interesting than the predic-
tion itself. When the predicted component is removed, leaving the unpredictable,
the residual is the prediction error. Let us see how the programshaper() can be
used to find an interpolation-error filter like (f−2, f−1,1, f1, f2). The statement of
wishes is

0
0
0
0
0
0
0
0
0
0


≈



.

.
x1
x2
x3
x4
x5
x6
.
.


+



x1 . . .
x2 x1 . .
x3 x2 . .
x4 x3 x1 .
x5 x4 x2 x1
x6 x5 x3 x2
. x6 x4 x3
. . x5 x4
. . x6 x5
. . . x6



 f−2
f−1
f1
f2

 (7.22)

Taking the column vector ofxt to the other side of the equation gives the form
required by previous CG programs. After solving this system for (f−2, f−1, f1, f2),
we insert the “1” to make theIE filter (f−2, f−1,1, f1, f2), which, applied to the
dataxt , gives the desired IE output.

Notice that the matrix in (7.22) is almostconvolution. It would be convolution
if the central column were not absent. I propose that you not actually solve the
system (7.22). Instead I will show you a more general solution that uses the convo-
lution operator itself. That way you will not need to write programs for the many
“almost” convolution operators arising from the many PE and IE filters with their
variousgaps andlags.

The conjugate-gradient program here is a combination of earlier CG programs
and the weighting methods we must introduce now:

• We need to constrain a filter coefficient to be unity, which we can do by
initializing it to unity and then allowing no changes to it.

• We may wish to constrain some other filter coefficients to be zero (gapping)
by initializing them to zero and allowing no changes to them.

• We may want the output to occur someplace other than off-end prediction.

Thus we will specify a time lag that denotes the predicted or interpolated
time point. The programcontrunc() /prog:contruncis designed for this.

Incorporating all these features intoshaper() , we getiner() . iner For a filter of
the form (1,f1, f2,· · · , fn−1), we would specifylag=1, gap1=1, gapn=1 . For a fil-
ter of the form (1,0,f2,· · · , fn−1), we would specifylag=1, gap1=1, gapn=2 . For
a filter of the form (f−2, f−1,1, f1, f2), we would specifynf=5, lag=3, gap1=3,

gapn=3 .
This program uses the convolution programcontrunc() , which is handy in

practice because its output has the same length as its input. This convenience is
partly offset by the small danger that significant output energy in the “start up” and
“off end” zones could be truncated. Specifically, that energy would be in the top
two and bottom two rows of equation (7.22).

7.6.1. Stabilizing technique
Theory forstabilizing least squares, using equations (??) and (??), was described
earlier in this book. I installed this stabilization, along with the filter determina-
tions discussed in this chapter, but as I expected, stabilization in this highly overde-

weighted interpolation-error filter
#
subroutine iner(nf,f, nr,yy,rr, ww, niter, lag, gap1, gapn)
integer i, iter, nf, nr, niter, lag, gap1, gapn
real f(nf), yy(nr), rr(nr), ww(nr)
temporary real df(nf), sf(nf), dr(nr), wr(nr), sr(nr)
if(lag < gap1 || lag > gapn) call erexit(’input fails gap1<=lag<=gapn’)
do i= 1, nf

f(i) = 0.
f(lag) = 1. # set output lag
call wcontrunc(0,0, ww, lag, nr,yy, nf, f, nr,wr)
call scaleit(-1., nr,wr) # negative
do iter= 0, niter {

call wcontrunc(1,0, ww, lag, nr,yy, nf,df, nr,wr) # df=yy*wr
do i= gap1, gapn

df(i) = 0. # constrained lags
call wcontrunc(0,0, ww, lag, nr,yy, nf,df, nr,dr) # dr=yy*df
call cgstep(iter, nf, f,df,sf, _

nr,wr,dr,sr) # f=f+df
}

call contrunc(0,0, lag, nr,yy, nf,f, nr,rr) # unweighted res
return; end

Back

termined application showed no advantages. Nevertheless, it is worth seeing how
stabilization is implemented, particularly since the changes to the program calling
iner() make for more informative plots.

The input data is modified by appending a zero-padded impulse at the data’s
end. The output will contain the filter impulse response in that region. The spike
size is chosen to be compatible with the data size, for the convenience of the plotting
programs. Theweighting function in the appended region is scaled according to
how much stabilization is desired. Figure7.12shows the complete input and resid-
ual. It also illustrates the problem that output data flows beyond the length of the
input data because of the nonzero length of the filter. This extra output is undoubt-
edly affected by the truncation of the data, and its energy should not be part of the
energy minimization. Therefore it is weighted by zero.

EXERCISES:
1 Given a sinusoidal functionxt = cos(ωt+φ), a three-term recurrence relation-

ship predictsxt from the previous two points, namely,xt = a1xt−1+a2xt−2.
Find a1 anda2 in terms ofω1t . HINT: See chapter3. (Notice that the coeffi-
cients depend onω but notφ.)

Figure 7.12: Data from the North Sea (extracted from Yilmaz and Cumro dataset
33) processed by prediction error. Rightmost box is weighted according to the de-
sired stabilization. Thetruncation event is weighted by zero.tsa-wz33[NR]

2 Figure7.9has a separate filter for each trace. Consider the problem of finding
a single filter for all the traces. What is the basic operator and its adjoint?
Assemble these operators using subroutinecontrunc() /prog:contrunc.

3 Examine the filters on Figure7.12. Notice that, besides the pulse at the water
depth, another weak pulse occurs at double that depth. Suggest a physical
mechanism. Suggest a mechanism relating to computational approximations.

7.7. INTERPOLATION ERROR
Interpolation-error filters have the form (a−m,· · · ,a−2,a−1,1,a1,a2,a3,· · · ,an),
where theat coefficients are adjusted to minimize the power in the filter output.
IE filters have the strange characteristic that if the input spectrum isS(ω), then
the output spectrum will tend toS(ω)−1. Thus these filters tend to turn poles into
zeros and vice versa. To see why IE filters invert the spectrum of the input, we
only need recall the basic premise of least-squares methods, that the residual (the
output) is orthogonal to the fitting function (the input at all lags except the zero
lag). Thus, the crosscorrelation of the input and the output is an impulse. This

can only happen if their spectra are inverses, which is a disaster for the overall
appearance of a seismogram. Such drastic spectral change can be controlled in a
variety of ways, as is true with PE filters, but with IE filters there seems to be little
experience to build on besides my own. Figure7.13illustrates an interpolation-error
result where gapping has been used to limit the color changes. I also chose thegap
to condense the wavelet. You judge whether the result is successful. Notice also
a high-frequency arrival after the diagonal lines: this shows that the IE filters are
boosting very high frequencies despite the gapping.

7.7.1. Blind all-pass deconvolution
A well-established theoretical concept that leads to unwarranted pessimism is the
idea thatblind deconvolutioncannot find anall-pass filter. If we carefully examine
the analysis leading to that conclusion, we will find lurking the assumption that the
weighting function used in the least-squares estimation is uniform. And when this
assumption is wrong, so is our conclusion, as Figure7.14shows. Recall that the
inverse to an all-pass filter is its time reverse. The reversed shape of the filter is seen
on the inputs where there happen to be isolated spikes.

Figure 7.13: Data from the North Sea (extracted from Yilmaz and Cumro dataset
33) processed by interpolation error. Inputs above outputs. Filters displayed on the
right. tsa-wz33ie[NR]

Figure 7.14: Four independent trials of deconvolution of sparse noise into an all-
pass filter. Alternate lines are input and output.tsa-dallpass[NR]

Let us see what theory predicts cannot be done, and then I will tell you how I
did it. If you examine the unweighted least-squares error-filter programs, you will
notice that the first calculation is the convolution operator and then its transpose.
This takes the autocorrelation of the input and uses it as a gradient search direction.
Take a white input and pass it through a phase-shift filter; the output autocorrelation
is an impulse function. This function vanishes everywhere except for the impulse
itself, which is constrained against rescaling. Thus the effective gradient is zero.
The solution, an impulse filter, is already at hand, so a phase-shift filter seems un-
findable.

On the other hand, if the signal strength of the input varies, we should be bal-
ancing its expectation by weighting functions. This is what I did in Figure7.14. I
chose a weighting function equal to the inverse of the absolute value of the output of
the filter plus anε. Since the weighting function depends on the output, the process
is iterative. The value ofε chosen was 20% of the maximum signal value.

Since the iteration is anonlinear procedure, it might not always work. A well-
established body of theory says it will not work withGaussiansignals, and Fig-
ure7.15is consistent with that theory.

In Figure7.13, I used weighting functions roughly inverse to the envelope of the

Figure 7.15: Failure of blind all-pass deconvolution for Gaussian signals. The top
signal is based on Gaussian random numbers. Lower signals are based on successive
integer powers of Gaussian signals. Filters (on the right) fail for the Gaussian case,
but improve as signals become sparser.tsa-dgauss[NR]

signal, taking a floor for the envelope at 20% of the signal maximum. Since weight-
ing functions were used, the filters need not have turned out to be symmetrical about
their centers, but the resulting asymmetry seems to be small.

Chapter 8

Missing-data restoration

A brief summary of chapters5 and 6 is that “the answer” is the solution to an
inversion problem—a series of steps with manypitfall s. Practitioners often stop
after the first step, while academics quibble about the convergence, i.e., the last

433

steps. Practitioners might stop after one step to save effort, to save risk, or because
the next step is not obvious. Here we study a possible second step—replacing the
zero-valued data presumed by any adjoint operator with more reasonable values.

A great many processes are limited by the requirement to avoidspatial aliasing—
that no wavelength should be shorter than twice the sampling interval on the data
wave field. This condition forces costly expenditures in 3-D reflection data acqui-
sition and yields a mathematical dichotomy between data processing in exploration
seismology and data processing in earthquake seismology.

The simple statement of the spatial Nyquist requirement oversimplifies real
life. Recently, S.Spitz (1991) showed astonishing results that seem to violate the
Nyquist requirement. In fact they force us to a deeper understanding of it. In this
chapter we will discuss many new opportunities that promise much lower data-
acquisition costs and should also reduce the conceptual gap between exploration
and earthquake seismology.

8.1. INTRODUCTION TO ALIASING
In its simplest form, the Nyquist condition says that we can have no frequencies
higher than two points per wavelength. In migration, this is a strong constraint on
data collection. It seems there is no escape. Yet, in applications dealing with a
CMP gather (such as in Figure5.5 or 5.6), we see data with spatial frequencies
that exceed Nyquist and we are not bothered, because after NMO, these frequen-
cies are OK. Nevertheless, such data is troubling because it breaks many of our
conventional programs, such as downward continuation with finite differences or
with Fourier transforms. (No one uses focusing forstacking.) Since NMO defies
the limitation imposed by the simple statement of the Nyquist condition, we revise
the condition to say that the real limitation is on the spectral bandwidth, not on the
maximum frequency. Mr. Nyquist does not tell us where that bandwidth must be
located. Further, it seems that precious bandwidthneed not be contiguous.The sig-
nal’s spectral band can be split into pieces and those pieces positioned in different
places. Fundamentally, the issue is whether the total bandwidth exceeds Nyquist.
Noncontiguous Nyquist bands are depicted in Figure8.1.

Noncontiguous bandwidth arises naturally with two-dimensional data where
there are several plane waves present. There the familiar spatial Nyquist limitation

Figure 8.1: Hypothetical spa-
tial frequency bands. Top is typi-
cal. Middle for data skewed with
τ = t − px. Bottom depicts data
with wave arrivals from three di-
rections. mis-nytutor [ER]

oversimplifies real life because the plane waves link time and space.

The spatial Nyquist frequency need not limit the analysis of seismic data be-
cause the plane-wave model links space with time.

8.1.1. Relation of missing data to inversion
We takedata spaceto be a uniform mesh on which some values are given and
some are missing. We rarely have missing values on a time axis, but commonly
have missing values on a space axis, i.e., missing signals. Missing signals (traces)
happen occasionally for miscellaneous reasons, and they happen systematically be-
cause ofaliasing andtruncation . The aliasing arises for economic reasons—saving
instrumentation by running receivers far apart. Truncation arises at the ends of any
survey, which, like any human activity, must be finite. Beyond the survey lies more
hypothetical data. The traces we will find for themissing dataare not as good as
real observations, but they are closer to reality than supposing unmeasured data is
zero valued. Making an image with a single application of an adjoint modeling oper-
ator amounts to assuming that data vanishes beyond its given locations.Migration

is an example of an economically important process that makes this assumption.
Dealing with missing data is a step beyond this. Ininversion, restoringmissing
data reduces the need for arbitrary model filtering.

8.1.2. My model of the world
In your ears now are sounds from various directions. From moment to moment
the directions change. Momentarily, a single direction (or two) dominates. Your
ears sample only two points in x-space. Earthquake data is a little better. Explo-
ration data is much better and sometimes seems to satisfy the Nyquist requirement,
especially when we forget that the world is 3-D.

We often characterize data from any region of (t ,x)-space as “good” or “noisy”
when we really mean it contains “few” or “many” plane-wave events in that region.
For noisy regions there is no escaping the simple form of the Nyquist limitation.
For good regions we may escape it. Real data typically contains both kinds of re-
gions. Undersampled data with a broad distribution of plane waves is nearly hope-
less. Undersampled data with a sparse distribution of plane waves is prospective.
Consider data containing a spherical wave. The angular bandwidth in a plane-wave

decomposition appears hugeuntil we restrict attention to a small regionof the data.
(Actually a spherical wave contains very little information compared to an arbitrary
wave field.) It can be very helpful in reducing the local angular bandwidth if we
can deal effectively with tiny pieces of data as we did in chapter4. If we can deal
with tiny pieces of data, then we can adapt to rapid spatial and temporal variations.
This chapter will show such tiny windows of data. We will begin with missing-data
problems in one dimension. Because these are somewhat artificial, we will move on
to two dimensions, where the problems are genuine.

8.2. MISSING DATA IN ONE DIMENSION
A method for restoringmissing datais to ensure that the restored data, after spec-
ified filtering, has minimum energy. Specifying the filter chooses the interpolation
philosophy. Generally the filter is a “roughening" filter. When a roughening filter
goes off the end of smooth data, it typically produces a big end transient. Minimiz-
ing energy implies a choice for unknown data values at the end, to minimize the
transient. We will examine five cases and then make some generalizations.

A method for restoring missing data is to ensure that the restored data, after
specified filtering, has minimum energy.

Let m denote a missing value. The dataset on which the examples are based
is (· · · ,m,m,1,m,2,1,2,m,m,· · ·). Using subroutinemiss1() /prog:miss1, values
were found to replace the missingm values so that the power in the filtered data is
minimized. Figure8.2shows interpolation of the dataset with 1−Z as a roughening
filter. The interpolated data matches the given data where they overlap.

Figures8.2–8.6 illustrate that the rougher the filter, the smoother the interpo-
lated data, and vice versa. Let us switch our attention from the residual spectrum
to the residual itself. The residual for Figure8.2 is theslopeof the signal (because
the filter 1− Z is afirst derivative), and the slope is constant (uniformly distributed)
along the straight lines where the least-squares procedure is choosing signal values.
So these examples confirm the idea that theleast-squares methodabhors large val-
ues (because they are squared). Thus, least squares tend to distribute uniformly
residuals in both time and frequency to the extent theconstraints allow.

This idea helps us answer the question, what is the best filter to use? It suggests
choosing the filter to have an amplitude spectrum that is inverse to the spectrum we

Figure 8.2: Top is given data.
Middle is given data with in-
terpolated values. Missing val-
ues seem to be interpolated by
straight lines. Bottom shows the
filter (1,−1), whose output has
minimum power. mis-mlines
[ER]

Figure 8.3: Top is the same in-
put data as in Figure8.2. Mid-
dle is interpolated. Bottom shows
the filter (−1,2,−1). The miss-
ing data seems to be interpolated
by parabolas. mis-mparab[ER]

Figure 8.4: Top is the
same input. Middle is interpo-
lated. Bottom shows the filter
(1,−3,3,−1). The missing data
is very smooth. It shoots upward
high off the right end of the ob-
servations, apparently to match
the data slope there.mis-mseis
[ER]

Figure 8.5: The filter
(−1,−1,4,−1,−1) gives in-
terpolations with stiff lines.
They resemble the straight lines
of Figure 8.2, but they project
through a cluster of given values
instead of projecting to the
nearest given value. Thus, this
interpolation tolerates noise in
the given data better than the in-
terpolation shown in Figure8.4.
mis-msmo[ER]

Figure 8.6: Bottom shows the
filter (1,1). The interpolation is
rough. Like the given data it-
self, the interpolation has much
energy at the Nyquist frequency.
But unlike the given data, it
has little zero-frequency energy.
mis-moscil [ER]

want for the interpolated data. A systematic approach is given in the next section,
but I will offer a simple subjective analysis here. Looking at the data, I see that all
points are positive. It seems, therefore, that the data is rich in low frequencies; thus
the filter should contain something like (1− Z), which vanishes at zero frequency.
Likewise, the data seems to contain Nyquist frequency, so the filter should contain
(1+Z). The result of using the filter (1−Z)(1+Z)= 1−Z2 is shown in Figure8.7.
This is my best subjective interpolation based on the idea that the missing data
should look like the given data. Theinterpolation andextrapolations are so good
that you can hardly guess which data values are given and which are interpolated.

8.2.1. Missing-data program
There are two ways to code the missing-data estimation, one conceptually simple
and the other leading to a concise program. Begin with a given filterf and create
a shifted-column matrixF, as in equation??. The problem is that 0≈ Fd where
d is the data. The columns ofF are of two types, those that multiplymissingdata
values and those that multiplyknowndata values. Suppose we reorganizeF into
two collections of columns:Fm for the missing data values, andFk for the known

Figure 8.7: Top is the same as in
Figures8.2 to 8.6. Middle is in-
terpolated. Bottom shows the fil-
ter (1,0,−1), which comes from
the coefficients of (1−Z)(1+Z).
Both the given data and the inter-
polated data have significant en-
ergy at both zero and Nyquist fre-
quencies. mis-mbest[ER]

data values. Now, instead of 0≈ Fd, we have 0≈ Fmdm+ Fkdk or −Fkdk ≈

Fmdm. Taking−Fkdk = y, we have simply an overdetermined set of simultaneous
equations likey≈ Ax, which we solved withcgmeth() /prog:cgmeth.

The trouble with this approach is that it is awkward to program the partitioning
of the operator into the known and missing parts, particularly if the application of
the operator uses arcane techniques, such as those used by the fast Fourier transform
operator or various numerical approximations to differential or partial differential
operators that depend on regular data sampling. Even for the modest convolution
operator, we already have a library of convolution programs that handle a variety of
end effects, and it would be much nicer to use the library as it is rather than recode
it for all possible geometrical arrangements of missing data values. Here I take the
main goal to be the clarity of the code, not the efficiency or accuracy of the solution.
(So, if your problem consumes too many resources, and if you have many more
known points than missing ones, maybe you should solvey≈ Fmx and ignore what
I suggest below.)

How then can we mimic the erratically structuredFm operator using theF op-
erator? When we multiply any vector intoF, we must be sure that the vector has
zero-valued components to hit the columns ofF that correspond to missing data.

When we look at the result of multiplying the adjointF′ into any vector, we must be
sure to ignore the output at the rows corresponding to the missing data. As we will
see, both of these criteria can be met using a single loop.

The missing-data program begins by loading the negative-filtered known data
into a residual. Missing data should try to reduce this residual. The iterations
proceed as incgmeth() /prog:cgmeth, invstack() /prog:invstack, deghost()

/prog:deghost, shaper() /prog:shaper, and iner() /prog:iner. The new ingre-

dient in the missing-data subroutinemiss1() /prog:miss1is the simpleconstraint
that the known data cannot be changed. Thus, after the gradient is computed, the
components that correspond to known data values are set to zero.miss1 That pre-
vents changes to the known data by motion any distance along thegradient. Like-
wise, motion along previous steps cannot perturb the known data values. Hence, the
CG method (finding the minimum power in the plane spanned by the gradient and
the previous step) leads to minimum power while respecting the constraints.

EXERCISES:
1 Figure8.2–8.6seem to extrapolate to vanishing signals at the side boundaries.

Why is that so, and what could be done to leave the sides unconstrained in that

fill in missing data on 1-axis by minimizing power out of a given filter.
#
subroutine miss1(na, a, np, p, copy, niter)
integer iter, ip, nr, na, np, niter
real p(np) # in: known data with zeros for missing values.

out: known plus missing data.
real copy(np) # in: copy(ip) vanishes where p(ip) is a missing value.
real a(na) # in: roughening filter
temporary real dp(np),sp(np), r(np+na-1),dr(np+na-1),sr(np+na-1)
nr = np+na-1

call contran(0, 0, na,a, np, p, r) # r = a*p convolution
call scaleit (-1., nr, r) # r = -r

do iter= 0, niter { # niter= number missing or less
call contran(1, 0, na,a, np,dp, r) # dp(a,r) correlation
do ip= 1, np

if(copy(ip) != 0.) # missing data where copy(ip)==0
dp(ip) = 0. # can’t change known data

call contran(0, 0, na,a, np,dp, dr) # dr=a*dp convolution
call cgstep(iter, np,p,dp,sp, nr,r,dr,sr) # p=p+dp; r=r-dr
}

return; end

Back

way?

2 Compare Figure8.7to the interpolation values you expect for the filter (1,0,−.5).

3 Indicate changes tomiss1() /prog:miss1for missing data in two dimensions.

4 Suppose the call inmiss1() /prog:miss1was changed fromcontran() /prog:contran

to convin() /prog:convin. Predict the changed appearance of Figure8.2.

5 Suppose the call inmiss1() was changed fromcontran() /prog:contranto

convin() /prog:convin. What other changes need to be made?

6 Show that the interpolation curve in Figure8.3 is not parabolic as it appears,
but cubic. (HINT: Show that (∇2)′∇2u= 0.)

7 Verify by a program example that the number of iterations required with simple
constraints is the number of free parameters.

8.3. MISSING DATA AND UNKNOWN FILTER
Recall the missing-data figures beginning with Figure8.2. There the filters were
taken as known, and the only unknowns were the missing data. Now, instead of
having a predetermined filter, we will solve for the filter along with the missing
data. The principle we will use is that the output power is minimized while the filter
is constrained to have one nonzero coefficient (else all the coefficients would go to
zero). We will look first at some results and then see how they were found.

In Figure8.8 the filter is constrained to be of the form (1,a1,a2). The result is
pleasing in that the interpolated traces have the same general character as the given
values. The filter came out slightly different from the (1,0,−1) that I suggested for
Figure8.7based on a subjective analysis. Curiously, constraining the filter to be of
the form (a−2,a−1,1) in Figure8.9 yields the same interpolated missing data as in
Figure8.8. I understand that the sum squared of the coefficients ofA(Z)P(Z) is
the same as that ofA(1/Z)P(Z), but I do not see why that would imply the same
interpolated data.

Figure 8.8: Top is known data.
Middle includes the interpolated
values. Bottom is the filter with
the leftmost point constrained to
be unity and other points cho-
sen to minimize output power.
mis-missif [ER]

Figure 8.9: The filter here had its
rightmost point constrained to be
unity—i.e., this filtering amounts
to backward prediction. The in-
terpolated data seems to be iden-
tical, as with forward prediction.
mis-backwards[ER]

8.3.1. Objections to interpolation error
In any data interpolation or extrapolation, we want the extended data to behave like
the original data. And, in regions where there is no observed data, the extrapolated
data should drop away in a fashion consistent with itsspectrum determined from
the known region. We will see that a filter like (a−2,a−1,1,a1,a2) fails to do the job.
We need to keep anendvalue constrained to “1,” not the middle value.

In chapter7 we learned about theinterpolation-error filter (IE filter), a filter
constrained to be “+1” near the middle and consisting of other coefficients chosen
to minimize the power out. The basic fact about the IE filter is that the spectrum
out tends to the inverse of the spectrum in, so the spectrum of the IE filter tends to
the inversesquaredof the spectrum in. The IE filter is thus not a good weighting
function for a minimization, compared to the prediction-error (PE) filter, whose
spectrum is inverse to the input. To confirm these concepts, I prepared synthetic
data consisting of a fragment of a damped exponential, and off to one side of it an
impulse function. Most of the energy is in the damped exponential. Figure8.10
shows that the spectrum and the extended data are about what we would expect.
From the extrapolated data, it is impossible to see where the given data ends. For
comparison, I prepared Figure8.11. It is the same as Figure8.10, except that the

Figure 8.10: Top is synthetic
data with missing data repre-
sented by zeros. Middle includes
the interpolated values. Bottom
is the filter, a prediction-error fil-
ter which may look symmetric
but is not quite. mis-exp [ER]

filter is constrained in the middle. Notice that the extended data doesnot have the
spectrum of the given data—the wavelength is much shorter. The boundary between
real data and extended data is not nearly as well hidden as in Figure8.10.

Figure 8.11: Top is synthetic
data with missing data repre-
sented by zeros. Middle includes
the interpolated values. Bottom
is the filter, an interpolation-error
filter. mis-center[ER]

Next I will pursue some esoteric aspects of one-dimensional missing-data prob-

lems. You might prefer to jump forward to section8.4, where we tackle two-
dimensional analysis.

8.3.2. Packing both missing data and filter into a CG vector
Now let us examine the theory and coding behind the above examples. Define
a roughening filterA(Z) and a data signalP(Z) at some stage of interpolation.
The regression is 0≈ A(Z)P(Z) where the filterA(Z) has at least one coefficient
constrained to be nonzero and the data contains both known and missing values.
Think of perturbations1A and 1P. We neglect the nonlinear term1A1P as
follows:

0 ≈ (A + 1A)(P + 1P) (8.1)

0 ≈ AP + P1A + A1P + 1A1P (8.2)

−AP ≈ P1A + A1P (8.3)

To make a program such asmiss1() /prog:miss1, we need topack both unknowns
into a single vectorx() = (1P,1A) before calling the conjugate-gradient program.
Likewise, the resulting filter and data coming out must be unpacked. Also, the

MISSIF -- find MISSing Input data and Filter on 1-axis by min power out.
#
subroutine missif(na, lag, aa, np, pp, known, niter)
integer iter, na, lag, np, niter, nx, ax, px, ip, nr
real pp(np) # input: known data with zeros for missing values.

output: known plus missing data.
real known(np) # known(ip) vanishes where p(ip) is a missing value.
real aa(na) # input and output: roughening filter
temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1), gg(np+na-1), ss(np+na-1)
nr= np+na-1; nx= np+na; px=1; ax=1+np;
call copy(np, pp, x(px))
call copy(na, aa, x(ax))
if(aa(lag) == 0.) call erexit(’missif: a(lag)== 0.’)
do iter= 0, niter {

call contran(0, 0, na,aa, np, pp, rr)
call scaleit (-1., nr, rr)
call contran(1, 0, na,aa, np, g(px), rr)
call contran(1, 0, np,pp, na, g(ax), rr)
do ip= 1, np

if(known(ip) != 0)
g(ip) = 0.

g(lag+np) = 0.
call contran(0, 0, na,aa, np, g(px), gg)
call contran(0, 1, np,pp, na, g(ax), gg)
call cgstep(iter, nx, x, g, s, nr, rr, gg, ss)
call copy(np, x(px), pp)
call copy(na, x(ax), aa)
}

return; end

Back

gradient now has two contributions, one fromA1P and one fromP1A, and these
must be combined. The programmissif() , which makes Figures8.8through8.11,
effectively combinesmiss1() /prog:miss1and iner() /prog:iner. A new aspect
is that, to avoid accumulation of errors from the neglect of thenonlinear product
1A1P, the residual is recalculated inside the iteration loop instead of only once at
the beginning. missif

There is a danger thatmissif() might converge very slowly or fail ifaa() and
pp() are much out of scale with each other, so be sure you input them with about
the same scale. I really should revise the code, perhaps to scale the “1” in the filter
to the data, perhaps to equal the square root of the sum of the data values.

8.3.3. Spectral preference and training data
I tried using themissif() program tointerlace data—i.e., to put new data values
between each given value. This did not succeed. The interlaced missing values
began equaling zero and remained zero. Something is missing from the problem
formulation.

This paragraph describes only the false starts I made toward the solution. It

seems that the filter should be something like (1,−2,1), because that filter inter-
polates on straight lines and is not far from the feedback coefficients of a damped
sinusoid. (See equation (??).) So I thought about different ways to force the solution
to move in that direction. Traditionallinear inverse theory offers several sugges-
tions; I puzzled over these before I found the right one. First, I added the obvious
stabilizationsλ2

1||p|| andλ2
2||a||, but they simply made the filter and the interpolated

data smaller. I thought about changing the identity matrix inλI to a diagonal matrix
||33p|| or ||34a||. Using34, I could penalize the filter at even-valued lags, hoping
that it would become nonzero at odd lags, but that did not work. Then I thought
of usingλ2

5||p− p||, λ2
6||a− a||, 32

7||p− p||, and32
8||a− a||, which would allow

freedom of choice of themeanandvariance of the unknowns. In that case, I must
supply the mean and variance, however, and doing that seems as hard as solving the
problem itself. Suddenly, I realized the answer. It is simpler than anything above,
yet formally it seems more complicated, because a full inversecovariance matrix
of the unknown filter is implicitly supplied.

I found a promising new approach in thestabilized minimization

min
P,A

(||P A|| + λ9||P0A|| + λ10||P A0||) (8.4)

whereP0 andA0 are like givenpriors. But they are not prior estimates ofP andA
because the phases ofP0 and A0 are irrelevant, washing out in the squaring. If we
specify large values forλ, the overall problem becomes more linear, soP0 and A0
give a way to imposeuniquenessin anonlinear case where uniqueness is otherwise
unknown. Then, of course, theλ values can be reduced to see where the nonlinear
part||P A|| is leading.

The next question is, what are the appropriate definitions forP0 and A0? Do
we need bothP0 andA0, or is one enough? We will come to understandP0 andA0
better as we study more examples. Simple theory offers some indications, however.
It seems natural thatP0 should have the spectrum that we believe to be appropriate
for P. We have little idea about what to expect forA, except that its spectrum should
be roughly inverse toP.

To begin with, I think ofP0 as a low-pass filter, indicating that data is normally
oversampled. Likewise,A0 should resemble a high-pass filter. When we turn to
two-dimensional problems, I will guess first thatP0 is a low-passdip filter, andA0
a high-pass dip filter.

Returning to the one-dimensional signal-interlacing problem, I takeA0 = 0
and chooseP0 to be adifferentdataset, which I will call the “training data .” It is

a small, additional, theoretical dataset that has no missing values. Alternately, the
training data could come from a large collection of observed data that is without
missing parts. Here I simply chose the short signal (1,1) that isnot interlaced by
zeros. This gives the fine solution we see in Figure8.12.

Figure 8.12: Left shows that data will not interlace without training data. Right
shows data being interlaced because of training data.mis-priordata[ER]

To understand the coding implied by the optimization (8.4), it is helpful to
write the linearized regression. The training signalP0 enters as a matrix of shifted
columns of the training signal, sayT; and the high-pass filterA0 also appears as
shifted columns in a matrix, sayH. The unknownsA and P appear both in the
matricesA andP and in vectorsa andp. Thelinearized regressionis −Pa

−Hp
−Ta

 ≈

 A P
H 0
0 T

 [
1p
1a

]
(8.5)

The top row restates equation (8.3). The middle row says that0= H(p+1p),
and the bottom row says that0= T(a+1a). A program that does the job ismis-

fip() /prog:misfip. It closely resemblesmissif() /prog:missif. misfip The new
computations are the lines containing the training datatt . (I omitted the extra clut-
ter of the high-pass filterhh because I did not get an interesting example with it.)
Compared tomissif() /prog:missif, additional clutter arises from pointers needed
to partition the residual and the gradient abstract vectors into three parts, the usual
one for||P A|| and the new one for||P0A|| (and potentially||P A0||).

You might wonder why we need another program when we could use the old

MISFIP --- find MISsing peF and Input data on 1-axis using Prior data.
#
subroutine misfip(nt,tt, na,aa, np,pp,known, niter)
integer nt, na, ip,np, npa, nta, nx,nr, iter,niter, ax, px, qr, tr
real pp(np), known(np), aa(na) # same as in missif()
real tt(nt) # input: prior training data set.
temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1 +na+nt-1), gg(np+na-1 +na+nt-1), ss(np+na-1 +na+nt-1)
npa= np+na-1; nta= nt+na-1 # lengths of outputs of filtering
nx = np+na; nr= npa+nta # length of unknowns and residuals
px=1; qr=1; ax=1+np; tr=1+npa # pointers
call zero(na, aa); aa(1) = 1.
call copy(np, pp, x(px))
call copy(na, aa, x(ax))
do iter= 0, niter {

call contran(0, 0, na,aa, np, pp, rr(qr))
call contran(0, 0, na,aa, nt, tt, rr(tr)) # extend rr with train
call scaleit(-1., nr, rr)
call contran(1, 0, na,aa, np, g(px), rr(qr))
call contran(1, 0, np,pp, na, g(ax), rr(qr))
call contran(1, 1, nt,tt, na, g(ax), rr(tr))
do ip= 1, np { if(known(ip) != 0) { g(ip+(px-1)) = 0. } }

g(1 +(ax-1)) = 0.
call contran(0, 0, na,aa, np, g(px), gg(qr))
call contran(0, 1, np,pp, na, g(ax), gg(qr))
call contran(0, 0, nt,tt, na, g(ax), gg(tr))
call cgstep(iter, nx, x, g, s, nr, rr, gg, ss)
call copy(np, x(px), pp)
call copy(na, x(ax), aa)
}

return; end

Back

program and simply append the training data to the observed data. We will en-
counter some applications where the old program will not be adequate. These in-
volve the boundaries of the data. (Recall that, in chapter4, when seismic events
changed their dip, we used a two-dimensional wave-killing operator and were care-
ful not to convolve the operator over the edges.) Imagine a dataset that changes with
time (or space). ThenP0 might not be training data, but data from a large interval,
while P is data in a tiny window that is moved around on the big interval. These
ideas will take definite form in two dimensions.

8.3.4. Summary of 1-D missing-data restoration
Now I will summarize our approach to 1-D missing-data restoration in words that
will carry us towards 2-D missing data. First we noticed that, given a filter, minimiz-
ing the output power will find missing input data regardless of the volume missing
or its geometrical complexity. Second, we experimented with various filters and
saw that theprediction-error filter is an appropriate choice, because data exten-
sions into regions without data tend to have the spectrum inverse to the PE filter,
which (from chapter7) is inverse to the known data. Thus, the overall problem is

perceived as anonlinear one, involving the product of unknown filter coefficients
and unknown data. It is well known that nonlinear problems are susceptible to mul-
tiple solutions; hence the importance of the stabilization method described, which
enables us to ensure a reasonable solution.

8.3.5. 2-D interpolation before aliasing
A traditional method of data interpolation on a regular mesh is a four-step proce-
dure: (1) set zero values at the points to be interpolated; (2) Fourier transform; (3)
set to zero the high frequencies; and (4) inverse transform. This is a fine method
and is suitable for many applications in both one dimension and higher dimensions.
Where the method falls down is where more is needed than simple interlacing—for
example, when signal values are required beyond the ends of the data sample. The
simple Fourier method of interlacing also loses its applicability when known data
is irregularly distributed. An example of an application in two dimensions of the
methodology of this section is given in the section on tomography beginning on
page504.

8.4. 2-D INTERPOLATION BEYOND ALIASING
I have long marveled at the ability of humans to interpolate seismic data containing
mixtures of dips where spatial frequencies exceed the Nyquist limits. These limits
are hard limits on migration programs. Costly field-data-acquisition activities are
designed with these limits in mind. I feared this human skill of going beyond the
limit was deeply nonlinear and beyond reliable programming. Now, however, I
have obtained results comparable in quality to those of S.Spitz, and I am doing so
in a way that seems reliable—using two-stage, linear least squares. First we will
look at some results and then examine the procedure. Before this program can be
applied to field data for migration, remember that the data must be broken into many
overlapping tiles of about the size shown here and the results from each tile pieced
together.

Figure8.13shows three plane waves recorded on five channels and the interpo-
lated data. Both the original data and the interpolated data can be described as “be-
yondaliasing” because on the input data the signal shifts exceed the signal duration.
The calculation requires only a few seconds of a “two-stage least-squares” method,
where the first stage estimates an inversecovariance matrix of the known data, and
the second uses it to estimate the missing traces. Actually, a2-D prediction-error

Figure 8.13: Left is five signals, each showing three arrivals. Using the data shown
on the left (and no more), the signals have been interpolated. Three new traces
appear between each given trace as shown on the right.mis-lace3 [ER]

filter is estimated, and the inverse covariance matrix, which amounts to the PE filter
times its adjoint, is not needed explicitly.

Figure 8.14: Two plane waves and their interpolation.mis-lace2 [ER]

Let us now examine a case with minimal complexity. Figure8.14shows two
plane waves recorded on three channels. That is the minimum number of channels

required to distinguish two superposing plane waves. Notice on the interpolated
data that the original traces are noise-free, but the new traces have acquired a low
level of noise. This will be dealt with later.

Figure8.15shows the same calculation in the presence of noise on the original
data. We see that the noisy data is interpolatable just as was the noise-free data, but
now we can notice the organization of the noise. It has the same slopes as the plane
waves. This was also true on the earlier figures (Figure8.13and8.14), as is more
apparent if you look at the page from various grazing angles. To display the slopes
more clearly, Figure8.15is redisplayed in a raster mode in Figure8.16.

8.4.1. Interpolation with spatial predictors
A two-dimensional filter is a small plane of numbers that is convolved over a big
data plane of numbers. One-dimensional convolution can use the mathematics of
polynomial multiplication , such asY(Z)= X(Z)F(Z), whereas two-dimensional
convolution can use something likeY(Z1, Z2) = X(Z1, Z2)F(Z1, Z2). Polynomial
mathematics is appealing, but unfortunately it implies transientedgeconditions,
whereas here we need different edge conditions, such as those of the dip-rejection

Figure 8.15: Interpolating noisy plane waves.mis-lacenoise[ER]

Figure 8.16: Interpolating noisy plane waves.mis-laceras[ER]

filters discussed in Chapter4, which were based on simple partial differential equa-
tions. Here we will examinespatial prediction-error filters (2-D PE filters) and
see that they too can behave like dip filters.

The typesetting software I am using has no special provisions for two-dimensional
filters, so I will set them in a little table. Letting “·” denote a zero, we denote atwo-
dimensional filter that can be a dip-rejection filter as

a b c d e
· · 1 · ·

(8.6)

where the coefficients (a,b,c,d,e) are to be estimated by least squares in order to
minimize the power out of the filter. (In the table, the time axis runs horizontally, as
on data displays.)

Fitting the filter to two neighboring traces that are identical but for a time shift,
we see that the filter (a,b,c,d,e) should turn out to be something like (−1,0,0,0,0)
or (0,0,−.5,−.5,0), depending on the dip (stepout) of the data. But if the two
channels are not fully coherent, we expect to see something like (−.9,0,0,0,0) or
(0,0,−.4,−.4,0). For now we will presume that the channels are fully coherent.

8.4.2. Refining both t and x with a spatial predictor
Having determined a 2-D filter, say on the original datamesh, we can nowinterlace
both t andx and expect to use the identical filter. This is because slopes are pre-
served if we replace (1t ,1x) by (1t/2,1x/2). Everyone knows how to interpolate
data on the time mesh, so that leaves the job of interpolation on the space mesh:
in (8.6) the known (a,b,c,d,e) can multiply a known trace, and then the “1” can
multiply the interlaced and unknown trace. It is then easy to minimize the power
out by definingthe missing trace to be the negative of that predicted by the filter
(a,b,c,d,e) on the known trace. (The spatial interpolation problem seems to be
solved regardless of the amount of the signal shift. A “spatial aliasing” issue does
not seem to arise.) It is nice to think of the unknowns being under the “1” and the
knowns being under the (a,b,c,d,e), but the CG method has no trouble working
backwards too.

After I became accustomed to using the CG method, I stopped thinking that the
unknown data is that which is predicted, and instead began to think that the unknown
data is that which minimizes the power out of the prediction filter. I ignored the
question of which data values are known and which are unknown. This thinking
enables a reformulation of the problem, so that interpolation on the time axis is an

unnecessary step. This is the way all my programs work. Think of the filter that
follows as applied on the original coarse-mesh data:

a · b · c · d · e
· · · · · · · · ·

· · · · 1 · · · ·

(8.7)

The first stage is to use CG to find (a,b,c,d,e) in (8.7). For the second stage, we
assert that the same values (a,b,c,d,e) found from (8.7) can be used in (8.6), and
we use CG a second time to find the missing data values. A wave field interpolated
this way is shown in Figure8.17. Figures8.13to 8.16were made with filters that
had more rows than (8.7), for reasons we will discuss next.

8.4.3. The prediction form of a two-dip filter
Now we handle twodips simultaneously. The following filter destroys a wave that
is sloping down to the right:

−1 · ·

· · 1
(8.8)

Figure 8.17: Two signals with one dip.mis-lace1 [ER]

The next filter destroys a wave that is sloping less steeply down to the left:

· −1
1 ·

(8.9)

Convolving the above two filters together, we get

· 1 · ·

−1 · · −1
· · 1 ·

(8.10)

The 2-D filter (8.10) destroys waves of both slopes. Given appropriate interlacing,
the filter (8.10) destroys the data in Figure8.14both beforeandafter interpolation.
To find filters such as (8.10), I adjust coefficients to minimize the power out of filters
like

v w x y z
a b c d e
· · 1 · ·

(8.11)

A filter of this shape is suitable for figures like8.14and8.15.
Let us examine the Fourier domain for this filter. The filter (8.10) was trans-

formed to the Fourier domain; it was multiplied by its conjugate; the square root

Figure 8.18: Magnitude of two-
dimensional Fourier transform of
the 2-D filter contoured at .01 and
at .1. mis-fk2dip [ER]

CINJOF --- Convolution INternal with Jumps. Output and FILTER are adjoint.
#
subroutine cinjof(adj, add, jump, n1,n2,xx, nb1,nb2,bb, yy)
integer adj, add, jump, n1,n2, nb1,nb2 # jump subsamples data
real xx(n1,n2), bb(nb1,nb2), yy(n1,n2)
integer y1,y2, x1,x2, b1, b2, ny1, ny2
call adjnull(adj, add, bb, nb1*nb2, yy, n1*n2)
ny1 = n1 - (nb1-1) * jump; if(ny1<1) call erexit(’cinjof: ny1<1’)
ny2 = n2 - (nb2-1); if(ny2<1) call erexit(’cinjof: ny2<1’)
if(adj == 0)

do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)
do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)
do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)
}} }}

return; end

Back

was taken; and contours are plotted at near-zero magnitudes in Figure8.18. The
slanting straight lines have slopes at the two dips that are destroyed by the filters.
Noticing the broad lows where the null lines cross, we might expect to see energy
at this temporal and spatial frequency, but I have not noticed any.cinjof

In practice, wavefronts havecurvature, so we will estimate the 2-D filters in
many small windows on a wall of data. Therefore, to eliminate edge effects, I
designed the 2-D filter programs starting from the 1-D internal convolution program
convin() /prog:convin. The subroutine for two-dimensional filtering iscinjof()

/prog:cinjof. The adjoint operation included in this subroutine is exactly what we
need for estimating the filter.

A companion program,cinloi() , is essentially the same ascinjof() , except
that in cinloi() the other adjoint is used (for unknown input instead of unknown
filter), and there is no need to interlace the time axis. A new feature ofcinloi() is
that it arranges for the output residuals to come out directly on top of their appropri-
ate location on the original data. In other words, the output of the filter is at the “1.”
Although the edge conditions in this routine are confusing, it should be obvious that
xx(,) is aligned withyy(,) at bb(lag1,lag2) . cinloi

CINLOI --- Convolution INternal with Lags. Output is adjoint to INPUT.
#
subroutine cinloi(adj, add, lag1,lag2,nb1,nb2,bb, n1,n2, xx, yy)
integer adj, add, lag1,lag2,nb1,nb2, n1,n2 # lag=1 causal
real bb(nb1,nb2), xx(n1,n2), yy(n1,n2)
integer y1,y2, x1,x2, b1,b2
call adjnull(adj, add, xx,n1*n2, yy,n1*n2)
if(adj == 0)

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

xx(x1,x2) = xx(x1,x2) + bb(b1,b2) * yy(y1,y2)
}} }}

return; end

Back

Find spatial prediction-error filter.
#
subroutine pe2(eps, a1,a2,aa, n1,n2 ,pp, rr, niter, jump)
integer a1,a2, n1,n2, niter, jump
integer i1, iter, midpt, r12, a12
real aa(a1 , a2), pp(n1 , n2), rr(n1 , n2 * 2), eps
temporary real da(a1, a2), dr(n1, n2 * 2)
temporary real sa(a1, a2), sr(n1, n2 * 2)
r12 = n1 * n2
a12 = a1 * a2
call null(aa, a12); call null(rr, 2 * r12)
call null(da, a12); call null(dr, 2 * r12)
midpt = (a1+1) / 2
aa(midpt, 1) = 1.

call cinjof(0, 0, jump, n1,n2,pp, a1,a2,aa, rr)
call ident (0, 0, eps, a12, aa, rr(1,n2+1))
call scaleit (-1., 2*r12, rr)

do iter= 0, niter {
call cinjof(1, 0, jump, n1,n2,pp, a1,a2,da, rr)
call ident (1, 1, eps, a12, da, rr(1,n2+1))
do i1= 1, a1 { da(i1, 1) = 0. }
call cinjof(0, 0, jump, n1,n2,pp, a1,a2,da, dr)
call ident (0, 0, eps, a12, da, dr(1,n2+1))
call cgstep(iter, a12, aa,da,sa, _

2*r12, rr,dr,sr)
}

return; end

Back

8.4.4. The regression codes
The programs for the two-dimensional prediction-error filter and missing data re-
semble those for one dimension. I simplified the code by not trying topack the
unknowns and residuals tightly in theabstract vectors. Because of this, it is nec-
essary to be sure those abstract vectors are initialized to zero. (Otherwise, the parts
of the abstract vector that are not initialized could contribute to the result whencg-

step() /prog:cgstepevaluates dot products on abstract vectors.) The routinepe2()

/prog:pe2finds the 2-D PE filter.pe2 This routine is the two-dimensional equiv-
alent of finding the filterA(Z) so that 0≈ R(Z) = P(Z)A(Z). We coded the 1-D
problem ininer() /prog:iner. In pe2() , however, I did not bother with the weight-
ing functions. A further new feature ofpe2() is that I addedλI capability (where
λ is eps) by including the call toident() /prog:ident, so that I could experiment
with various forms of filter stabilization. (This addition did not seem to be helpful.)

Given the 2-D PE filter, the missing data is found withmiss2() /prog:miss2,

which is the 2-D equivalent ofmiss1() /prog:miss1. miss2 We will soon see that
stabilization is more critical inmiss2() than inpe2() . Furthermore,miss2() must
be stabilized with a weighting function, hereww(,) , which is why I used the di-

fill in missing data in 2-D by minimizing power out of a given filter.
#
subroutine miss2(lag1,lag2, a1,a2, aa, n1,n2, ww, pp, known, rr, niter)
integer i1,i2,iter, lag1,lag2, a1,a2, n1,n2, niter, n12
real pp(n1, n2) # in: known data with zeros for missing values

out: known plus missing data.
real known(n1, n2) # in: known(ip) vanishes where pp(ip) is missing
real ww(n1, n2) # in: weighting function on data pp
real aa(a1, a2) # in: roughening filter
real rr(n1, n2*2) # out: residual
temporary real dp(n1, n2), dr(n1, n2*2)
temporary real sp(n1, n2), sr(n1, n2*2)
n12 = n1 * n2; call null(rr, n12*2)
call null(dp, n12); call null(dr, n12*2)

call cinloi(0, 0, lag1,lag2,a1,a2,aa, n1,n2, pp, rr)
call diag (0, 0, ww, n12, pp, rr(1,n2+1))
call scaleit (-1., 2*n12, rr)

do iter= 0, niter {
call cinloi(1, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, rr)
call diag (1, 1, ww, n12, dp, rr(1,n2+1))
do i1= 1, n1 {
do i2= 1, n2 { if(known(i1,i2) != 0.) dp(i1,i2) = 0.

}}
call cinloi(0, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, dr)
call diag (0, 0, ww, n12, dp, dr(1,n2+1))
call cgstep(iter, n12, pp,dp,sp, _

2*n12, rr,dr,sr)
}

return; end

Back

subroutine diag(adj, add, lambda,n, pp, qq)
integer i, adj, add, n # equivalence (pp,qq) OK
real lambda(n), pp(n), qq(n)
if(adj == 0) {

if(add == 0) { do i=1,n { qq(i) = lambda(i) * pp(i) } }
else { do i=1,n { qq(i) = qq(i) + lambda(i) * pp(i) } }
}

else { if(add == 0) { do i=1,n { pp(i) = lambda(i) * qq(i) } }
else { do i=1,n { pp(i) = pp(i) + lambda(i) * qq(i) } }
}

return; end

Back

agonal matrix multiplierdiag() rather than the identity matrix I used indeghost()

/prog:deghostandpe2() /prog:pe2. Subroutinediag() is used so frequently that
I coded it in a special way to allow the input and output to overlie one another.
diag

8.4.5. Zapping the null space with envelope scaling
Here we will see how to remove the small noise we are seeing in the interpolated
outputs. The filter (8.10) obviously destroys theinput in Figure8.14. On theoutput
interpolated data, the filter-output residuals (not shown) were all zeros despite the
small noises. The filter totally extinguishes the small noise on the outputs because
the noise has the same stepout (slope) as the signals. The noise is absent from the
original traces, which are interlaced. How can dipping noises exist on the interpo-
lated traces but be absent from the interlaced data? The reason is that one dip can
interfere with another to cancel on the known, noise-free traces. The filter (8.10)
destroys perfect output data as well as the noisy data in Figure8.14. Thus, there is
more than one solution to the problem. This is the case in linear equation solving
whenever there is a null space. Since we manufactured many more data points than

we originally had, we should not be surprised by the appearance of anull space.
When only a singledip is present, the null space should vanish because the dip van-
ishes on the known traces, having no other dips to interfere with it there. Confirm
this by looking back at Figure8.17, which contains no null-space noise. This is
good news, because in real life, in any small window of seismic data, a single-dip
model is often a good model.

If we are to eliminate the null-space noises, we will need some criterion in
addition to stepout. One such criterion isamplitude: the noise events are the small
ones. Before using anonlinear method, we should be sure, however, that we have
exploited the full power of linear methods. Information in the data is carried by the
envelope functions, and these envelopes have not been included in the analysis so
far. Theenvelopes can be used to makeweighting functions. These weights are
not weights onresiduals, as in the routineiner() /prog:iner. These are weights

on thesolution. TheλI stabilization in routinepe2() /prog:pe2 applied uniform

weights using the subroutineident() /prog:ident, as has been explained. Here

we simply apply variable weights3 using the subroutinediag() /prog:diag. The
weights themselves are the inverse of the envelope of input data (or the output of

a previous iteration). Where the envelope is small lies a familiar problem, which I
approached in a familiar way—by adding a small constant. The result is shown in
Figure8.19. The top row is the same as Figure8.13. The middle row shows the
improvement that can be expected from weighting functions based on the inputs.
So the middle row is the solution to a linear interpolation problem. Examining the
envelope function on the middle left, we can see that it is a poor approximation to
the envelope of theoutputdata, but that is to be expected because it was estimated
by smoothing the absolute values of theinput data (with zeros on the unknown
traces). The bottom row is a second stage of the process just described, where the
new weighting function is based on the result in the middle row. Thus the bottom
row is anonlinear operation on the data.

When interpolating data, the number of unknowns is large. Here each row of
data is 75 points, and there are 20 rows of missing data. So, theoretically, 1500
iterations might be required. I was getting good results with 15 conjugate-gradient
iterations until I introduced weighting functions; then the required number of iter-
ations jumped to about a hundred. The calculation takes seconds (unless the silly
computer starts to underflow; then it takes me 20 times longer.)

I believe the size of the dynamic range in the weighting function has a con-

Figure 8.19: Top left is input. Top right is the interpolation with uniform weights.
In the middle row are the envelope based oninput data and the corresponding in-
terpolated data. For the bottom row, the middle-row solution was used to design
weights from which a near-perfect solution was derived.mis-wlace3 [ER]

trolling influence on the number of iterations. Before I made Figure8.19, I got
effectively the same result, and more quickly, using another method, which I aban-
doned because its philosophical foundation was crude. I describe this other method
here only to keep alive the prospect of exploring the issue of the speed of conver-
gence. First I moved the “do iter ” line above the already indented lines to allow
for the nonlinearity of the method. After running some iterations with3= 0 to en-
sure the emergence of some big interpolated values, I turned on3 at values below a
threshold. In the problem at hand, convergence speed is not important economically
but is of interest because we have so little guidance as to how we can alter problem
formulation in general to increase the speed of convergence.

8.4.6. Narrow-band data
Spitz’s published procedure is to Fourier transform time to (ω,x), where, follow-
ing Canales, he computes prediction filters alongx for eachω. Spitz offers the
insight that for a dipping event with stepoutp= kx/ω, the prediction filter at trace
separation1x at frequencyω0 should be identical to the prediction filter at trace
separation1x/2 at frequency 2ω0. There is trouble unless bothω0 and 2ω0 have

reasonable signal-to-noise ratio. So a spectral band of good-quality data is required.
It is not obvious that the same limitation applies to the interlacing procedure that
I have been promoting, but I am certainly suspicious, and the possibility deserves
inspection. Figure8.20shows a narrow-banded signal that is properly interpolated,
giving an impressive result. It is doubtful that an observant human could have done
as well. I found, however, that adding 10% noise caused the interpolation to fail.

On further study of Figure8.20 I realized that it was not a stringent enough
test. The signals obviously contain zero frequency, so they are not narrow-band in
the sense of containing less than an octave. Much seismic data is narrow-band.

I have noticed that aspects of these programs are fragile. Allowing filters to be
larger than they need to be to fit the waves at hand (i.e., allowing excess channels)
can cause failure. We could continue to study the limitations of these programs.
Instead, I will embark on an approach similar to the 1-Dmissif() /prog:missif
program. That program is fundamentallynonlinear and so somewhat risky, but it
offers us the opportunity to drop the idea of interlacing the filter. Interlacing is prob-
ably the origin of the requirement for good signal-to-noise ratio over a wide spectral
band. Associated with interlacing is also a nagging doubt about plane waves that are
imperfectly predictable from one channel to the next. When such data is interlaced,

Figure 8.20: Narrow-banded signal (left) with interpolation (right).
mis-lacenarrow[ER]

the PE filter really should change to account for the interlacing. Interlacing the PE
filter is too simple a model. We can think of interlacing as merely the first guess in
a nonlinear problem.

8.5. A FULLY TWO-DIMENSIONAL PE FILTER
The prediction-error filters we dealt with above are not genuinely two-dimensional
because Fourier transform over time would leave independent, 1-D, spatial PE filters
for each temporal frequency. What is a trulytwo-dimensional prediction-error
filter ?1 This is a question we should answer in our quest to understand resonant
signals aligned along various dips. Figure8.11 shows that an interpolation-error
filter is no substitute for a PE filter in one dimension. So we need to use special care
in properly defining a 2-D PE filter. Recall the basic proof in chapter7 (page??)
that the output of a PE filter is white. The basic idea is that the output residual
is uncorrelated with the input fitting functions (delayed signals); hence, by linear
combination, theoutputis uncorrelated with thepast outputs(because past outputs

1I am indebted to John P. Burg for some of these ideas.

are also linear combinations of past inputs). This is proven forone side of the
autocorrelation, and the last step in the proof is to note that what is true for one side
of the autocorrelation must be true for the other. Therefore, we need to extend the
idea of “past” and “future” into the plane to divide the plane into two halves. Thus
I generally take a 2-D PE filter to be of the form

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
· · · 1 a a a
· · · · · · ·

(8.12)

where “·” marks the location of a zero element anda marks the location of an
element that is found by minimizing the output power. Notice that for eacha, there
is a point mirrored across the “1” at the origin, and the mirrored point is not in the
filter. Together, all thea locations and their mirrors cover the plane. Obviously
the plane can be bisected in other ways, but this way seems a natural one for the
processes we have in mind. Thethree-dimensional prediction-error filter which
embodies the same concept is shown in Figure8.21.

Figure 8.21: Three-
dimensional prediction-error
filter. mis-3dpef [NR]

1

Can “short” filters be used? Experience shows that a significant detriment to
whitening with a PE filter is an underlying model that is not purely a polynomial
division because it has a convolutional (moving average) part. The convolutional
part is especially troublesome when it involves serious bandlimiting, as does convo-
lution with bionomial coefficients (for example, the Butterworth filter, discussed in
chapter10). When bandlimiting occurs, it seems best to use agapped PE filter. I
have some limited experience with 2-D PE filters that suggests using a gapped form
like

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
· · · 1 · · a a a

(8.13)

With this kind of PE filter, the output traces are uncorrelated with each other, and
the output plane is correlated with itself only for a short distance (the length of the
gap) on the time axis.

EXERCISES:
1 Recall Figure4.4. Explain how to do the job properly.

8.5.1. The hope method
We have examined the two-stage linear method of missing-data restoration, which
calls for solving for a filter, interlacing it, and then solving for the missing data. I
believe that method, with its interlacing, is unsuitable for data with a narrow spectral
signal-to-noise ratio, such as we often encounter in practice. It would indeed be nice
to be able to work with such data.

Recall equation (8.4):

min
P,A

(||P A|| + λ9||P0A|| + λ10||P A0||)

Now we hope to solve the trace-interlace problem directly from this optimization.
Without the training dataP0 and the high-pass filterA0, however, the trace-interlace
problem is highlynonlinear, and, as in the case of the one-dimensional problem, I
found I was unable to descend to a satisfactory solution. Therefore, we must think
about what the training data and prior filter might be. Our first guess might be that

P0 is a low-pass dip filter andA0 is a high-pass dip filter. Several representations
for low- and high-pass dip filters are described in IEI. I performed a few tests with
them but was not satisfied with the results.

Another possibility is thatP0 should be the solution as found by the interlacing
method. Time did not allow me to investigate this promising idea.

Still another possibility is that these problems are so easy to solve (requiring
workstation compute times of a few seconds only) that we should abandon tradi-
tional optimization methods and usesimulated annealing(Rothman, 1985).

All the above ideas are hopeful. A goal of this study is to define and characterize
the kinds of problems that we think should be solvable. A simple example of a
dataset that I believe should be amenable to interpolation, even with substantial
noise, is shown in Figure8.22. I have not worked with this case yet.

To prepare the way, and to perform my preliminary (but unsatisfactory) tests, I
prepared subroutinehope() , the two-dimensional counterpart tomissif() /prog:missif

andmisfip() /prog:misfip. hope I found the jump-and-interlace 2-D convolution

cinjof() /prog:cinjof unsuitable here because it does not align its output consis-

tently with the aligning convolutioncinloi() /prog:cinloi . So I wrote an aligning

Figure 8.22: Narrow-banded
data that skilled humans can
readily interpolate. mis-alias
[ER]

subroutine hope(gap, h1,h2,hh, t1,t2,tt, a1,a2,aa, p1,p2,pp, known, niter)
integer h1,h2,h12, t1,t2,t12, a1,a2,a12, p1,p2,p12
integer i, gap, iter, niter, midpt, nx,nr, px,ax, qr,tr,hr
real hh(h1,h2), tt(t1,t2), aa(a1,a2), pp(p1*p2), known(p1*p2), dot
temporary real x(p1*p2 +a1*a2), rr(p1*p2 +p1*p2 +t1*t2)
temporary real g(p1*p2 +a1*a2), gg(p1*p2 +p1*p2 +t1*t2)
temporary real s(p1*p2 +a1*a2), ss(p1*p2 +p1*p2 +t1*t2)
p12 = p1*p2; a12 = a1*a2; t12 = t1*t2; h12= h1*h2;
nx = p12 + a12; px= 1; ax= 1+p12
nr = p12 + p12 + t12; qr= 1; hr= 1+p12; tr= 1+p12+p12
call zero(a12, aa); midpt= a1/2; aa(midpt, 1) = sqrt(dot(p12,pp,pp))
call zero(nx, x); call zero(nr, rr); call copy(p12, pp, x(px))
call zero(nx, g); call zero(nr, gg); call copy(a12, aa, x(ax))
do iter= 0, niter {

call cinloi(0, 0, midpt,1, a1,a2,aa, p1,p2,pp, rr(qr))
call cinloi(0, 0, midpt,1, h1,h2,hh, p1,p2,pp, rr(hr))
call cinloi(0, 0, midpt,1, a1,a2,aa, t1,t2,tt, rr(tr))
call scaleit (-1., nr, rr)
call cinloi(1, 0, midpt,1, a1,a2,aa, p1,p2,g(px), rr(qr))
call cinlof(1, 0, midpt,1, p1,p2,pp, a1,a2,g(ax), rr(qr))
call cinloi(1, 1, midpt,1, h1,h2,hh, p1,p2,g(px), rr(hr))
call cinlof(1, 1, midpt,1, t1,t2,tt, a1,a2,g(ax), rr(tr))
do i= 1, p12 { if(known(i) != 0.) g(i + (px-1)) = 0.}
do i= 1, midpt+gap { g(i + (ax-1)) = 0.}
call cinloi(0, 0, midpt,1, a1,a2,aa, p1,p2,g(px), gg(qr))
call cinlof(0, 1, midpt,1, p1,p2,pp, a1,a2,g(ax), gg(qr))
call cinloi(0, 0, midpt,1, h1,h2,hh, p1,p2,g(px), gg(hr))
call cinlof(0, 0, midpt,1, t1,t2,tt, a1,a2,g(ax), gg(tr))
call cgstep(iter, nx, x, g, s, _

nr, rr,gg,ss)
call copy(p12, x(px), pp)
call copy(a12, x(ax), aa)
}

return; end

Back

CINLOF --- Convolution INternal with Lags. Output is adjoint to FILTER.
#
subroutine cinlof(adj, add, lag1,lag2, n1,n2,xx, nb1,nb2,bb, yy)
integer adj, add, lag1,lag2, n1,n2, nb1,nb2
real xx(n1,n2), bb(nb1,nb2), yy(n1,n2)
integer y1,y2, x1,x2, b1, b2
call adjnull(adj, add, bb,nb1*nb2, yy,n1*n2)
if(adj == 0)

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)
}} }}

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)
}} }}

return; end

Back

convolution identical withcinloi() except that thefilter is the adjoint. It is called
cinlof() . cinlof

8.5.2. An alternative principle for 2-D interpolation
In principle, missing traces can be determined to simplify (ω,k)-space. Consider a
wave fieldP composed of several linear events in (t ,x)-space. Acontour plot of
energy in (ω,k)-space would show energy concentrations along lines of variousp=
k/ω, much like Figure8.18. Let the energy density beE = P P. Along contours of
constantE, we should also seep= dk/dω. Thegradient vector (∂E/∂ω,∂E/∂k)
is perpendicular to the contours. Thus the dot product of the vector (ω,k) with the
gradient should vanish. I propose to solve theregressionthat the dot product of the
vector (ω,k) with the gradient of the log energy be zero, or, formally,

0 ≈ ω
< P ∂

∂ω
P

P P
+k
< P ∂

∂k P

P P
(8.14)

The variables in the regression are the values of the missing traces. Obviously,
the numerator and the denominator should be smoothed in small windows in the

(ω,k)-plane. This makes conceptual sense but does not fit well with the idea of
small windows in (t ,x)-space. It should be good for some interesting discussions,
though. For example, in Figure8.18, what will happen where event lines cross? Is
this formulation adequate there? Also, how should the Nyquist limitation on total
bandwidth be expressed?

8.6. TOMOGRAPHY AND OTHER APPLICA-
TIONS

Medical tomography avoids a problem that is unavoidable in earth-sciencetomog-
raphy. In medicine it is not difficult to surround the target with senders and re-
ceivers. In earth science it is nearly impossible. It is well known that our recon-
structions tend to beindeterminate along the dominant ray direction. Customarily,
the indeterminacy is resolved by minimizing power in a roughened image. The
roughening filter should be inverse in spectrum to the desired image spectrum. Un-
fortunately, that spectrum is unknown and arbitrary. Perhaps we can replace this
arbitrary image smoothing by something more reasonable in the space of the miss-

ing data.
Recall the well-to-well tomography problem in chapter5. Given a sender at

depthzs in one well, a receiver at depthzg in the other well, and given traveltimes
tk(zs,zg), the rays are predominantly horizontal. Theory says we need some rays
around the vertical. Imagine the two vertical axes of the wells being supplemented
by two horizontal axes, one connecting the tops of the wells and one connecting the
bottoms, with missing data traveltimestm(xs,xg). From any earth model,tk andtm
are predicted. But what principles can give ustm from tk? Obviously something like
we used in Figures8.2–8.6. Data for the tomographic problem is two-dimensional,
however: let the source location be measured as the distance along the perimeter of
a box, where the two sides of the box are the two wells. Likewise, receivers may
be placed along the perimeter. Analogous to themidpointandoffsetaxes of surface
seismology (see IEI), we have midpoint and offset along the perimeter. Obviously
there are discontinuities at the corners of the box, and everything is not as regular as
in medical imaging, where sources and receivers are on a circle and their positions
measured by angles. The box gives us a plane in which to lay out the data, not just
the recorded data, but all the data that we think is required to represent the image.
To fill in the missing data we can minimize the power out of some two-dimensional

filter, say, for example, the Laplacian filter∂2
s + ∂2

g. This would give us the two-
dimensional equivalent of Figures8.2–8.6.

Alas, this procedure cannot produce information where none was recorded. But
it should yield an image that is not overwhelmed by the obvious heterogeneity of
the data-collection geometry.

The traditional approach of “geophysical inverse theory” requires the inverse
of the modelcovariance matrix. How is this to be found using our procedure?
How are we to cope with the absence of rays in certain directions? Notice that
whatever thecovariance matrix may be, the resolution is very different in different
parts of the model: it is better near the wells, best halfway down near a well, and
worst halfway between the wells, especially near the top and bottom. How can this
information be quantified in the model’s inversecovariance matrix? This is a hard
question, harder than the problem that we would solve if we weregiventhe matrix.
Most people simply give up and let the inverse covariance be a roughening operator
like a Laplacian, constant over space.

With the filling of data space, will it still be necessary to smooth the model ex-
plicitly (by minimizing energy in a roughened model)? Mathematically, the ques-
tion is one of the “completeness” of the data space. I believe there are analytic

solutions well known in medical imaging that prove that a circle of data is enough
information to specify completely the image. Thus, we can expect that little or no
arbitrary image smoothing is required to resolve the indeterminacy—it should be
resolved by the assertion that statistics gathered from the known data are applicable
to the missing data.

I suggest, therefore, that every data space be augmented until it has the dimen-
sionality and completeness required to determine a solution. If this cannot be done
fully, it should still be done to the fullest extent feasible.

The covariance matrix of the residual in data space (missing and observed)
seems a reasonable thing to estimate—easier than the covariance matrix of the
model. I think the model covariance matrix should not be thought of as a covari-
ance matrix of the solution, but as a chosen interpolation function for plotting the
solution.

8.6.1. Clash in philosophies
One philosophy of geophysical data analysis called “inverse theory” says that miss-
ing data is irrelevant. According to this philosophy, a good geophysical model only

needs to fit the real data, not interpolated or extrapolated data, so why bother with
interpolated or extrapolated data? Even some experienced practitioners belong to
this school of thought. My old friend Boris Zavalishin says, “Do not trust the data
you have not paid for.”

I can justify data interpolation in both human and mathematical terms. In hu-
man terms, the solution to a problem often follows from the adjoint operator, where
the data space has enough known values. With a good display of data space, peo-
ple often apply the adjoint operator in their minds. Filling the data space prevents
distraction and confusion. The mathematical justification is that inversion methods
are notorious for slow convergence. Consider that matrix-inversion costs are pro-
portional to the cube of the number of unknowns. Computers balk when the number
of unknowns goes above one thousand; and our images generally have millions. By
extending the operator (which relates the model to the data) to include missing data,
we can hope for a far more rapid convergence to the solution. On the extended data,
perhaps the adjoint alone will be enough. Finally, we are not falsely influenced by
the “data not paid for” if we adjust it so that there is no residual between it and the
final model.

8.6.2. An aside on theory-of-constraint equations
A theory exists for generalconstraints inquadratic form minimization. I have not
found the theory to be useful in any application I have run into so far, but it should
come in handy for writing erudite theoretical articles.

Constraint equations are an underdetermined set of equations, sayd=Gx (the
number of components inx exceeds that ind), which must be solved exactly while
some other set is solved in theleast-squaressense, sayy≈ Bx. This is formalized
as

min
x
{QC(x) = lim

ε→0
[(y−Bx)′(y−Bx)+

1

ε
(d−Gx)′(d−Gx)]} (8.15)

In my first book (FGDP: see page 113), I minimizedQC by power series, letting
x = x(0)

+ ε x(1), and henceQC = Q(0)
+ εQ(1)

+ ·· ·. I minimized bothQ(0) and
Q(1) with respect tox(0) andx(1). After a page of algebra, this approach leads to the
system of equations [

B′B G′

G 0

][
x
λ

]
=

[
B′y
d

]
(8.16)

wherex(1) has been superseded by the variableλ=Gx(1), which has fewer compo-
nents thanx(1), and wherex(0) has simply been replaced byx. The second of the
two equations shows that the constraints are satisfied. But it is not obvious from
equation (8.16) that (8.15) is minimized.

The great mathematician Lagrange apparently looked at the result, equation (8.16),
and realized that he could arrive at it far more simply by extremalizing the following
quadratic form:

QL (x,λ) = (y−Bx)′(y−Bx)+ (d−Gx)′λ+λ′(d−Gx) (8.17)

We can quickly verify that Lagrange was correct by setting to zero the derivatives
with respect tox′ andλ′. Naturally, everyone prefers to handle constraints by La-
grange’s method. Unfortunately, Lagrange failed to pass on to the teachers of this
world an intuitive reasonwhyextremalizing (8.17) gives the same result as extremal-
izing (8.15). Lagrange’s quadratic form is not even positive definite (that is, it can-
not be written as something times its adjoint). In honor of Lagrange, the variablesλ

have come to be known asLagrange multiplier s.

8.7. References
Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc.

Explor. Geophys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics
estimation: Geophysics,50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics,56,
785-794.

Chapter 9

Hyperbola tricks

In exploration seismology much attention is given to all aspects of hyperbolas. My
previous book (IEI) is filled withhyperbola lore, especially wave-equation solution
methodology. That book, however, only touches questions of hyperbolas arising in

513

least-squares problems. I wish I could say this chapter organizes everything bet-
ter, but in reality it is a miscellaneous collection of additional material in which
hyperbolas are exploited with due regard to operator conjugacy and least squares.

9.1. PIXEL-PRECISE VELOCITY SCANNING
Traditionally, velocity scanning is done by the loop structure given in chapter5, in
which the concept of a velocity transform was introduced. This structure is

do v

do tau

do x

t = sqrt(tau**2 + (x/v)**2)

velo(tau, v) = velo(tau, v) + data(t, x)

These loops transform source-receiver offsetx to velocityv in much the same way
as Fourier analysis transforms time to frequency. Here we will investigate a new
alternative that gives conceptually the same result but differs in practical ways. It is
to transform with the following loop structure:

do tau

do t = tau, tmax

do x

v = sqrt(x**2 / (t**2 - tau**2))

velo(tau, v) = velo(tau, v) + data(t, x)

Notice thatt =
√

τ2+ (x/v)2 in the conventional code is algebraically equivalent to
v = x/

√
t2− τ2 in the new code. The traditional method finds one value for each

point in outputspace, whereas the new method uses each point of theinput space
exactly once.

The new method, which I have chosen to call the “pixel-precisemethod,” dif-
fers from the traditional one in cost, smoothing, accuracy, and truncation. The cost
of traditional velocity scanning is proportional to the productNt Nx Nv of the lengths
of the axes of time, offset, and velocity. The cost of the new method is proportional
to the productN2

t Nx/2. Normally Nt/2 > Nv, so the new method is somewhat
more costly than the traditional one, but not immensely so, and in return we can
have all the (numerical) resolution we wish in velocity space at no extra cost. The
verdict is not in yet on whether the new method is better than the old one in routine
practice, but the reasoning behind the new method teaches many lessons. Not ex-

amined here is the smooth envelope (page??) that is a postprocess to conventional
velocity scanning.

Certain facts about aliasing must be borne in mind as one defines any velocity
scan. A first concern arises because typical hyperbolas crossing a typicalmeshen-
counter multiple points on the time axis for each point on the space axis. This is
shown in Figure9.1. An aliasing problem will be experienced by any program that
selects only one signal value for eachx instead of the multiple points that are shown.
The extra boxes complicate traditional velocity scanning. Many programs ignore
it without embarrassment only because low-velocity events contain only shallow
information about the earth. (A cynical view is that field operations tend to over-
sample in offset space because of this limitation in some velocity programs.) A
significant improvement is made by summing all the points in boxes. A still more
elaborate analysis (which we will not pursue here) is to lay down a hyperbola on a
mesh and interpolate a line integral from the traces on either side of the line.

A second concern arises from the sampling in velocity space. Traditionally peo-
ple question whether to sample velocity uniformly in velocity, slowness, or slowness
squared. Difficulty arises first on the widest-offset trace. When jumping from one
velocity to the next, the time on the wide-offset trace should not jump so far that it

Figure 9.1: A typical hyperbola
crossing a typical mesh. Notice
that the curve is represented by
multiple time points for eachx.
hyp-lineint [NR]

leaves a gap, as shown in Figure9.2.

Figure 9.2: Too large an inter-
val in velocity will leave a gap
between the hyperbolic scans.
hyp-deltavel [NR]

With the new method there is no chance of missing a point on the wide-offset
trace. For each depthτ , every point belowτ in the input-data space (including the

wide-offset trace) is summed exactly once into velocity space (whether that space
is discretized uniformly in velocity or slowness). Also, the inner trace entersonly
once.

The new method also makes many old interpolation issues irrelevant. New
questions arise, however. The (t ,x)-position of the input data is exact, as isτ .
Interpolation becomes a question only onv. Since velocity scanning in this way is
independent of the number of points in velocity, we could sample densely and use
nearest-neighbor interpolation (or any other form of interpolation). A disadvantage
is that some points in (τ ,v)-space may happen to getno input data, especially if we
refinev too much.

The result of the new velocity transformation is shown in Figure9.3. The fig-
ure includes some scaling that will be described later. The code that generated
Figure9.3 is just like the pseudocode above except that it parameterizes velocity in
uniform samples of inverse velocity squared,s= v−2. A small advantage of using
s-space instead ofv-space is that the trajectories we see in (τ ,s)-space are readily
recognized as parabolas, namelyτ2

= t2
− x2s, where each parabola comes from a

particular point in (t ,x).
To exhibit all the artifacts as clearly as possible, I changed all signal values to

Figure 9.3: Offset to slowness squared and back to offset.hyp-vspray1[NR]

their signed square roots before plotting brightness. This has the effect of making
the plots look noisier than they really are. I also chose1t to be unrealistically
large to enable you to see each point. The synthetic input data was made with
nearest-neighbor NMO. Notice that resulting timing irregularities in the input are
also present in the reconstruction. This shows a remarkable precision.

Balancing the pleasing result of Figure9.3 is the poor result from the same
program shown in Figure9.4. The new figure shows that points in velocity space
map to bits of hyperbolas in offset space—not to entire hyperbolas. It also shows
thatsmall-offset points becomesparselydotted lines in velocity space.

The problem of hyperbolas being present only discontinuously is solvable by
smearing over any axis,t , x, τ , orv, but we would prefer intelligent smoothing over
the appropriate axis.

9.1.1. Smoothing in velocity
To get smoother results I took the time axis to be continuous and the signal value at
(t ,x) to be distributed between the two pointst− = t−1t/2 andt+ = t+1t/2. The
two time pointst± and thex-value are mapped to two slownessess±. The signal

Figure 9.4: Slowness squared to offset and back to slowness squared.
hyp-vspray2[NR]

subroutine vspray(adj, nt,dt,t0, nx,dx,x0, tx, ns,ds,s0, zs)
integer adj, it, nt, iz, nz, ix, nx, is, ns, isp, ism
real tx(nt,nx), zs(nt,ns), scale
real z,dz,z0, t,dt,t0, x,dx,x0, s,ds,s0, sm,sp, xm,xp, tm,tp
nz=nt; dz=dt; z0=t0;
call adjnull(adj, 0, tx, nt*nx, zs, nz*ns)
if(adj == 0) { do ix=1,nx; call halfdif (1, nt, tx(1,ix), tx(1,ix))}
do iz= 1, nz { z = z0 + dz*(iz-1)
do ix= 1, nx { x = x0 + dx*(ix-1)
do it= iz, nt { t = t0 + dt*(it-1)

tm = t-dt/2; xm = x
tp = t+dt/2; xp = x
sm = (tm**2 -z**2)/xp**2; ism = 1.5+(sm-s0)/ds
sp = (tp**2 -z**2)/xm**2; isp = 1.5+(sp-s0)/ds
if(ism<2) next
if(isp>ns) next
scale = sqrt(t / (1.+isp-ism)) / (abs(x) + abs(dx)/2.)
do is= ism, isp {

if(adj == 0)
zs(iz ,is) = zs(iz ,is) + tx(it ,ix) * scale

else
tx(it ,ix) = tx(it ,ix) + zs(iz ,is) * scale

}
} } }

if(adj != 0) { do ix=1,nx; call halfdif (0, nt, tx(1,ix), tx(1,ix))}
return; end

Back

Figure 9.5: Horizontal line method. Compare the left to Figure9.3and the right to
9.4. hyp-vspray4[ER]

from the (t ,x)-pixel is sprayed into the horizontal line (τ ,s±). To enable you to
reproduce the result, I include thevspray() subroutine.vspray Figure9.5shows
the result for the same inputs as used in Figures9.3and9.4.

9.1.2. Rho filter
Notice the darkhalo around the reconstruction in Figure9.3. It was suppressed
in Figure9.5 by the subroutinehalfdifa() . Recall that slant-stack inversion (see
IEI for an example) requires an|ω| filter. Without doing any formal analysis I
guessed that the same filter would be helpful here because the dark halo has a strong
spectral component atω = 0 which would be extinguished by an|ω| filter. The|ω|
filter is sometimes called a “rho filter .” Because of the close relation of slant-
stack inversion to wave propagation andcausality, I found it appealing to factor
|ω| into a causal

√
−i ω part and an anticausal

√
i ω part. I applied a causal

√
−i ω

after generating the (t ,x)-space and an anticausal
√

i ω before making the (τ ,v−2)-
space. I implemented the causality by taking the square root of a Fourier domain
representation of causaldifferentiation , namely,

√
1− Z. I show this in subroutine

halfdifa() . halfdifa

Half order causal derivative. OK to equiv(xx,yy)
#
subroutine halfdifa(adj, add, n, xx, yy)
integer n2, i, adj, add, n
real omega, xx(n), yy(n)
complex cz, cv(4096)
n2=1; while(n2<n) n2=2*n2; if(n2 > 4096) call erexit(’halfdif memory’)
do i= 1, n2 { cv(i) = 0.}
do i= 1, n

if(adj == 0) { cv(i) = xx(i)}
else { cv(i) = yy(i)}

call adjnull(adj, add, xx,n, yy,n)
call ftu(+1., n2, cv)

do i= 1, n2 {
omega = (i-1.) * 2.*3.14159265 / n2
cz = csqrt(1. - cexp(cmplx(0., omega)))
if(adj != 0) cz = conjg(cz)
cv(i) = cv(i) * cz
}

call ftu(-1., n2, cv)
do i= 1, n

if(adj == 0) { yy(i) = yy(i) + cv(i)}
else { xx(i) = xx(i) + cv(i)}

return; end

Back

Notice also thatvspray() includes a scaling variable namedscale . I have
not developed a theory for this scale factor, but if you omit it, amplitudes in the
reconstructions will be far out of amplitude balance with the input.

9.2. GEOMETRY-BASED DECON
In chapter7 deconvolutionwas considered to be a one-dimensional problem. We
ignored spatial issues. The one-dimensional approach seems valid for waves from a
source and to a receiver in the same location, but an obvious correction is required
for shot-to-receiverspatial offset. A first approach is to apply normal-moveout cor-
rection to the data before deconvolution. Previous figures have applied at2 ampli-
tude correction to the deconvolutioninput. (Simple theory suggests that the am-
plitude correction should bet , not t2, but experimental work, summarized along
with more complicated theory in IEI, suggestst2.) Looking back to Figure??, we
see that the quality of the deconvolution deteriorated with offset. To test the idea
that deconvolution would work better after normal moveout, I prepared Figure9.6.
Looking in the region of Figure9.6 outlined by a rectangle, we can conclude that
NMO should be done before deconvolution. The trouble with this conclusion is that

Figure 9.6: Data from Yilmaz and Cumro dataset 27 aftert2 gain illustrates decon-
volution working better after NMO.hyp-wz27nmo[NR]

data comes in many flavors. On the wider offsets of any data (such as Figure??),
it can be seen that NMO destroys the wavelet. A source of confusion is that the
convolutional model can occur in two different forms from two separate physical
causes, as we will see next.

9.2.1. A model with both signature and reverberation
Convolution occurs in data modeling both before and after moveout correction. Two
different deconvolution processes that deal with the two ways convolution occurs
are called “designature" and “dereverberation."

• Reverberation
Reverberation is themultiple bouncing of waves between layers. Waves at vertical
incidence in a water layer over the earth can develop clear, predictable, periodic
echos. FGDP gives a detailed theory for this. At nonzero shot-to-geophone offset,
the perfect periodicity is destroyed, i.e., multiple reflections no longer have a uni-
form reverberation period. In a model earth with velocity constant in depth, normal-
moveout correction restores the uniform reverberation period. Mathematical tech-

niques for dealing with reverberation in the presence of depth-variable velocity are
described in considerable detail in IEI.

• Signature
Seismic “signature" is defined to be a convolutional filtering on impulse-source data.
This convolution models the nonimpulsive nature of real sources. Imagine the os-
cillation of a marineairgun’s bubble. On land, the earth’s near surface can have
a very slow velocity. There Snell’s law will bend all rays to very near vertical in-
cidence. Mathematically, such reverberations in such layers are indistinguishable
from source signature. For example, in California the near-surfacesoils often have
a velocity near the air velocity (340 m/s) that grades toward the water velocity (1500
m/s). A buried shot typically has a free-surface reflection ghost whose time delay is
virtually independent of angle. Thus the ghost is more like signature than multiple.

Synthetic data in Figure9.7 shows the result of convolution before and after
NMO. An event labeled “G" marks the tail-end of the source signature. The main
idea illustrated by the figure is that some events are equally spacedbeforeNMO,
while other events are equally spacedafterNMO. We will see that proper deconvo-
lution requires a delicious mixture of NMO and deconvolution principles.

Figure 9.7: Example of con-
volution before and after NMO.
The raw data shows a uniform
primary-to-tail interval, while the
NMO’ed data shows uniform
multiple reverberation. The let-
ters F , G, and V are ad-
justable parameters in the inter-
active program controlling water
depth, signature tail, and velocity.
hyp-deep[NR]

Figure9.7happens to have a short time constant with the signature and a longer
one with the reverberation. The time constants would be reversed in water shallow
compared with the gun’s quieting time. This is shown in Figure9.8. This figure

Figure 9.8: Model in water
shallow compared to gun quiet-
ing time. hyp-shallow [NR]

shows an interesting interference pattern that could also show up in amplitude versus
offset studies.

9.2.2. Regressing simultaneously before and after NMO
Before launching into a complicated theory for suppressing both reverberation and
signature, let us make some guesses. Letd denote an original data panel like the
left sides of Figure9.7and9.8, and letd̄ be moved out like the right sides of those
figures. If we had onlysignatureto contend with, we might formulate the problem
asd ≈

∑
i αi xi , where thexi are delayed versions of the data, containingd(t − i),

and where theαi are the scaling coefficients to be found. If we had onlyreverber-
ation to contend with, we might formulate the problem asd̄ ≈

∑
i ᾱi x̄i , where the

x̄i are delayed versions of themoved-outdata, and the ¯αi are more unknowns. To
suppress both signature and reverberation simultaneously, we need to express both
“statements of wishes” in the same domain, either moved out or not. LettingN be
the moveout operator, and choosing the moved-out domain, we write the statement
of wishes as

d̄ ≈

∑
i

ᾱi x̄i +
∑

i

αi Nxi (9.1)

Why not estimate the filters sequentially instead of simultaneously? What fails
if we first process raw data by blind deconvolution for the source signature, then do
NMO, and finally do blind deconvolution again for reverberation?

At vertical incidence, both filters are convolutional, and they are indistinguish-
able. At vertical incidence, doing a stage of deconvolution for each process leads
to nonsensical answers. Whichever stage is applied first will absorb all the color in
the data, leaving nothing for the second stage. The color will not be properly dis-
tributed between the stages. In principle, at nonzero offset the information is present
to distinguish between the stages, but the first stage will always tend to absorb the
color attributable to both. A simpler expression of the same concept arises when
we are regressing two theoretical signals against some data. If the regressors are
orthogonal, such as a mean value and a sinusoid, then we tend to get the same result
regardless of the order in which we subtract them from the signal. If the regressors
resemble one another, as a mean can resemble a trend, then they must be estimated
simultaneously.

9.2.3. A model for convolution both before and after NMO
Here we will develop a formal theory for (9.1). By formalizing the theory, we will
see better how it can be made more precise, and how the wishes expressed by (9.1)
are a linearization of a nonlinear theory.

For a formal model, we will need definitions. Simple multiple reflections are
generated by 1/(1+cZn), wherec is a reflection coefficient andZn is the two-way
traveltime to the water bottom. We will express reflectivity as an unspecified filter
R(Z), so the reverberation operator as a whole is 1/(1+ R(Z)), whereR(Z) is like
the adjustable coefficients in a gapped filter. This form is partly motivated by the
idea that 1> |R|. Takingxt to denote the reflection coefficients versus depth or the
multiple-free seismogram, and takingyt to denote the one-dimensional seismogram
with multiples, we find that the relation between them is conveniently expressed
with Z-transforms asY(Z)= X(Z)/(1+ R(Z)).

Likewise, we will express the source signature not as a convolution but as an
inverse polynomial (so designature turns into convolution). Suppose that source
signature as a whole is given by the operator 1/(1+ S(Z)). The final dataD(Z) is
related to the impulse-source seismogramY(Z) by D(Z)= Y(Z)/(1+S(Z)).

The trouble with the definitions above is that they are in the Fourier domain.

Since we are planning to mix in the NMO operator, which stretches the time axis, we
will need to reexpress everything in the time domain. Instead ofX(Z)= Y(Z)(1+
R(Z)) andY(Z)= D(Z)(1+S(Z)), we will use shifted-column matrices to denote
convolution. Thus our two convolutions can be written as

x = (I +R)y (9.2)

y = (I +S)d (9.3)

whereI is an identity matrix. Combining these two, we have a transformation from
the data to the reflection coefficients for a one-dimensional seismogram. Depar-
tures from one-dimensionality arise from NMO and from sphericaldivergenceof
amplitude. Simple theory (energy distributed on the area of an expanding sphere)
suggests that the scaling factort converts the amplitude ofy to x. So we define a
matrixT to be a diagonal with the weightt distributed along it.

We need also to include the time shifts of NMO. In chapter5 we saw that NMO
is a matrix in which the diagonal line is changed to a hyperbola. Denote this matrix
by N. Lety0 be the result of attempting to generate a zero-offset signal from a signal
at any other offset by correcting for divergence and moveout:

y0 = NTy (9.4)

The NMO operator can be interpreted in two ways, depending on whether we
plan to find one filter for all offsets, or one for each. In other words, we can decide
if we want one set of earth reflection coefficients applicable to all offsets, or if we
want a separate reflection coefficient at each offset. From chapter7 we recall that
the more central question is whether to include summation over offset in the NMO
operator. If we choose to include summation, then the adjoint sprays the same one-
dimensional seismogram out to each offset at the required moveout. This choice
determines if we have one filter for each offset, or if we use the same filter at all
offsets.

Equation (9.2) actually refers only to zero offset. Thus it meansx= (I +R)y0.
Merging this with equations (9.3) and (9.4) gives

x = (I +R)NT(I +S)d (9.5)

x = NTd+RNTd+NTSd+RNTSd (9.6)

Now it is time to think about what is known and what is unknown. The un-
knowns will be the reverberation operatorsR andS. Since we can only solve non-
linear problems by iteration, we linearize by dropping the term that is the product of
unknowns, namely, the last term in (9.6). This is justified if the unknowns are small,

and they might be small, since they are predictions. Otherwise, we must iterate,
which is the usual solution to a nonlinear problem by a sequence of linearizations.
The linearization is

x = (NTd+RNTd+NTSd). (9.7)

When a product ofZ-transforms is expressed with a shifted-column matrix, we
have a choice of which factor to put in the matrix and which in the vector. The
unknown belongs in the vector so that simultaneous equations can be the end result.
We need, therefore, to rearrange the capital and lower-case letters in (9.7) to place
all unknowns in vectors. Also, besides the original datad, we will be regressing on
processed datād, defined by

d̄ = NTd (9.8)

Equation (9.7) thus becomes

x = d̄+ D̄r +NTDs (9.9)

Now the unknowns are vectors.
Recall that the unknowns are like prediction filters. Everything inx that is

predictable byr ands is predicted in an effort to minimize the power inx. During

the process we can expectx to tend to whiteness. Thus our statement of wishes is

0 ≈ d̄+ D̄r +NTDs (9.10)

Equation (9.10) is about the same as (9.1). To see this, associate−r with ᾱ and
associate−s with α. To make (9.10) look more like a familiar overdetermined
system, I write it as

d̄ ≈
[
−D̄ −NTD

] [r
s

]
(9.11)

Some years ago I tested this concept on a small selection of data, including
Yilmaz and Cumro dataset 27, used in Figure9.6. The signature waveform of
this dataset was hardly measurable, and almost everything was in the reverbera-
tion. Thus, results nearly equal to Figure9.6 could be obtained by omitting the
deconvolution before NMO. Although I was unable to establish by field-data trials
that simultaneous deconvolution is necessary, I feel that theory and synthetic studies
would show that it is.

9.2.4. Heavy artillery
In Figure9.6, we can see that events remain which look suspiciously like multiple
reflections. Careful inspection of the data (rapid blinking on a video screen) con-
vinced me that the problem lay in imperfect modeling of depth-variable velocity.
It is not enough to use a depth-variable velocity in the NMO (a constant velocity
was used in Figure9.6), because primary and multiple reflections have different ve-
locities at the same time. I used instead a physical technique called “diffraction"
(explained in detail in IEI) to make the regressors. Instead of simply shifting on
the time axis, diffraction shifts on the depth axis, which results in subtle changes in
hyperbola curvature.

The downward-continuation result is significantly better than the NMO result,
but it does contain some suspicious reflections (boxed). My final effort, shown on
the right, includes the idea that the data contains random noise which could be win-
dowed away in velocity space. To understand how this was done, recall that the
basic model isd ≈

∑
i αi xi , whered is the left panel,αi are constants determined

by least squares, andxi are the regressors, which are panels liked but delayed and
diffracted. LetV denote an operator that transforms to velocity space. Instead of
solving the regressiond≈

∑
i αi xi , I solved the regressionVd≈

∑
i αi Vxi and used

Figure 9.9: Left is the original data. Next is the result of using NMO in the
regressors. Next, the result of downward continuation in the regressors. On the
right, velocity scans were also used. Rectangles outline certain or likely multiple
reflections. hyp-veld [NR]

the resulting values ofαi in the original (t ,x)-space. (Mathematically, I did the same
thing when making Figure??.) This procedure offers the possible advantage that
a weighting function can be used in the velocity space. Applying all these ideas,
we see that a reflector remains which looks more like a multiple than a primary.

A regression (d ≈
∑

i αi xi) can be done in any space. You must be able to
transfer into that space (that is, to makeVd andVxi) but you do not need to be
able to transform back from that space (you do not needV−1). You should find
theαi in whatever space you are able to define the most meaningful weighting
function.

A proper “industrial strength” attack on multiple reflections involves all the
methods discussed above, wave-propagation phenomena described in IEI, and judi-
cious averaging in the space of source and receiver distributions.

9.3. References
Claerbout, J.F., 1986, Simultaneous pre-normal moveout and post-normal moveout

deconvolution: Geophysics,51, 1341-1354.

Chapter 10

Spectrum and phase

In this chapter we will examine

• 90◦ phase shift, analytic signal, and Hilbert transform.

545

• spectral factorization, i.e., finding a minimum-phase wavelet to fit any spec-
trum.

• a “cookbook” for Butterworth causal bandpass filters.

• phase delay, group delay, and beating.

• where the name “minimum phase” came from.

• what minimum phase implies for energy delay.

10.1. HILBERT TRANSFORM
Chapter9 explains that many plots in this book have various interpretations. Super-
ficially, the plot pairs represent cosine transforms of real even functions. But since
the functions are even, their negative halves are not shown. An alternate interpreta-
tion of the plot pairs is that one signal is real andcausal. This is illustrated in full
detail in Figure10.1. Half of the values in Figure10.1convey no information: these
are the zero values at negative time, and the negative frequencies of the FT. In other

Figure 10.1: Both positive and
negative times and frequencies of
a real causal response (top) and
real (mid) and imaginary (bot-
tom) parts of its FT. spec-intro
[NR]

words, the right half of Figure10.1is redundant, and is generally not shown. Like-
wise, the bottom plot, which is the imaginary part, is generally not shown, because
it is derivable in a simple way from given information. Computation of the unseen
imaginary part is called “Hilbert transform .” Here we will investigate details and
applications of the Hilbert transform. These are surprisingly many, including 90◦

phase-shift filtering, envelope functions, the instantaneous frequency function, and
relating amplitude spectra to phase spectra.

Ordinarily a function is specified entirely in the time domain or entirely in the
frequency domain. The Fourier transform then specifies the function in the other
domain. TheHilbert transform arises when half the information is in the time
domain and the other half is in the frequency domain. (Algebraically speaking, any
fractional part could be given in either domain.)

10.1.1. A Z-transform view of Hilbert transformation
Let xt be an even function oft . The definitionZ = ei ω givesZ−n

+ Zn
= 2cosωn;

so

X(Z) = ·· ·+ x1Z−1
+ x0+ x1Z+ x2Z2

+·· · (10.1)

X(Z) = x0+2x1cosω+2x2cos2ω+·· · (10.2)

Now make up a new functionY(Z) by replacing cosine by sine in (10.2):

Y(Z) = 2x1sinω+2x2sin2ω+·· · (10.3)

Recalling thatZ = cosω+ i sinω, we see that all the negative powers ofZ cancel
from X(Z)+ iY(Z), giving acausalC(Z):

C(Z) =
1

2
[X(Z)+ iY(Z)] =

1

2
x0+ x1Z+ x2Z2

+·· · (10.4)

Thus, for plot pairs, the causal response isct , the real part of the FT is equa-
tion (10.2), and the imaginary part not usually shown is given by equation (10.3).

10.1.2. The quadrature filter
Beginning with a causal response, we switched cosines and sines in the frequency
domain. Here we do so again, except that we interchange the time and frequency
domains, getting a more physical interpretation.

A filter that converts sines into cosines is called a “90◦ phase-shift filter" or a
“quadrature filter ." More specifically, if the input is cos(ωt+φ1), then the output

should be cos(ωt+φ1−π/2). An example is given in Figure10.2. LetU (Z) denote

Figure 10.2:
with quadrature filter yields
phase-shifted signal (bot-
tom).] Input (top) filtered
with quadrature filter yields
phase-shifted signal (bottom).
spec-hilb0 [NR]

the Z-transform of a real signal input andQ(Z) denote a quadrature filter. Then the
output signal is

V(Z) = Q(Z) U (Z) (10.5)

Let us find the numerical values ofqt . The time-derivative operation has the
90◦ phase-shifting property we need. The trouble with a differentiator is that higher
frequencies are amplified with respect to lower frequencies. Recall the FT and take
its time derivative:

b(t) =

∫
B(ω)e−i ωtdω (10.6)

db

dt
=

∫
−i ωB(ω)e−i ωtdω (10.7)

Thus we see that time differentiation corresponds to the weight factor−i ω in the
frequency domain. The weight−i ω has the proper phase but the wrong amplitude.
The desired weight factor is

Q(ω)=
−i ω

|ω|
= −i sgnω (10.8)

wheresgn is the “signum” or “sign” function. Let us transformQ(ω) into the
domain of sampled timet = n:

qn =
1

2π

∫ π

−π

Q(ω)e−i ωndω (10.9)

=
i

2π

∫ 0

−π

e−i ωndω−
i

2π

∫ π

0
e−i ωndω

=
i

2π

(
e−i ωn

−in

∣∣∣∣0
−π

−
e−i ωn

−in

∣∣∣∣π
0

)

=
1

2πn
(−1+e+inπ

+e−inπ
−1)

=

{
0 for n even
−2
πn for n odd

(10.10)

Examples of filtering withqn are given in Figure10.2and10.3.
Sinceqn does not vanish for negativen, the quadrature filter is nonrealizable

(that is, it requires future inputs to create its present output). If we were discussing
signals in continuous time rather than sampled time, the filter would be of the form
1/t , a function that has a singularity att = 0 and whose integral over positivet is
divergent. Convolution with the filter coefficientsqn is therefore painful because the
infinite sequence drops off slowly. Convolution with the filterqt is called “Hilbert
transformation."

Figure 10.3: A Hilbert-transform pair.spec-hilb [NR]

10.1.3. The analytic signal
The so-calledanalytic signal can be constructed from a real-valued time seriesut
and itself 90◦ phase shifted, i.e.,vt can be found using equation (10.5). The analytic
signal isgt , where

G(Z) = U (Z)+ iV (Z) = [1+ i Q(Z)] U (Z) (10.11)

In the time domain, the filter [1+ i Q(Z)] is δt+ iqt , whereδt is an impulse function
at time t = 0. The filter 1+ i Q(Z) = 1+ω/|ω| vanishes for negativeω. Thus it
is a realstepfunction in thefrequencydomain. The values all vanish atnegative
frequency.

We can guess where the name “analytic signal” came from if we think back
to Z-transforms and causal functions. Causal functions are free ofpoles inside the
unit circle, so they are “analytic” there. Their causality is the Fourier dual to the
one-sidedness we see here in the frequency domain.

A function is “analytic” if it is one-sided in the dual (Fourier) domain.

10.1.4. Instantaneous envelope
Thequadrature filter is often used to make theenvelopeof a signal. The envelope

signal can be defined byet =

√
u2

t +v2
t . Alternatively, with theanalytic signal

gt = ut + i vt , the squared envelope ise2
t = gt ḡt .

A quick way to accomplish the 90◦ phase-shift operation is to use Fourier trans-
formation. Begin withut + i ·0, and transform it to the frequency domain. Then
multiply by the step function. Finally, inverse transform to getgt = ut + i vt , which
is equivalent to (δt + iqt)∗ut .

Sinusoids have smoothenvelopefunctions, but that does not mean real seis-
mograms do. Figure10.4gives an example of a field profile and unsmoothed and
smoothed envelopes. Beforesmoothing, the stepout (alignment) of the reflections
is quite clear. In the practical world, alignment is considered to be a manifestation
of phase. An envelope should be a smooth function, such as might be used to scale
data without altering its phase. Hence the reason for smoothing the envelope.

If you are interested in wave propagation, you might recognize the possibility
of usinganalytic signals. Energy stored as potential energy is 90◦ out of phase
with kinetic energy, sout might represent scaled pressure whilevt represents scaled

Figure 10.4: Left is a field profile. Middle is the unsmoothed envelope function.
Right is the smoothed envelope. The vertical axis is time and the horizontal axis
is space. Independent time-domain calculations are done at each point in space.
spec-envelope[ER]

velocity. Thenw̄twt is the instantaneous energy. (The scales are the square root
of compressibility and the square root of density.)

10.1.5. Instantaneous frequency
The phaseφt of acomplex-valued signalgt =ut+ i vt is defined byφt =arctan(vt/ut).
The instantaneous frequencyis dφ/dt. Before forming the derivative, recall the
definition of a complex logarithm ofg:

g = rei φ

lng = ln |r |+ lnei φ

= ln |r |+ i φ
(10.12)

Hence,φ = = lng. Theinstantaneous frequencyis

ωinstantaneous =
dφ

dt
= =

d

dt
lng(t) = =

1

g

dg

dt
(10.13)

For a signal that is a pure sinusoid, such asg(t) = g0ei ωt , equation (10.13) clearly
gives the right answer. When various frequencies are simultaneously present, we
can hope that (10.13) gives a sensible average.

Trouble can arise in (10.13) when the denominatorg gets small, which happens
whenever theenvelopeof the signal gets small. This difficulty can be overcome by
carefulsmoothing. Rationalize the denominator by multiplying by the conjugate
signal, and then smooth locally a little (as indicated by the summation sign below):

ω̂smoothed = =

∑
ḡ(t) d

dt g(t)∑
ḡ(t) g(t)

(10.14)

(Those of you who have studiedquantum mechanicsmay recognize the notion of
“expectation of an operator.” You will also see why the wave probability function of
quantumphysicsmust be complex valued: as a consequence of theanalytic signal
eliminating negative frequencies from the average. If the negative frequencies were
not eliminated, then the average frequency would be zero.)

What range of times should be smoothed in equation (10.14)? Besides the na-
ture of the data, the appropriate smoothing depends on the method of representing
d
dt . To prepare a figure, I implementedddt by multiplying by−i ω. (This is more
accurate than finite differences at high frequencies, but has the disadvantage that
the discontinuity in slope at the Nyquist frequency gives an extended transient in the
time domain.) The result is shown in Figure10.5. Inspection of the figure shows that

Figure 10.5: A sum of three sinusoids (top), unsmoothed instantaneous frequency
(middle), and smoothed instantaneous frequency (bottom).spec-node[NR]

smoothing is even more necessary for instantaneous frequency than for envelopes,
and this is not surprising because the presence ofd

dt makes the signal rougher. Par-
ticularly notice times in the range 400-512 where the sinusoids are truncated. There
the unsmoothed instantaneous frequency becomes a large rapid oscillation near the
Nyquist frequency. This roughness is nicely controlled by (1,2,1) smoothing.

It is gratifying to see that a spike added to the sinusoids (at point 243) causes a
burst of high frequency. Also interesting to notice is where an oscillation approaches
the axis and then turns away just before or just after crossing the axis.

An example ofinstantaneous frequencyapplied to field data is shown in Fig-
ure10.6.

The instantaneous-frequency idea can also be applied to the space axis. This
will be more easily understood by readers familiar with the methodology of imaging
and migration. Instead of temporal frequencyω = dφ/dt, we compute the spatial
frequencykx = dφ/dx. Figure10.7gives an example. Analogously, we could make
plots of local dipkx/ω.

Figure 10.6: A field profile (left), instantaneous frequency smoothed only with
(1,2,1) (middle), and smoothed more heavily (right).spec-frequency[ER]

Figure 10.7: A field profile (left),kx smoothed overx only (center), and smoothed
overt andx (right). spec-kx [ER]

EXERCISES:
1 Let ct be a causal complex-valued signal. How doesX(Z) change in equation

(10.2), and how mustY(Z) in equation (10.3) be deduced fromX(Z)?

2 Figure10.3shows a Hilbert-transform pair, the real and imaginary parts of the
Fourier transform of a causal response. Describe the causal response.

3 Given Y(Z) = Q(Z)X(Z), prove that the envelope ofyt is the same as the
envelope ofxt .

4 Using partial fractions, convolve the waveform

2

π

(
. . . ,−

1

5
,0,−

1

3
,0,−1,0,1,0,

1

3
,0,

1

5
, . . .

)
with itself. What is the interpretation of the fact that the result is (. . . ,0,0,−1,0,0,. . .)?
(HINT: π2/8= 1+ 1

9+
1
25+

1
49+)

5 Using the fast-Fourier-transform matrix, we can represent thequadrature fil-
ter Q(ω) by the column vector

−i (0,1,1,1,. . . ,0,−1,−1,−1,. . . ,−1)′

Multiply this vector into the inverse-transform matrix to show that the trans-
form is proportional to (cosπk/N)/(sinπk/N). What is the scale factor?
Sketch the scale factor fork � N, indicating the limit N → ∞. (HINT:
1+ x+ x2

+ . . .+ xN
= (1− xN+1)/(1− x).)

10.2. SPECTRAL FACTORIZATION
The “spectral factorization" problem arises in a variety of physical contexts. It is
this: given a spectrum, find a minimum-phase wavelet that has that spectrum. We
will see how to make this wavelet, and we will recognize that it is unique. (It
is unique except for a trivial aspect. The negative of any wavelet has the same
spectrum as the wavelet, and, more generally, any wavelet can be multiplied by any
complex number of unit magnitude, such as±i , etc.)

First consider the simpler problem in which the wavelet need not be causal.
We can easily find a symmetric wavelet with any spectrum (which by definition is
an energy or power). We simply take the square root of the spectrum—this is the
amplitude spectrum. We then inverse transform the amplitude spectrum to the
time domain, and we have a symmetric wavelet with the desired spectrum.

Theprediction-error filter discussed in chapter7 is theoretically obtainable by
spectral factorization of an inverse spectrum. TheKolmogoroff method of spectral
factorization, which we will be looking at here, is much faster than the time-domain,
least-squares methods considered in chapter7 and the least-squares methods given
in FGDP. Its speed motivates its widespread practical use.

Figure 10.8: Left are given wavelets, and right are minimum-phase equivalents.
spec-mpsamples[NR]

Some simple examples of spectral factorization are given in Figure10.8. For all
but the fourth signal, the spectrum of the minimum-phase wavelet clearly matches
that of the input. Wavelets are shifted tot = 0 and turned backwards. In the fourth
case, the waveshape changes into a big pulse at zero lag. As theRobinsontheorem
introduced on page605 suggests, minimum-phase wavelets tend to decay rapidly
after a strong onset. I imagined that hand-drawn wavelets with a strong onset would
rarely turn out to be perfectly minimum-phase, but when I tried it, I was surprised
at how easy it seemed to be to draw a minimum-phase wavelet. This is shown on
the bottom of Figure10.8.

To begin understanding spectral factorization, notice that the polar form of any
complex number puts the phase into the exponential, i.e.,x+ iy= |r |ei φ

= eln |r |+i φ .
So we look first into the behavior of exponentials and logarithms of Fourier trans-
forms.

10.2.1. The exponential of a causal is causal.
Begin with acausal responsect and its associatedC(Z). The Z-transformC(Z)
could be evaluated, giving a complex value for each realω. This complex value

could be exponentiated to get another value, say

B(Z(ω)) = eC(Z(ω)) (10.15)

Next, we could inverse transformB(Z(ω)) back tobt . We will prove the amazing
fact thatbt must be causal too.

First notice that ifC(Z) has no negative powers ofZ, thenC(Z)2 does not
either. Likewise for the third power or any positive integer power, or sum of positive
integer powers. Now recall the basic power-series definition of the exponential
function:

ex
= 1+ x+

x2

2
+

x3

2·3
+

x4

2·3·4
+

x5

2·3·4·5
+·· · (10.16)

Including equation (10.15) gives theexponential of a causal:

B(Z) = eC(Z)
= 1+C(Z)+

C(Z)2

2
+

C(Z)3

2·3
+

C(Z)4

2·3·4
+·· · (10.17)

Each term in the infinite series corresponds to a causal response, so the sum,bt , is
causal. (If you have forgotten the series for the exponential function, then recall that
the solution tody/dx= y is the definition of the exponential functiony(x) = ex,

and that the power series satisfies the differential equation term by term, so it must
be the exponential too. The factorials in the denominators assure us that the power
series always converges, i.e., it is finite for any finitex.)

Putting one polynomial into another or one infinite series into another is an
onerous task, even if it does lead to a wavelet that is exactly causal. In practice
we do operations that are conceptually the same, but for speed we do them with
discrete Fourier transforms. The disadvantage is periodicity, i.e., negative times are
represented computationally like negative frequencies. Negative times are the last
half of the elements of a vector, so there can be some blurring of late times into
negative ones.

Figure 10.9: Exponentials.
spec-eZ[NR]

Figure10.9gives examples of equation (10.17) for C = Z andC = 4Z. Un-

fortunately, I do not have an analytic calculation to confirm the validity of these
examples.

10.2.2. Finding a causal wavelet from a prescribed spec-
trum

To find a causal wavelet from a prescribedspectrum, we will need to form the log-
arithm of the spectrum. Since a spectrum can easily vanish, and since the logarithm
of zero is infinite, there is a pitfall. To prepare ourselves, we first examine the log
spectra example given in Figure10.10. On the infinite domain, the FT of a box
function is a sinc whose zeros become minus infinities in the logarithm. On the
discrete domain, exact zeros may occur or not. The transform of a triangle is a sinc
squared, but since this triangle was imperfectly drawn (by me), its transform does
not go identically to zero. The sinc function drops off asω, and sinc squared drops
off asω2. We confirm this on the logarithm plot: sinc squared drops offtwice as
much.

Now for the task of going from a spectrum to a causal wavelet. Take as given
the spectrum of the causal waveletB(Z). This means that we are not givenB(Z)

Figure 10.10: Log spectra of a
box function and a triangle func-
tion. spec-logspec[NR]

itself, but we are givenS(Z) = B(1/Z)B(Z). Assuming no zeros in the spectrum
S(ω), it is easy to find the log of the spectrumU = ln S. The spectrum may be
specified asautocorrelation coefficients or values on the unit circle. Thus,

B(1/Z) B(Z)= S(Z)= eln S(Z)
= eU (Z)

= eC(1/Z)+C(Z)
= eC(1/Z) eC(Z) (10.18)

Given the spectrumS(Z) for each value on the unit circle, we could deduce thelog
spectrumU (Z)= ln S(Z) at each point on the unit circle:

U (Z) = ln[S(Z)] = C(1/Z)+C(Z) (10.19)

This is the answer we have been looking for. GivenU (Z) for all real values ofω,
we could inverse transform to the time domain, obtaining the two-sided function

ut = c̄−t + ct . Setting to zero the coefficients at negative times eliminatesc̄−t ,
leaving justct ; henceC(Z). And we already know that the exponential ofC(Z)
gives B(Z) with a causalbt . This method is known as “Kolmogoroff spectral
factorization," after the mathematician who discovered it.

The programmpwave() below begins with a wavelet, forms its spectrum, and
then callskolmogoroff() to factor the spectrum. The programkolmogoroff() first
takes the logarithm of the spectrum, then returns to the time domain and sets to
zero the noncausal part. It returns to frequency, exponentiates, and returns to the
time domain with a wavelet that will be proven to beminimum-phase. mpwave

kolmogoroff Between the times when negative lags are set to zero and positive
lags are left untouched are two points that are scaled by half. The overall scaling
was chosen to preserve the scale of the input wavelet.

The first test I tried on this program was the input wavelet (1,2,0,0). The
desired result is that the wavelet should time-reverse itself to (2,1,0,0). The ac-
tual result was (1.9536, 1.0837, 0.0464, -0.0837), imperfect because the four-point
Fourier transform is a summation around the unit circle, whereas theoretically an
integration is called for. Therefore, better results can be obtained by padding ad-
ditional zeros after the input wavelet. Also, you might notice that the program is

subroutine mpwave(n, cx) # minimum phase equivalent wavelet
integer i, n # input: cx = any wavelet
complex cx(n) # output: cx = min phase wavelet
call ftu(1., n, cx) # with same spectrum.
call scaleit(sqrt(1.*n), 2*n, cx)
do i= 1, n

cx(i) = cx(i) * conjg(cx(i))
call kolmogoroff(n, cx)
return; end

Back

subroutine kolmogoroff(n, cx) # Spectral factorization.
integer i, n # input: cx = spectrum
complex cx(n) # output: cx = min phase wavelet
do i= 1, n

cx(i) = clog(cx(i))
call ftu(-1., n, cx); call scaleit(sqrt(1./n), 2*n, cx)
cx(1) = cx(1) / 2.
cx(1+n/2) = cx(1+n/2) / 2.
do i= 1+n/2+1, n

cx(i) = 0.
call ftu(+1., n, cx); call scaleit(sqrt(1.*n), 2*n, cx)
do i= 1, n

cx(i) = cexp(cx(i))
call ftu(-1., n, cx); call scaleit(sqrt(1./n), 2*n, cx)
return; end

Back

designed for complex-valued signals. As typical of Fourier transform with single-
word precision, the imaginary parts were about 10−6 of the real parts instead of
being precisely zero.

Some examples ofspectral factorization are given in Figure10.11.

10.2.3. Why the causal wavelet is minimum-phase
Next we see why the causal waveletB(Z), which we have made from the prescribed
spectrum, turns out to be minimum-phase. First return to the original definition of
minimum-phase: a causal wavelet is minimum-phase if and only if its inverse is
causal. We have our wavelet in the formB(Z) = eC(Z). Consider another wavelet
A(Z)= e−C(Z), constructed analogously. By the same reasoning,at is also causal.
SinceA(Z)B(Z)= 1, we have found a causal, inverse wavelet. Thus thebt wavelet
is minimum-phase.

Since thephaseis a Fourier series, it must be periodic; that is, it cannot increase
indefinitely withω as it does for the nonminimum-phase wavelet (see Figure10.19).

Figure 10.11: Examples of log spectra and their associated minimum-phase
wavelets. spec-example[NR]

10.2.4. Pathological examples
The spectral-factorization algorithm fails when an infinity is encountered. This
happens when the spectrum becomes zero, so that its logarithm becomes minus
infinity. This can occur in a benign way—for example, in the case of the spectrum
of the wavelet (1,1), where the infinity occurs at the Nyquist frequency. We could
smooth the spectrum near the Nyquist before we take the logarithm. On the other
hand, the pathology can be more extreme. Convolving (1,1) with itselfN times, we
see that the result and its spectrum tend toGaussians. So, at the Nyquist frequency,
smoothing would only replace zero by a very tiny number.

Figure 10.12shows functions whose spectra contain zeros, along with their
minimum-phase equivalents. When the logarithm of zero arises during the compu-
tation, it is replaced by the log of 10−30. It is surprising that the triangle suffered so
much less than the other two functions. It seems that minor imperfection in specify-
ing the triangle resulted in a spectrum that did not have the theoretical zeros of sinc
squared.

Figure 10.12: Functions whose
spectra contain zeros, along with
their minimum-phase equiva-
lents, as computed by discrete
Fourier transform. spec-patho
[NR]

10.2.5. Relation of amplitude to phase
As we learned from equation (10.19), a minimum-phase function is determined
completely from its spectrum. Thus itsphaseis determinable from itsspectrum.
Likewise, we will see that, except for a scale, the spectrum is determinable from the
phase.

So far we have not discussed the fact that spectral factorization implicitly uses
Hilbert transform ation. Somehow we simply generated a phase. To see how the

phase arose, recall equation (10.18) and (10.19):

Sk = eln Sk = eUk = e(Uk−i 8k)/2e(Uk+i 8k)/2
= eCkeCk = Bk Bk (10.20)

Where did8k come from? We tookUk+ i 0 to the time domain, obtainingut . Then
we multipliedut by a real-valued step function of time. This multiplication in the
time domain is what created the phase, because multiplication in the time domain
implies a convolution in the frequency domain. Recall that the Fourier transform
of a real-valued step function arises with Hilbert transform. Multiplying in time
with a step means that, in frequency,Uk has been convolved withδk=0+ i × (90◦

phase-shift filter). SoUk is unchanged and a phase,8k, has been generated. This
explanation will be somewhat clearer if you review theZ-transform approach dis-
cussed at the beginning of the chapter, because there we can see both the frequency
domain and the time domain in one expression.

To illustrate different classes of discontinuity, pulse, step, and slope, Figure10.13
shows another Hilbert-transform pair.

Figure 10.13: A Hilbert-transform pair.spec-hilb2 [NR]

EXERCISES:
1 What is the meaning ofminimum-phase waveformif the roles of the time and

frequency domains are interchanged?

2 Show how to do the inverse Hilbert transform: givenφ, find u. What is the
interpretation of the fact that we cannot getu0?

3 Consider a model of a portion of the earth wherex is the north coordinate,+z
represents altitude above the earth, and magnetic bodies are distributed in the
earth, creating no component ofmagnetic field in the east-west direction. We

can show that the magnetic fieldh above the earth is represented by[
hx(x,z)
hz(x,z)

]
=

∫
+∞

−∞

F(k)

[
−ik
|k|

]
eikx−|k|zdk

HereF(k) is some spatial frequency spectrum.

(a) By using Fourier transforms, how do you computehx(x,0) fromhz(x,0)
and vice versa?

(b) Givenhz(x,0), how do you computehz(x,z)?

(c) Notice that, atz= 0,

f (x)= hz(x)+ ihx(x)=
∫
+∞

−∞

eikx F(k) (|k|+k)dk

and thatF(k)(|k| + k) is a one-sided function ofk. With a total field
magnetometer we observe that

h2
x(x)+h2

z(x)= w(x)w̄(x)

What can you say about obtainingF(k) from this?

(d) How unique arehx(x) andhz(x) if f (x) f̄ (x) is given?

4 Test this idea: write code to factorX(Z) into X(Z)= A(Z)B(Z), whereB(Z)
is minimum-phase andA(Z) is maximum-phase. Maximum-phase means that
ZN A(1/Z) is minimum-phase. First computeU (ω) = ln X(ω). Then remove
a linear trend in the phase ofU (ω) to get N. Then split U with its trend re-
moved into causal and anticausal partsU (Z) = C−(1/Z)+C+(Z). Finally,
form B(Z)= expC+(Z) andZN A(1/Z)= exp(C−(Z)).

10.3. A BUTTERWORTH-FILTER COOKBOOK
An ideal bandpass filter passes some range of frequencies without distortion and
suppresses all other frequencies. Further thought shows that what we think of as the
ideal bandpass filter, a rectangle function of frequency, is instead far from ideal, be-
cause its time-domain representation (sinω0t)/(ω0t) is noncausal and decays much
too slowly with time for many practical uses. The appropriate bandpass filter is one
whose time decay can be chosen to be reasonable (in combination with a reasonable
necessary compromise on the shape of the rectangle).Butterworth filter s fulfill

these needs. They are causal and of various orders, the lowest order being best
(shortest) in the time domain, and the higher orders being better in the frequency
domain. Well-engineered projects often include Butterworth filters. Unfortunately
they are less often used in experimental work because of a complicated setting-up
issue that I am going to solve for you here. I will give some examples and discuss
pitfall s as well.

The main problem is that there is no simple mathematical expression for the
filter coefficients as a function of order and cutoff frequency.

Analysis starts from an equation that for large-ordern is the equation of a box:

B(ω)B(ω) =
1

1+
(

ω
ω0

)2n
(10.21)

When |ω| < ω0, this Butterworth low-pass spectrum is about unity. When|ω| >
|ω0|, the spectrum drops rapidly to zero. The magnitude|B(ω)| (with some trun-
cation effects to be described later) is plotted in Figure10.14for various values of
n.

Conceptually, the easiest form of Butterworth filtering is to take data to the fre-
quency domain and multiply by equation (10.21), where you have selected some

Figure 10.14: Spectra of Butterworth filters of various-ordern. spec-butf [NR]

value ofn to compromise between the demands of the frequency domain (sharp
cutoff) and the time domain (rapid decay). Of course, the time-domain representa-
tion of equation (10.21) is noncausal. If you prefer a causal filter, you could take the
Butterworth spectrum into a spectral-factorization program such askolmogoroff() .

The time-domain response of the Butterworth filter is infinitely long, although
a Butterworth filter of degreen can be well approximated by a ratio ofnth-order
polynomials. Since, as we will see,n is typically in the range 2-5, time-domain
filtering is quicker than FT. To proceed, we need to expressω in terms ofZ, where
Z = ei ω1t . This is done in an approximate way that is valid for frequencies far from
the Nyquist frequency. Intuitively we know that time differentiation is implied by
−i ω. We saw that in sampled time, differentiation is generally represented by the
bilinear transform, equation (??): −i ω̂1t = 2(1−Z)/(1+Z). Thus a sampled-time
representation ofω2

= (i ω)(−i ω) is

ω2
= 4

1− Z−1

1+ Z−1

1− Z

1+ Z
(10.22)

Substituting equation (10.22) into (10.21) we find

B

(
1

Z

)
B(Z) =

[(1+ Z−1)(1+ Z)]n

[(1+ Z−1)(1+ Z)]n + [4
ω2

0
(1− Z−1)(1− Z)]n

(10.23)

B

(
1

Z

)
B(Z) =

N(Z−1)N(Z)

D(Z−1)D(Z)
(10.24)

where the desired, causal, Butterworth, discrete-domain filter isB(Z)= N(Z)/D(Z).
You will be able to appreciate the enormity of the task represented by these equa-
tions when you realize that the denominator in (10.23) must be factored into the
product of a function ofZ times the same function ofZ−1 to get equation (10.24).
Since the function is positive, it can be considered to be a spectrum, and factoriza-
tion must be possible.

10.3.1. Butterworth-filter finding program
To express equation (10.23) in the Fourier domain, multiply every parenthesized
factor by

√
Z and recall that

√
Z+1/

√
Z = 2cos(ω/2). Thus,

B(ω)B(ω) =
(2 cosω/2)2n

(2 cosω/2)2n + (4
ω0

sinω/2)2n
(10.25)

An analogous equation holds for high-pass filters. Subroutinebutter() /prog:butter
does both equations. First, the denominator of equation (10.25) is set up as a spec-
trum and factored. The numerator could be found in the same way, but the result
is already apparent from the numerator of (10.23), i.e., we need the coefficients of
(1+ Z)n. In subroutinebutter() they are simply obtained by Fourier transforma-
tion. The occurrence of a tangent in the program arises from equation (??). butter

10.3.2. Examples of Butterworth filters
Spectra and log spectra of various orders of Butterworth filters are shown in Fig-
ure10.14. They match a rectangle function that passes frequencies below the half-

Find the numerator and denominator Z-transforms of the Butterworth filter.
hilo={1.,-1.} for {low,high}-pass filter
cutoff in Nyquist units, i.e. cutoff=1 for (1,-1,1,-1...)
#
subroutine butter(hilo, cutoff, npoly, num, den)
integer npoly, nn, nw, i
real hilo, cutoff, num(npoly), den(npoly), arg, tancut, pi
complex cx(2048)
pi = 3.14159265; nw=2048; nn = npoly - 1
tancut = 2. * tan(cutoff*pi/2.)
do i= 1, nw {

arg = (2. * pi * (i-1.) / nw) / 2.
if(hilo > 0.) # low-pass filter

cx(i) = (2.*cos(arg)) **(2*nn) +
(2.*sin(arg) * 2./tancut) **(2*nn)

else # high-pass filter
cx(i) = (2.*sin(arg)) **(2*nn) +

(2.*cos(arg) * tancut/2.) **(2*nn)
}

call kolmogoroff(nw, cx) # spectral factorization
do i= 1, npoly

den(i) = cx(i)
do i= 1, nw # numerator

cx(i) = (1. + hilo * cexp(cmplx(0., 2.*pi*(i-1.)/nw))) ** nn
call ftu(-1., nw, cx)
do i= 1, npoly

num(i) = cx(i)
return; end

Back

Nyquist. Convergence is rapid with order. The logarithm plot shows a range of
0-3, meaning an amplitude ratio of 103

= 1000. Tiny glitches near the bottom for
high-order curves result from truncating the time axis in the time domain shown in
Figure10.15. The time-domain truncation also explains a slight roughness on the

Figure 10.15: Butterworth-filter
time responses for half-Nyquist
low pass. spec-butm[ER]

top of the rectangle function.
In practice, the filter is sometimes run both forward and backward to achieve

a phaseless symmetrical response. This squares the spectral amplitudes, resulting
in convergence twice as fast as shown in the figure. Notice that the higher-order
curves in the time domain (Figure10.15) have undesirable sidelobes which ring
longer with higher orders. Also, higher-order curves have increasing delay for the
main signal burst. This delay is a consequence of the binomial coefficients in the
numerator.

Another example of a low-pass Butterworth filter shows some lurkinginstabil-
ity . This is not surprising: a causal bandpass operator is almost a contradiction in
terms, since the word “bandpass” implies multiplying the spectrum by zero outside
the chosen band, and the word “causal” implies a well-behaved spectral logarithm.
These cannot coexist because the logarithm of zero is minus infinity. All this is
another way of saying that when we use Butterworth filters, we probably should
not use high orders. Figure10.16illustrates that an instability arises in the seventh-
order Butterworth filter, and even the sixth-order filter looks suspicious. If we insist
on using high-order filters, we can probably go to an order about twice as high as
we began with by using double precision, increasing the spectral widthnw, and,

Figure 10.16: Butterworth time
responses for a narrow-band low-
pass filter. spec-butl [ER]

if we are really persistent, using the method of the exercises below. My favorite
Butterworth filters for making synthetic seismograms have five coefficients (fourth
order). I do one pass through a low cut atcutoff=.1 and another through a high cut
at cutoff=.4 .

EXERCISES:
1 Above we assumed that a bandpass filter should be made by cascading a low-

pass and a high-pass filter. Suggest a revised form of equation (10.21) for
making bandpass filters directly.

2 Notice that equation (10.21) can be factored analytically. Individual factors
could be implemented as theZ-transform filters, and the filters cascaded. This
prevents the instability that arises when many poles are combined. Identify the
poles of equation (10.21). Which belong in the causal filter and which in its
time reverse?

10.4. PHASE DELAY AND GROUP DELAY
The Fourier-domain ratio of a wave seen atB divided by a wave seen atA can be
regarded as a filter. The propagation velocity is the distance fromA to B divided by
the delay. There are at least two ways todefinethe delay, however.

10.4.1. Phase delay
Whenever we put a sinusoid into a filter, a sinusoid must come out. The only things
that can change between input and output are the amplitude and the phase. Com-
paring a zero crossing of the input to a zero crossing of the output measures the
so-calledphasedelay. To quantify this, define an input, sinωt , and an output,
sin(ωt−φ). Then the phase delaytp is found by solving

sin(ωt−φ) = sinω(t− tp)
ωt−φ = ωt−ωtp

tp =
φ
ω

(10.26)

A problem with phase delay is that the phase can be ambiguous within an additive
constant of 2π N, whereN is any integer. In wave-propagation theory, “phase ve-

locity" is defined by the distance divided by the phase delay. There it is hoped that
the 2π N ambiguity can be resolved by observations tending to zero frequency or
physical separation.

10.4.2. Group delay
A more interesting kind of delay is “group delay," corresponding togroup veloc-
ity in wave-propagation theory. Often the group delay is nothing more than the
phase delay. This happens when the phase delay is independent of frequency. But
when the phase delay depends on frequency, then a completely new velocity, the
“group velocity," appears. Curiously, the group velocity isnot an average of phase
velocities.

The simplest analysis of group delay begins by defining a filter inputxt as the
sum of two frequencies:

xt = cosω1t+cosω2t (10.27)

By using a trigonometric identity,

xt = 2 cos(
ω1−ω2

2
t)︸ ︷︷ ︸

beat

cos(
ω1+ω2

2
t) (10.28)

we see that the sum of two cosines looks like a cosine of the average frequency
multiplied by a cosine of half the difference frequency. Since the frequencies in
Figure 10.17are taken close together, the difference frequency factor in (10.28)

Figure 10.17: Two nearby frequencies beating.spec-beat[NR]

represents a slowly variable amplitude multiplying the average frequency. The

slow (difference frequency) modulation of the higher (average) frequency is called
“beating.”

The beating phenomenon is also called “interference,” although that word is
deceptive. If the two sinusoids were two wave beams crossing one another, they
would simply crosswithout interfering. Where they are present simultaneously,
they simply add.

Each of the two frequencies could be delayed a different amount by a filter, so
take the output of the filteryt to be

yt = cos(ω1t−φ1)+cos(ω2t−φ2) (10.29)

In doing this, we have assumed that neither frequency was attenuated. (Thegroup
velocity concept loses its simplicity and much of its utility in dissipative media.)
Using the same trigonometric identity on (10.29) as we used to get (10.28), we find
that

yt = 2 cos(
ω1−ω2

2
t−

φ1−φ2

2
)︸ ︷︷ ︸

beat

cos(
ω1+ω2

2
t−

φ1+φ2

2
) (10.30)

Rewriting the beat factor in terms of a time delaytg, we now have

cos[
ω1−ω2

2
(t− tg)] = cos(

ω1−ω2

2
t−

φ1−φ2

2
) (10.31)

(ω1−ω2)tg = φ1−φ2

tg =
φ1−φ2

ω1−ω2
=

1φ

1ω
(10.32)

For a continuum of frequencies, thegroup delay is

tg =
dφ

dω
(10.33)

10.4.3. Group delay as a function of the FT
We will see that the group delay of a filterP is a simple function of the Fourier trans-
form of the filter. I have named the filterP to remind us that the theorem strictly
applies only to all-pass filters, though in practice a bit of energy absorption might
be OK. The phase angleφ could be computed as the arctangent of the ratio of imag-
inary to real parts of the Fourier transform, namely,φ(ω)= arctan[=P(ω)/<P(ω)].

As with (10.12), we useφ = = ln P; and from (10.33) we get

tg =
dφ

dω
= =

d

dω
ln P(ω) = =

1

P

d P

dω
(10.34)

which could be expressed as the Fourier dual to equation (10.14).

10.4.4. Observation of dispersive waves
Various formulas relate energy delay to group delay. This chapter illuminates those
that are one-dimensional. In observational work, it is commonly said that “what you
see is the group velocity.” This means that when we see an apparently sinusoidal
wave train, its distance from the source divided by its traveltime (group delay) is
the group velocity. An interesting example of a dispersive wave is given in FGDP
(Figure 1-11).

10.4.5. Group delay of all-pass filters
We have already discussed (page??) all-pass filters, i.e., filters with constant unit
spectra. They can be written asP(Z)P(1/Z) = 1. In the frequency domain,P(Z)

can be expressed asei φ(ω), whereφ is real and is called the “phase shift." Clearly,
PP = 1 for all realφ. It is an easy matter to make a filter with any desired phase
shift—we merely Fourier transformei φ(ω) into the time domain. Ifφ(ω) is arbitrary,
the resulting time function is likely to be two-sided. Since we are interested in
physical processes that are causal, we may wonder what class of functionsφ(ω)
corresponds to one-sided time functions. The answer is that thegroup delay τg =

dφ/dω of a causalall-pass filter must be positive.
Proof thatdφ/dω > 0 for a causal all-pass filter is found in FGDP; there is no

need to reproduce the algebra here. The proof begins from equation (??) and uses
the imaginary part of the logarithm to get phase. Differentiation with respect toω

yields a form that is recognizable as a spectrum and hence is always positive.
A single-pole, single-zero all-pass filter passes all frequency components with

constant gain and a phase shift that can be adjusted by the placement of the pole.
TakingZ0 near the unit circle causes most of the phase shift to be concentrated near
the frequency where the pole is located. Taking the pole farther away causes the
delay to be spread over more frequencies. Complicated phase shifts or group delays
can be built up by cascading single-pole filters.

The above reasoning for a single-pole, single-zero all-pass filter also applies to

many roots, because the phase of each will add, and the sum ofτg = dφ/dω > 0
will be greater than zero.

The Fourier dual to the positive group delay of a causal all-pass filter is that the
instantaneous frequency of a certain class of analytic signals must be positive. This
class of analytic signals is made up of all those with a constant envelope function,
as might be approximated by field data after the process of automatic gain control.

EXERCISES:
1 Let xt be some real signal. Letyt = xt+3 be another real signal. Sketch the

phase as a function of frequency of the cross-spectrumX(1/Z)Y(Z) as would
a computer that put all arctangents in the principal quadrants−π/2< arctan<
π/2. Label the axis scales.

2 Sketch the amplitude, phase, and group delay of the all-pass filter (1−Z0Z)/(Z0−

Z), whereZ0 = (1+ ε)ei ω0 andε is small. Label important parameters on the
curve.

3 Show that the coefficients of an all-pass, phase-shifting filter made by cascad-
ing (1− Z0Z)/ (Z0− Z) with (1− Z0Z)/(Z0− Z) are real.

4 A continuous signal is the impulse response of a continuous-time, all-pass fil-
ter. Describe the function in both time and frequency domains. Interchange
the words “time" and “frequency" in your description of the function. What
is a physical example of such a function? What happens to the statement, the
group delay of an all-pass filter is positive?

5 A graph of the group delayτg(ω) showsτg to be positive for allω. What is the
area underτg in the range 0< ω < 2π? (HINT: This is a trick question you can
solve in your head.)

10.5. PHASE OF A MINIMUM-PHASE FILTER
In chapter3 we learned that the inverse of a causal filterB(Z) is causal ifB(Z)
has no roots inside the unit circle. The term “minimum phase” was introduced
there without motivation. Here we examine the phase, and learn why it is called
“minimum."

10.5.1. Phase of a single root
For realω, a plot of real and imaginary parts ofZ is the circle (x, y)= (cosω,sinω).
A smaller circle is .9Z. A right-shifted circle is 1+ .9Z. Let Z0 be a complex
number, such asx0+ iy0, or Z0 = ei ω0/ρ, whereρ and ω0 are fixed constants.
Consider the complexZ plane for the two-term filter

B(Z) = 1−
Z

Z0
(10.35)

B(Z(ω)) = 1−ρei (ω−ω0) (10.36)

B(Z(ω)) = 1−ρ cos(ω−ω0)− iρ sin(ω−ω0) (10.37)

Real and imaginary parts ofB are plotted in Figure10.18. Arrows are at fre-
quencyω intervals of 20◦. Observe that forρ > 1 the sequence of arrows has a
sequence of angles that ranges over 360◦, whereas forρ < 1 the sequence of arrows
has a sequence of angles between±90◦. Now let us replot equation (10.37) in a
more conventional way, withω as the horizontal axis. Whereas thephaseis the
angle of an arrow in Figure10.18, in Figure10.19it is the arctangent of=B/<B.
Notice how different is the phase curve in Figure10.19for ρ < 1 than forρ > 1.

Figure 10.18: Left, complexB plane forρ < 1. Right, forρ > 1. spec-origin
[ER]

Real and imaginary parts ofB areperiodic functions of the frequencyω, since
B(ω) = B(ω+ 2π). We might be tempted to conclude that the phase would be
periodic too. Figure10.19shows, however, that for a nonminimum-phase filter, as
ω ranges from−π to π , the phaseφ increases by 2π (because the circular path
in Figure 10.18surrounds the origin). To make Figure10.19I used the Fortran
arctangent function that takes two arguments,x, andy. It returns an angle between
−π and+π . As I was plotting the nonminimum phase, the phase suddenly jumped
discontinuously from a value nearπ to −π , and I needed to add 2π to keep the
curve continuous. This is called “phase unwinding.”

You would use phase unwinding if you ever had to solve the following problem:
given anearthquake at location (x, y), did it occur in country X? You would cir-
cumnavigate the country—compare the circle in Figure10.18—and see if the phase
angle from the earthquake to the country’s boundary accumulated to 0 (yes) or to
2π (no).

The word “minimum" is used in “minimum phase" because delaying a filter can
always add more phase. For example, multiplying any polynomial byZ delays it
and addsω to its phase.

For the minimum-phase filter, the group delaydφ/dω applied to Figure10.19

Figure 10.19: Left shows real
and imaginary parts and phase
angle of equation ((10.37)),
for ρ < 1. Right, for ρ > 1.
Left is minimum-phase and
right is nonminimum-phase.
spec-phase[ER]

is a periodic function ofω. For the nonminimum-phase filter, group delay happens
to be a monotonically increasing function ofω. Since it is not an all-pass filter, the
monotonicity is accidental.

Becausegroup delay dφ/dω is the Fourier dual toinstantaneous frequency
dφ/dt, we can now go back to Figure10.5and explain the discontinuous behavior
of instantaneous frequency where the signal amplitude is near zero.

10.5.2. Phase of a rational filter
Now let us sum up the behavior of phase of therational filter

B(Z)=
(Z−c1)(Z−c2) · · ·

(Z−a1)(Z−a2) · · ·
(10.38)

By the rules of complex-number multiplication, the phase ofB(Z) is the sum of
the phases in the numerator minus the sum of the phases in the denominator. Since
we are discussing realizable filters, the denominator factors must all be minimum-
phase, and so the denominator phase curve is a sum of periodic phase curves like
the lower left of Figure10.19.

The numerator factors may or may not be minimum-phase. Thus the numerator
phase curve is a sum of phase curves that may resemble either type in Figure10.19.
If any factors augment phase by 2π , then the phase is not periodic, and the filter is
nonminimum-phase.

10.6. ROBINSON’S ENERGY-DELAY THEOREM
Here we will see that aminimum-phasefilter has lessenergy delaythan any other
one-sided filter with the same spectrum. More precisely, the energy summed from
zero to any timet for the minimum-phase wavelet is greater than or equal to that of
any other wavelet with the same spectrum.

Here is how I proveRobinson’s energy-delay theorem: compare two wavelets,
Fin andFout, that are identical except for one zero, which is outside the unit circle
for Fout and inside forFin. We can write this as

Fout(Z) = (b+sZ) F(Z) (10.39)

Fin(Z) = (s+bZ) F(Z) (10.40)

whereb is bigger thans, andF is arbitrary but of degreen. Proving the theorem for

complex-valuedb ands is left as an exercise. Notice that the spectrum ofb+sZ is
the same as that ofs+bZ. Next, tabulate the terms in question.

t Fout Fin F2
out− F2

in

∑t
k=0(F2

out− F2
in)

0 bf0 s f0 (b2
−s2) f02 (b2

−s2) f02

1 bf1+s f0 s f1+bf0 (b2
−s2) (f12

− f02) (b2
−s2) f12

...
...

k bfk+s fk−1 s fk+bfk−1 (b2
−s2) (fk2

− f 2
k−1) (b2

−s2) fk2

...
...

n+1 s fn bfn (b2
−s2)(− fn2) 0

The difference, which is given in the right-hand column, is always positive. An
example of the result is shown in Figure10.20.

Notice that (s+bZ)/(b+ sZ) is an all-pass filter. Multiplying by an all-pass
filter does not change the amplitude spectrum but instead introduces a zero and a
pole. The pole could cancel a preexisting zero, however. To sum up, multiplying
by a causal/anticausal all-pass filter can move zeros inside/outside the unit circle.
Each time we eliminate a zero inside the unit circle, we cause the energy of the
filter to come out earlier. Eventually we run out of zeros inside the unit circle, and

Figure 10.20: p
ercentage versus time. ‘x’ for
minimum-phase wavelet. ‘o’
for nonminimum phase.] Total
energy percentage versus time.
‘x’ for minimum-phase wavelet.
‘o’ for nonminimum phase.
spec-robinson[ER]

the energy comes out as early as possible.

EXERCISES:
1 Repeat the proof of Robinson’s minimum-energy-delay theorem for complex-

valuedb, s, and fk. (HINT: DoesFin = (s+bZ) F or Fin = (s+bZ)F?)

10.7. FILTERS IN PARALLEL
We have seen that in acascade of filterstheZ-transform polynomials are multiplied
together. Forfilters in parallel the polynomials add. See Figure10.21.

Figure 10.21: Filters operating
in parallel. spec-parallel[NR]

We have seen also that a cascade of filters is minimum-phase if, and only if,
each element of the product is minimum-phase. Now we will find a condition that

is sufficient (but not necessary) for a sumA(Z)+G(Z) to be minimum-phase. First,
assume thatA(Z) is minimum-phase. Then write

A(Z)+G(Z)= A(Z)

(
1+

G(Z)

A(Z)

)
(10.41)

The question as to whetherA(Z)+G(Z) is minimum-phase is now reduced to de-
termining whetherA(Z) and 1+G(Z)/A(Z) are both minimum-phase. We have
assumed thatA(Z) is minimum-phase. Before we ask whether 1+G(Z)/A(Z) is
minimum-phase, we need to be sure that it is causal. Since 1/A(Z) is expand-
able in positive powers ofZ only, thenG(Z)/A(Z) is also causal. We will next
see that a sufficient condition for 1+G(Z)/A(Z) to be minimum-phase is that the
spectrum ofA exceed that ofG at all frequencies. In other words, for any realω,
|A|> |G|. Thus, if we plot the curve ofG(Z)/A(Z) in the complex plane, for real
0≤ ω ≤ 2π , it lies everywhere inside the unit circle. Now, if we add unity, ob-
taining 1+G(Z)/A(Z), then the curve will always have a positive real part as in
Figure10.22. Since the curve cannot enclose the origin, the phase must be that of a
minimum-phase function.

Figure 10.22: A phase trajectory
as in Figure10.18left, but more
complicated. spec-garbage
[ER]

You can add garbage to a minimum-phase wavelet if you do not add too much.

This abstract theorem has an immediate physical consequence. Suppose a wave
characterized by a minimum-phaseA(Z) is emitted from a source and detected
at a receiver some time later. At a still later time, an echo bounces off a nearby
object and is also detected at the receiver. The receiver sees the signalY(Z) =
A(Z)+ ZnαA(Z), wheren measures the delay from the first arrival to the echo, and
α represents the amplitude attenuation of the echo. To see thatY(Z) is minimum-
phase, we note that the magnitude ofZn is unity and the reflection coefficientα
must be less than unity (to avoid perpetual motion), so thatZnαA(Z) takes the role
of G(Z). Thus, a minimum-phase wave along with its echo is minimum-phase. We
will later consider wave propagation with echoes of echoes ad infinitum.

EXERCISES:
1 Find two nonminimum-phase wavelets whose sum is minimum-phase.

2 Let A(Z) be a minimum-phase polynomial of degreeN. Let A′(Z)= ZN A(1/Z).
Locate in the complexZ plane the roots ofA′(Z). A′(Z) is called “maximum
phase." (HINT: Work the simple caseA(Z)= a0+a1Z first.)

3 Suppose thatA(Z) is maximum-phase and that the degree ofG(Z) is less than
or equal to the degree ofA(Z). Assume|A|> |G|. Show thatA(Z)+G(Z) is
maximum-phase.

4 Let A(Z) be minimum-phase. Where are the roots ofA(Z)+ cZN Ā(1/Z) in
the three cases|c| < 1,|c| > 1,|c| = 1? (HINT: The roots of a polynomial are
continuous functions of the polynomial coefficients.)

Chapter 11

Resolution and random signals

The accuracy of measurements on observed signals is limited not only by practical
realities, but also by certain fundamental principles. The most famous example
included in this chapter is the time-bandwidth product in Fourier-transformation

613

theory, called the “uncertainty principle .”
Observed signals often look random and are often modeled by filtered random

numbers. In this chapter we will see many examples of signals built from random
numbers and discover how the nomenclature of statistics applies to them. Funda-
mentally, this chapter characterizes “resolution,” resolution of frequency and ar-
rival time, and the statistical resolution of signal amplitude and power as functions
of time and frequency.

We will see
√

n popping up everywhere. This
√

n enters our discussion when
we look at spectra of signals built from random numbers. Also, signals that are
theoretically uncorrelated generally appear to be weakly correlated at a level of
1/
√

n, wheren is the number of independent points in the signal.
Measures of resolution (which are variously calledvariances, tolerances, un-

certainties,bandwidths,durations,spreads, rise times, spans, etc.) often interact
with one another, so that experimental change to reduce one must necessarily in-
crease another or some combination of the others. In this chapter we study basic
cases where such conflicting interactions occur.

To avoid confusion I introduce the unusual notation3 where1 is commonly
used. Notice that the letter3 resembles the letter1, and3 connotes length with-

out being confused with wavelength. Lengths on the time and frequency axes are
defined as follows:

dt, d f mesh intervals in time and frequency
1t , 1 f mesh intervals in time and frequency
1T 1F extent of time and frequency axis
3T , 3F time duration and spectralbandwidth of a signal

There is no mathematically tractable and universally acceptable definition for
time span3T and spectral bandwidth3F . A variety of defining equations are easy
to write, and many are in general use. The main idea is that the time span3T
or the frequency span3F should be able to include most of the energy but need
not contain it all. The time duration of a damped exponential function is infinite if
by duration we mean the span of nonzero function values. However, for practical
purposes the time span is generally defined as the time required for the amplitude
to decay toe−1 of its original value. For many functions the span is defined by
the span between points on the time or frequency axis where the curve (or its en-
velope) drops to half of the maximum value. Strange as it may sound, there are
certain concepts about the behavior of3T and3F that seem appropriate for “all”
mathematical choices of their definitions, yet these concepts can be proven only for

special choices.

11.1. TIME-FREQUENCY RESOLUTION
A consequence of Fourier transforms being built fromei ωt is that scaling a function
to be narrower in one domain scales it to be wider in the other domain. Scalingω

implies inverse scaling oft to keep the productωt constant. For example, the FT of
a rectangle is a sinc. Making the rectangle narrower broadens the sinc in proportion
becauseωt is constant. A pure sinusoidal wave has a clearly defined frequency, but
it is spread over the infinitely long time axis. At the other extreme is an impulse
function (often called a delta function), which is nicely compressed to a point on
the time axis but contains a mixture of all frequencies. In this section we examine
how the width of a function in one domain relates to that in the other. By the end of
the section, we will formalize this into an inequality:

For any signal, the time duration3T and the spectral bandwidth3F are re-
lated by

3F 3T ≥ 1 (11.1)

This inequality is theuncertainty principle .

Since we are unable to find a precise and convenient analysis for the definitions
of 3F and3T , the inequality (11.1) is not strictly true. What is important is that
rough equality in (11.1) is observed for many simple functions, but for others the
inequality can be extremely slack (far from equal). Stronginequalityarises from
all-pass filters. An all-pass filter leaves the spectrum unchanged, and hence3F
unchanged, but it can spread out the signal arbitrarily, increasing3T arbitrarily.
Thus the time-bandwidth maximum is unbounded for all-pass filters. Some people
say that theGaussianfunction has the minimum product in (11.1), but that really
depends on a particular method of measuring3F and3T .

11.1.1. A misinterpretation of the uncertainty principle
It is easy to misunderstand the uncertainty principle. An oversimplification of it is
to say that it is “impossible to know the frequency at any particular time.” This over-
simplification leads us to think about a truncated sinusoid, such as in Figure11.1.
We know the frequency exactly, so3F seems zero, whereas3T is finite, and this
seems to violate (11.1). But what the figure shows is that the truncation of the si-
nusoid has broadened the frequency band. More particularly, the impulse function
in the frequency domain has been convolved by the sinc function that is the Fourier
transform of the truncating rectangle function.

Figure 11.1: Windowed sinusoid and its Fourier transform.rand-windcos[NR]

11.1.2. Measuring the time-bandwidth product
Now examine Figure11.2, which contains sampled Gaussian functions and their
Fourier transforms. The Fourier transform of a Gaussian is well known to be another
Gaussian function, as the plot confirms. I adjusted the width of each Gaussian so
that the widths would be about equal in both domains. The Gaussians were sampled
at various values ofn, increasing in steps by a factor of 4. You can measure the
width dropping by a factor of 2 at each step. For those of you who have already
learned about the uncertainty principle, it may seem paradoxical that the function’s
width is dropping in both time and frequency domains.

Figure 11.2: Sampled Gaussian
functions and their Fourier trans-
forms for vectors of lengthn =
16, 64, and 256. rand-uncertain
[NR]

The resolution of the paradox is that the physical length of the time axis or the
frequency axis is varying as we changen (even though the plot length is scaled to a
constant on the page). We need to associate a physical mesh with the computational
mesh. A method of associating physical and computational meshes was described
in chapter9 on page??. In real physical space as well as in Fourier transform space,
the object remains a constant size as the mesh is refined.

Let us read from Figure11.2values for the widths3F and3T . On the top
row, whereN = 16, I pick a width of about 4 points, and this seems to include
about 90% of the area under the function. For this signal (with the widths roughly
equal in both domains) it seems that3T =

√
Ndt and3F =

√
Nd f . Using the

relation betweendt andd f found in equation (??), which says thatdt d f = 1/N,
the product becomes3T3F = 1.

We could also confirm the inequality (11.1) by considering simple functions for
which we know the analytic transforms—for example, an impulse function in time.
Then3T = dt, and the Fourier transform occupies the entire frequency band from
minus to plus the Nyquist frequency±.5/dt Hz, i.e.,3F = 1/dt. Thus again, the
product is3T3F = 1.

11.1.3. The uncertainty principle in physics
The inequality (11.1) derives the name “uncertainty principle ” from its interpreta-
tion in quantum mechanics. Observations of subatomic particles show they behave
like waves with spatial frequency proportional to particle momentum. The classical
laws of mechanics enable prediction of the future of a mechanical system by extrap-
olation from the currently known position and momentum. But because of the wave
nature of matter, with momentum proportional to spatial frequency, such prediction
requires simultaneous knowledge of both the location and the spatial frequency of
the wave. This is impossible, as we see from (11.1); hence the word “uncertainty.”

11.1.4. Gabor’s proof of the uncertainty principle
Although it is easy to verify the uncertainty principle in many special cases, it is
not easy to deduce it. The difficulty begins from finding a definition of the width of
a function that leads to a tractable analysis. One possible definition uses a second
moment; that is,3T is defined by

(3T)2 =

∫
t2b(t)2dt∫
b(t)2dt

(11.2)

The spectral bandwidth3F is defined likewise. With these definitions, Dennis
Gabor prepared a widely reproduced proof. I will omit his proof here; it is not an
easy proof; it is widely available; and the definition (11.2) seems inappropriate for
a function we often use, thesinc function, i.e., the FT of a step function. Since the
sinc function drops off ast−1, its width3T defined with (11.2) is infinity, which is
unlike the more human measure of width, the distance to the first axis crossing.

11.1.5. My rise-time proof of the uncertainty principle
In FGDP I came up with a proof of the uncertainty principle that is appropriate for
causal functions. That proof is included directly below, but I recommend that the
beginning reader skip over it, as it is somewhat lengthy. I include it because this
book is oriented toward causal functions, the proof is not well known, and I have
improved it since FGDP.

A similar and possibly more basic concept than the product of time and fre-
quency spreads is the relationship between spectralbandwidth and the “rise time”
of a system-response function. The rise time3T of a system response is defined
as follows: when we kick a physical system with an impulse function, it usually

responds rapidly, rising to some maximum level, and then dropping off more slowly
toward zero. The quantitative value of the rise time is generally, and somewhat ar-
bitrarily, taken to be the span between the time of excitation and the time at which
the system response is more than halfway up to its maximum.

“Tightness" (nearness to equality) in the inequality (11.1) is associated with
minimum phase. “Slackness" (remoteness from equality) in the (11.1) would occur
if a filter with an additional all-pass component were used. Slackness could also
be caused by a decay time that is more rapid than the rise time, or by other combi-
nations of rises and falls, such as random combinations. Minimum-phase systems
generally respond rapidly compared to the rate at which they later decay. Focus-
ing our attention on such systems, we can now seek to derive the inequality (11.1)
applied to rise time and bandwidth.

The first step is to choose a definition for rise time. I have found a tractable
definition ofrise time to be

1

3T
=

∫
∞

0
1
t b(t)2dt∫
∞

0 b(t)2dt
(11.3)

whereb(t) is the response function under consideration. Equation (11.3) defines

3T by the first negative moment. Since this is unfamiliar, consider two examples.
Taking b(t) to be a step function, recognize that the numerator integral diverges,
giving the desired3T = 0 rise time. As a further example, takeb(t)2 to grow
linearly from zero tot0 and then vanish. Then the rise time3T is t0/2, again
reasonable. It is curious thatb(t) could grow as

√
t , which rises with infinite slope

at t = 0, and not cause3T to be pushed to zero.

• Proof by way of the dual problem
Although theZ-transform method is a great aid in studying cases where divergence
(as 1/t) plays a role, it has the disadvantage that it destroys the formal interchange-
ability between the time domain and the frequency domain. To take advantage of
the analytic simplicity of theZ-transform, we consider instead the dual to the rise-
time problem. Instead of a signal whose square vanishes at negative time, we have a
spectrumB(1/Z)B(Z) that vanishes at negative frequencies. We measure how fast
this spectrum can rise afterω = 0. We will find this time interval to be related to
the time duration3T of the complex-valued signalbt . More precisely, we now de-
fine the lowest significant frequency component3F in the spectrum, analogously

to (11.3), as
1

3F
=

∫
∞

−∞

1

f
B B d f =

∫
∞

−∞

B B
dω

ω
(11.4)

where we have assumed the spectrum is normalized, i.e., the zero lag of the auto-
correlation ofbt is unity. Now recall thebilinear transform , equation (??), which
represents 1/(−i ω) as the coefficients of12(1+Z)/(1−Z), namely, (. . .0,0,0,12,1,1,1. . .).
The pole right on the unit circle atZ= 1 causes some nonuniqueness. Because 1/ i ω
is an imaginary, odd, frequency function, we will want an odd expression (such as
on page??) to insert into (11.4):

1

−i ω
=

(· · ·− Z−2
− Z−1

+0+ Z+ Z2
+·· ·)

2
(11.5)

Using limits on the integrals for time-sampled functions and inserting (11.5) into
(11.4) gives

1

3F
=
−i

2π

∫
+π

−π

1

2
(· · ·−Z−2

−Z−1
+Z+Z2

+·· ·) B

(
1

Z

)
B(Z)dω (11.6)

Let st be the autocorrelation ofbt . Since any integral around the unit circle of a
Z-transform polynomial selects the coefficient ofZ0 of its integrand, we have

1

3F
=
−i

2

[
(s−1−s1)+ (s−2−s2)+ (s−3−s3)+·· ·

]
=

∞∑
t=1

−=st(11.7)

1

3F
=

∞∑
t=1

−=st ≤

∞∑
t=1

|st | (11.8)

The height of the autocorrelation has been normalized tos0= 1. The sum in (11.8)
is an integral representing area under the|st | function. So the area is a measure of
theautocorrelation width 3Tauto. Thus,

1

3F
≤

∞∑
t=1

|st | = 3Tauto (11.9)

Finally, we must relate the duration of a signal3T to the duration of its auto-
correlation3Tauto. Generally speaking, it is easy to find a long signal that has short
autocorrelation. Just take an arbitrary short signal and convolve it using a lengthy

all-pass filter. Conversely, we cannot get a long autocorrelation function from a
short signal. A good example is the autocorrelation of a rectangle function, which
is a triangle. The triangle appears to be twice as long, but considering that the tri-
angle tapers down, it is reasonable to assert that the3T ’s are the same. Thus, we
conclude that

3Tauto ≤ 3T (11.10)

Inserting this inequality into (11.9), we have the uncertainty relation

3T 3F ≥ 1 (11.11)

Looking back over the proof, I feel that the basic time-bandwidth idea is in the
equality(11.7). I regret that the verbalization of this idea, boxed following, is not
especially enlightening. Theinequalityarises from3Tauto< 3T , which is a simple
idea.

The inverse moment of the normalized spectrum of an analytic signal equals
the imaginary part of the mean of its autocorrelation.

EXERCISES:
1 ConsiderB(Z) = [1− (Z/Z0)n]/(1− Z/Z0) as Z0 goes to the unit circle.

Sketch the signal and its squared amplitude. Sketch the frequency function
and its squared amplitude. Choose3F and3T .

2 A time series made up of two frequencies can be written as

bt = Acosω1t+ Bsinω1t+C cosω2t+D sinω2t

Given ω1, ω2, b0, b1, b2, andb3, show how to calculate the amplitude and
phase angles of the two sinusoidal components.

11.2. FT OF RANDOM NUMBERS
Many real signals are complicated and barely comprehensible. In experimental
work, we commonly transform such data. To better understand what this means,
it will be worthwhile to examine signals made fromrandom numbers.

Figure11.3shows discrete Fourier transforms of random numbers. The basic
conclusion to be drawn from this figure is that transforms of random numbers look

Figure 11.3: Fourier cosine transforms of vectors containing random numbers. N
is the number of components in the vector.rand-nrand[NR]

like more random numbers. A random series containing all frequencies is called a
“white-noise" series, because the color white is made from roughly equal amounts
of all colors. Any series made by independently chosen random numbers is said to
be an “independent" series. An independent series must be white, but a white series
need not be independent. Figure11.4shows Fourier transforms of random numbers
surrounded by zeros (or zero padded). Since all the vectors of random numbers are

Figure 11.4: Zero-padded random numbers and their FTs.rand-pad[NR]

the same length (each has 1024 points, including both sides of the even function with
the even part (513 points) shown), the transforms are also the same length. The top
signal has less randomness than the second trace (16 random numbers versus 64).
Thus the top FT is smoother than the lower ones. Although I introduced this figure
as if the left panel were the time domain and the right panel were frequency, you
are free to think of it the opposite way. This is more clear. With the left-hand signal
being a frequency function, where higher frequencies are present, the right-hand
signal oscillates faster.

11.2.1. Bandlimited noise
Figure11.5shows bursts of 25 random numbers at various shifts, and their Fourier
transforms. You can think of either side of the figure as the time domain and the
other side as the frequency domain. (See page?? for a description of the different
ways of interpreting plots of one side of Fourier-transform pairs of even functions.)
I like to think of the left side as the Fourier domain and the right side as the signals.
Then the signals seem to be sinusoids of a constant frequency (called the “center"
frequency) and of an amplitude that is modulated at a slower rate (called the “beat”

frequency). Observe that the center frequency is related to thelocationof the ran-
dom bursts, and that the beat frequency is related to thebandwidthof the noise
burst.

Figure 11.5: Shifted, zero-padded random numbers in bursts of 25 numbers.
rand-shift [NR]

You can also think of Figure11.5as having one-sided frequency functions on
the left, and the right side as being thereal part of the signal. The real parts are

cosinelike, whereas the imaginary parts (not shown) are sinelike and have the same
envelope function as the cosinelike part.

You might have noticed that the bottom plot in Figure11.5, which has Nyquist-
frequency modulated beats, seems to have about twice as many beats as the two
plots above it. This can be explained as an end effect. The noise burst near the
Nyquist frequency is really twice as wide as shown, because it is mirrored about
the Nyquist frequency into negative frequencies. Likewise, the top figure is not
modulated at all, but the signal itself has a frequency that matches the beats on the
bottom figure.

11.3. TIME-STATISTICAL RESOLUTION
1 If we flipped a fair coin 1000 times, it is unlikely that we would get exactly 500
heads and 500 tails. More likely the number of heads would lie somewhere between

1I would like to thank GillesDarche for carefully reading this chapter and point-
ing out some erroneous assertions in FGDP. If there are any mistakes in the text now,
I probably introduced them after his reading.

400 and 600. Or would it lie in another range? The theoretical value, called the
“mean" or the “expectation," is 500. The value from our experiment in actually
flipping a fair coin is called the “sample mean.” How much difference3m should
we expect between the sample meanm̂ and the true meanm? Both the coin flips
x and our sample mean̂m arerandom variables. Our 1000-flip experiment could
be repeated many times and would typically give a differentm̂ each time. This
concept will be formalized in section 11.3.5. as the “variance of the sample mean,”
which is the expected squared difference between the true mean and the mean of our
sample.

The problem of estimating thestatistical parameters of a time series, such as its
mean, also appears in seismic processing. Effectively, we deal with seismic traces
of finite duration, extracted from infinite sequences whose parameters can only be
estimated from the finite set of values available in these seismic traces. Since the
knowledge of these parameters, such as signal-to-noise ratio, can play an important
role during the processing, it can be useful not only to estimate them, but also to
have an idea of the error made in this estimation.

11.3.1. Ensemble
The “true value” of the mean could be defined as the mean that results when the coin
is flippedn times, whenn is conceived of as going to infinity. A more convenient
definition of true value is that the experiment is imagined as having been done sep-
arately under identical conditions by an infinite number of people (an “ensemble”).
The ensemble may seem a strange construction; nonetheless, much literature in
statistics and the natural sciences uses the ensemble idea. Let us say that the ensem-
ble is defined by a probability as a function of time. Then the ensemble idea enables
us to define a time-variable mean (the sum of the values found by the ensemble
weighted by the probabilities) for, for example, coins that change with time.

11.3.2. Expectation and variance
A conceptual average over the ensemble, orexpectation, is denoted by the symbol
E. The index for summation over the ensemble is never shown explicitly; every
random variable is presumed to have one. Thus, the true mean at timet is defined
asmx(t)= E(xt). The mean can vary with time:

mx(t) = E[x(t)] (11.12)

The “variance” σ 2 is defined to be the power after the mean is removed, i.e.,

σx(t)2 = E[(x(t)−mx(t))2] (11.13)

(Conventionally,σ 2 is referred to as the variance, andσ is called the “standard
deviation.”)

For notational convenience, it is customary to writem(t), σ (t), andx(t) simply
as m, σ , and xt , using the verbal context to specify whetherm andσ are time-
variable or constant. For example, the standard deviation of the seismic amplitudes
on a seismic trace before correction of spherical divergence decreases with time,
since these amplitudes are expected to be “globally” smaller as time goes on.

When manipulating algebraic expressions, remember that the symbol E behaves
like a summation sign, namely,

E ≡ (lim N→∞)
1

N

N∑
1

(11.14)

Note that the summation index is not given, since the sum is over the ensemble, not
time. To get some practice with the expectation symbol E, we can reduce equa-

tion (11.13):

σ 2
x = E[(xt −mx)2] = E(x2

t) − 2mxE(xt)+m2
x = E(x2

t) − m2
x

(11.15)
Equation (11.15) says that the energy is the variance plus the squared mean.

11.3.3. Probability and independence
A random variablex can be described by aprobability p(x) that the amplitude
x will be drawn. In real life we almost never know the probability function, but
theoretically, if we do know it, we can compute themeanvalue using

m = E(x) =

∫
x p(x)dx (11.16)

“Statistical independence” is a property of two or more random numbers. It
means the samples are drawn independently, so they are unrelated to each other.
In terms of probability functions, the independence of random variablesx andy is
expressed by

p(x, y) = p(x) p(y) (11.17)

From these, it is easy to show that

E(xy) = E(x)E(y) (11.18)

11.3.4. Sample mean
Now let xt be a time series made up of identically distributed random numbers:
mx andσx do not depend on time. Let us also suppose that they areindependently
chosen; this means in particular that for any different timest ands (t 6= s):

E(xt xs) = E(xt)E(xs) (11.19)

Suppose we have a sample ofn points ofxt and are trying to determine the value of
mx. We could make an estimatêmx of the meanmx with the formula

m̂x =
1

n

n∑
t=1

xt (11.20)

A somewhat more elaborate method of estimating the mean would be to take a
weighted average. Letwt define a set of weights normalized so that∑

wt = 1 (11.21)

With these weights, the more elaborate estimatem̂ of the mean is

m̂x =

∑
wt xt (11.22)

Actually (11.20) is just a special case of (11.22); in (11.20) the weights arewt =

1/n.
Further, the weights could beconvolvedon the random time series, to compute

local averages of this time series, thus smoothing it. The weights are simply a filter
response where the filter coefficients happen to be positive and cluster together.
Figure11.6shows an example: a random walk function with itself smoothed locally.

11.3.5. Variance of the sample mean
Our objective here is to calculate how far the estimated meanm̂ is likely to be from
the true meanm for a sample of lengthn. This difference is thevariance of the
sample meanand is given by (3m)2= σ 2

m̂, where

σ 2
m̂ = E[(m̂−m)2] (11.23)

= E
{
[(
∑

wt xt)−m]2
}

(11.24)

Figure 11.6: Random walk and itself smoothed (and shifted downward).
rand-walk [NR]

Now use the fact thatm=m
∑

wt =
∑

wtm:

σ 2
m̂ = E


[∑

t

wt (xt −m)

]2
 (11.25)

= E

{[∑
t

wt (xt −m)

] [∑
s

ws(xs−m)

]}
(11.26)

= E

[∑
t

∑
s

wtws(xt −m)(xs−m)

]
(11.27)

The step from (11.26) to (11.27) follows because

(a1+a2+a3) (a1+a2+a3) = sum of

 a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

 (11.28)

The expectation symbol E can be regarded as another summation, which can be
done after, as well as before, the sums ont ands, so

σ 2
m̂ =

∑
t

∑
s

wt ws E [(xt −m)(xs−m)] (11.29)

If t 6= s, sincext and xs are independent of each other, the expectation E[(xt −

m)(xs−m)] will vanish. If s= t , then the expectation is the variance defined by
(11.13). Expressing the result in terms of the Kronecker delta,δts (which equals
unity if t = s, and vanishes otherwise) gives

σ 2
m̂ =

∑
t

∑
s

wt wsσ 2
x δts (11.30)

σ 2
m̂ =

∑
t

w2
t σ 2

x (11.31)

σm̂ = σx

√∑
t

w2
t (11.32)

Forn weights, each of size 1/n, the standard deviation of the sample mean is

3mx = σm̂x = σx

√√√√ n∑
t=1

(
1

n

)2

=
σx
√

n
(11.33)

This is the most important property of random numbers that is not intuitively obvi-
ous. Informally, the result (11.33) says this: given a sumy of terms with random
polarity, whose theoretical mean is zero, then

y = ±1±1±1· · ·︸ ︷︷ ︸
n terms

(11.34)

The sumy is a random variable whose standard deviation isσy =
√

n = 3y. An
experimenter who does not know the mean is zero will report that the mean ofy is
E(y)= ŷ±3y, whereŷ is the experimental value.

If we are trying to estimate the mean of a random series that has a time-variable
mean, then we face a basic dilemma. Including many numbers in the sum in order
to make3m small conflicts with the possibility of seeingmt change during the

measurement.
The “variance of the sample variance” arises in many contexts. Suppose we

want to measure the storminess of the ocean. We measure water level as a function
of time and subtract the mean. The storminess is the variance about the mean. We
measure the storminess in one minute and call it a sample storminess. We com-
pare it to other minutes and other locations and we find that they are not all the
same. To characterize these differences, we need thevariance of the sample vari-
anceσ 2

σ̂2. Some of these quantities can be computed theoretically, but the compu-
tations become very cluttered and dependent on assumptions that may not be valid
in practice, such as that the random variables are independently drawn and that they
have a Gaussian probability function. Since we have such powerful computers, we
might be better off ignoring the theory and remembering the basic principle that a
function of random numbers is also a random number. We can use simulation to
estimate the function’s mean and variance. Basically we are always faced with the
same dilemma: if we want to have an accurate estimation of the variance, we need
a large number of samples, which limits the possibility of measuring a time-varying
variance.

EXERCISES:
1 Suppose the mean of a sample of random numbers is estimated by a triangle

weighting function, i.e.,

m̂ = s
n∑

i=0

(n− i)xi

Find the scale factors so that E(̂m) =m. Calculate3m. Define a reasonable
3T . Examine the uncertainty relation.

2 A random seriesxt with a possibly time-variable mean may have the mean
estimated by the feedback equation

m̂t = (1− ε)m̂t−1+bxt

a. Expressm̂t as a function ofxt ,xt−1, . . . , and notm̂t−1.

b. What is3T , the effective averaging time?

c. Find the scale factorb so that ifmt =m, then E(m̂t)=m.

d. Compute the random error3m=
√

E(m̂−m)2. (HINT: 3mgoes toσ
√

ε/2
asε→ 0.)

e. What is (3m)23T in this case?

11.4. SPECTRAL FLUCTUATIONS
Recall the basic model of time-series analysis, namely, random numbers passing
through a filter. A sample of input, filter, and output amplitude spectra is shown
in Figure11.7. From the spectrum of the output we can guess the spectrum of the
filter, but the figure shows there are some limitations in our ability to do so. Let us
analyze this formally.

Observations of sea level over a long period of time can be summarized in terms
of a few statistical averages, such as the mean heightm and the varianceσ 2. Another
important kind of statistical average for use on geophysical time series is the “power
spectrum." Many mathematical models explain only statistical averages of data and
not the data itself. To recognize certainpitfall s and understand certain fundamental
limitations on work with power spectra, we first consider the idealized example of
random numbers.

Figure 11.7: Random numbers
into a filter. Top is a spectrum
of random numbers. Middle is
the spectrum of a filter. Bottom
is the spectrum of filter output.
rand-filter [ER]

Figure 11.8: Autocorrelation and spectra of random numbers.rand-auto[NR]

Figure11.8shows a signal that is a burst of noise; its Fourier transform, and
the transform squared; and its inverse transform, the autocorrelation. Here the FT
squared is the same as the more usual FT times its complex conjugate—because the
noise-burst signal is even, its FT is real.

Notice that theautocorrelation has a big spike at zero lag. This spike repre-
sents the correlation of the random numbers with themselves. The other lags are
much smaller. They represent the correlation of the noise burst with itself shifted.
Theoretically, the noise burst isnot correlated with itself shifted: these small fluc-
tuations result from the finite extent of the noise sample.

Imagine many copies of Figure11.8. Ensemble averaging would amount to
adding these other autocorrelations or, equivalently, adding these other spectra. The
fluctuations aside the central lobe of the autocorrelation would be destroyed by en-
semble averaging, and the fluctuations in the spectrum would be smoothed out. The
expectation of the autocorrelationis that it is an impulse at zero lag. Theexpec-
tation of the spectrum is that it is a constant, namely,

E[Ŝ(Z)] = S(Z) = const (11.35)

11.4.1. Paradox: large n vs. the ensemble average
Now for the paradox. Imaginen→∞ in Figure11.8. Will we see the same limit
as results from the ensemble average? Here are two contradictory points of view:

• For increasingn, the fluctuations on the nonzero autocorrelation lags get
smaller, so the autocorrelation should tend to an impulse function. Its Fourier
transform, the spectrum, should tend to a constant.

• On the other hand, for increasingn, as in Figure11.3, the spectrum does not
get any smoother, because the FTs should still look like random noise.

We will see that the first idea contains a false assumption. The autocorrelation does
tend to an impulse, but the fuzz around the sides cannot be ignored—although the
fuzz tends to zero amplitude, it also tends to infinite extent, and the product of zero
with infinity here tends to have the same energy as the central impulse.

To examine this issue further, let us discover how these autocorrelations de-
crease to zero withn (the number of samples). Figure11.9shows the autocorre-
lation samples as a function ofn in steps ofn increasing by factors of four. Thus
√

n increases by factors of two. Each autocorrelation in the figure was normalized
at zero lag. We see the sample variance for nonzero lags of the autocorrelation

Figure 11.9: Autocorrelation as a function of number of data points. The random-
noise-series (even) lengths are 60, 240, 960.rand-fluct [NR]

dropping off as
√

n. We also observe that the ratios between the values for the first
nonzero lags and the value at lag zero roughly fit 1/

√
n. Notice also that the fluc-

tuations drop off with lag. The drop-off goes to zero at a lag equal to the sample
length, because the number of terms in the autocorrelation diminishes to zero at that
lag. A first impression is that the autocorrelation fits a triangular envelope. More
careful inspection, however, shows that the triangle bulges upward at wide offsets,
or large values ofk (this is slightly clearer in Figure11.8). Let us explain all these
observations. Each lag of the autocorrelation is defined as

sk =

n−k∑
t=1

xt xt+k (11.36)

where (xt) is a sequence of zero-meanindependentrandom variables. Thus, the
expectations of the autocorrelations can be easily computed:

E(s0) =

n∑
1

E(x2
t) = nσ 2

x (11.37)

E(sk) =

n−k∑
1

E(xt)E(xt+k) = 0 (for k≥ 1) (11.38)

In Figure11.9, the value at lag zero is more or lessnσ 2
x (before normalization), the

deviation being more or less the standard deviation (square root of the variance) of
s0. On the other hand, fork ≥ 1, as E(sk) = 0, the value of the autocorrelation is
directly the deviation ofsk, i.e., something close to its standard deviation. We now
have to compute the variances of thesk. Let us write

sk =

n−k∑
t=1

yk(t) (whereyk(t)= xt xt+k) (11.39)

So:sk = (n−k)m̂yk , wherem̂yk is the sample mean ofyk with n−k terms. Ifk 6= 0,
E(yk)= 0, and we apply (11.33) to m̂yk :

E(m̂2
yk

) =
σ 2

yk

n−k
(11.40)

The computation ofσ 2
yk

is straightforward:

σ 2
yk
= E(x2

t x2
t+k) = E(x2

t)E(x2
t+k) = σ 4

x , (11.41)

Thus, for the autocorrelationsk:

E(s2
k) = (n−k)σ 2

yk
= (n−k)σ 4

x =
n−k

n2
(E(s0))2 (11.42)

Finally, as E(sk)= 0, we get

σsk =

√
E(s2

k) = E(s0)

√
n−k

n
(11.43)

This result explains the properties observed in Figure11.9. As n→∞, all the
nonzero lags tend to zero compared to the zero lag, since

√
n−k/n tends to zero.

Then, the first lags (k << n) yield the ratio 1/
√

n between the autocorrelations and
the value at lag zero. Finally, the autocorrelations do not decrease linearly withk,
because of

√
n−k.

We can now explain the paradox. The energy of the nonzero lags will be

E =

∑
k 6=0

E(s2
k) =

(E(s0))2

n2

n∑
k=1

(n−k) = (E(s0))2
n(n−1)

n2
(11.44)

Hence there is a conflict between the decrease to zero of the autocorrelations and the
increasing number of nonzero lags, which themselves prevent the energy from de-
creasing to zero. The autocorrelation does notglobally tend to an impulse function.
In the frequency domain, the spectrumS(ω) is now

S(ω) =
1

n
(s0+s1cosω+s2cos2ω+·· ·) (11.45)

So E[S(ω)] = (1/n)E[s0] = σ 2
x , and theaveragespectrum is a constant, independent

of the frequency. However, as thesk fluctuate more or less like E[s0]/
√

n, and as
their count inS(ω) is increasing withn, we will observe thatS(ω) will also fluctuate,
and indeed,

S(ω) =
1

n
E[s0]±

1

n
E[s0] = σ 2

x ±σ 2
x (11.46)

This explains why the spectrum remains fuzzy: the fluctuation is independent of
the number of samples, whereas the autocorrelation seems to tend to an impulse.
In conclusion, the expectation (ensemble average) of the spectrum is not properly
estimated by lettingn→∞ in a sample.

11.4.2. An example of the bandwidth/reliability tradeoff
Letting n go to infinity does not take us to the expectationŜ= σ 2. The problem
is, as we increasen, we increase the frequency resolution but not the statistical
resolution (i.e., the fluctuation around̂S). To increase the statistical resolution, we
need to simulate ensemble averaging. There are two ways to do this:

1. Take the sample ofn points and break it intok equal-length segments of
n/k points each. Compute anS(ω) for each segment and then average allk
of the S(ω) together. The variance of the average spectrum is equal to the
variance of each spectrum (σ 2

x) dividedby the number of segments, and so
the fluctuation is substantially reduced.

2. Form S(ω) from then-point sample. Replace each of then/2 independent
amplitudes by an average over itsk nearest neighbors. This could also be

done by tapering the autocorrelation.

The second method is illustrated in Figure11.10. This figure shows a noise burst
of 240 points. Since the signal is even, the burst is effectively 480 points wide, so
the autocorrelation is 480 points from center to end: the number of samples will be
the same for all cases. The spectrum is very rough. Multiplying the autocorrelation
by a triangle function effectively smooths the spectrum by a sinc-squared function,
thus reducing the spectral resolution (1/3F). Notice that3F is equal here to the
width of the sinc-squared function, which is inversely proportional to the length of
the triangle (3Tauto).

However, the first taper takes the autocorrelation width from 480 lags to 120
lags. Thus the spectral fluctuations3S should drop by a factor of 2, since the
count of termssk in S(ω) is reduced to 120 lags. The width of the next weighted
autocorrelation width is dropped from 480 to 30 lags. Spectral roughness should
consequently drop by another factor of 2. In all cases, theaveragespectrum is
unchanged, since the first lag of the autocorrelations is unchanged. This implies a
reduction in the relative spectral fluctuation proportional to the square root of the
length of the triangle (

√
3Tauto).

Our conclusion follows:

Figure 11.10: Spectral smoothing by tapering the autocorrelation.3T is constant
and specified on the top row. Successive rows show3F increasing while3S de-
creases. The width of a superimposed box roughly gives3F , and its height roughly
gives3S. rand-taper[NR]

The trade-off amongresolutions of time, frequency, and spectral amplitude is

3F 3T

(
3S

S

)2

> 1 (11.47)

11.4.3. Spectral estimation
In Figure11.10we did not care about spectral resolution, since we knew theoreti-
cally that the spectrum was white. But in practice we do not have such foreknowl-
edge. Indeed, the random factors we deal with in nature rarely are white. A widely
used model for naturally occurring random functions, such as microseism, or some-
times reflection seismograms, is white noise put into a filter. The spectra for an
example of this type are shown in Figure11.7. We can see that smoothing the en-
velope of the power spectrum of the output gives an estimate of the spectrum of the
filter. But we also see that the estimate may need even more smoothing.

11.5. CROSSCORRELATION AND COHERENCY
With two time series we can see how crosscorrelation and coherency are related.

11.5.1. Correlation
“Correlation " is a concept similar to cosine. A cosine measures the angle between
two vectors. It is given by the dot product of the two vectors divided by their mag-
nitudes:

c =
(x ·y)

√
(x ·x)(y ·y)

(11.48)

This is thesample normalized correlationwe first encountered on page?? as a
quality measure of fitting one image to another.

Formally, thenormalized correlation is defined usingx andy as zero-mean,
scalar, random variables instead of sample vectors. The summation is thus an ex-
pectation instead of a dot product:

c =
E(xy)√

E(x2)E(y2)
(11.49)

A practical difficulty arises when the ensemble averaging is simulated over a
sample. The problem occurs with small samples and is most dramatically illustrated
when we deal with a sample of only one element. Then the sample correlation is

ĉ =
xy

|x| |y|
= ±1 (11.50)

regardless of what value the random numberx or the random numbery should take.
For anyn, the sample correlation̂c scatters away from zero. Such scatter is called
“bias." The topic of bias and variance of coherency estimates is a complicated one,
but a rule of thumb seems to be to expect bias and variance ofĉ of about 1/

√
n

for samples of sizen. Bias, no doubt, accounts for many false “discoveries,” since
cause-and-effect is often inferred from correlation.

11.5.2. Coherency
The concept of “coherency” in time-series analysis is analogous to correlation. Tak-
ing xt and yt to be time series, we find that they may have a mutual relationship
which could depend on time delay, scaling, or even filtering. For example, perhaps
Y(Z) = F(Z)X(Z)+ N(Z), whereF(Z) is a filter andnt is unrelated noise. The

generalization of the correlation concept is to define coherency by

C =

E
[
X
(

1
Z

)
Y(Z)

]
√

E(X X)E(Y Y)
(11.51)

Correlation is a real scalar.Coherencyis a complex function of frequency;
it expresses the frequency dependence of correlation. In forming an estimate of
coherency, it is always essential to simulate ensemble averaging. Note that if the
ensemble averaging were to be omitted, the coherency (squared) calculation would
give

|C|2 = CC =
(XY)(XY)

(X X)(Y Y)
= 1 (11.52)

which states that the coherency squared is unity, independent of the data. Because
correlation scatters away from zero, we find that coherency squared is biased away
from zero.

11.5.3. The covariance matrix of multiple signals
A useful model ofsingle-channel time-series analysis is that random numbersxt
enter a filter ft and come out as a signalyt . A useful model ofmultiple-channel
time-series analysis—with two channels, for example—is to start with independent
random numbers in both thex1(t) channel and thex2(t) channel. Then we needfour
filters, f11(t), f12(t), f21(t), and f22(t), which produce two output signals defined
by theZ-transforms

Y1(Z) = B11(Z)X1(Z)+ B12(Z)X2(Z) (11.53)

Y2(Z) = B21(Z)X1(Z)+ B22(Z)X2(Z) (11.54)

These signals have realistic characteristics. Each has its own spectral color. Each
has a partial relationship to the other which is characterized by a spectral amplitude
and phase. Typically we begin by examining thecovariance matrix. For example,
consider two time series,y1(t) andy2(t). Their Z-transforms areY1(Z) andY2(Z).
Their covariance matrix is[

E[Y1(1/Z)Y1(Z)] E[Y1(1/Z)Y2(Z)]
E[Y2(1/Z)Y1(Z)] E[Y2(1/Z)Y2(Z)]

]
= E

([
Y1(1/Z)
Y2(1/Z)

] [
Y1(Z) Y2(Z)

])
(11.55)

HereZ-transforms represent the components of the matrix in the frequency domain.
In the time domain, each of the four elements in the matrix of (11.55) becomes a
Toeplitz matrix, a matrix of correlation functions (see page??).

The expectations in equation (11.55) are specified by theoretical assertions or
estimated by sample averages or some combination of the two. Analogously to
spectralfactorization, the covariance matrix can be factored into two parts,U′U,
whereU is an upper triangular matrix. The factorization might be done by the
well known Cholesky method. The factorization is a multichannel generalization
of spectral factorization and raises interesting questions about minimum-phase that
are partly addressed in FGDP.

11.5.4. Bispectrum
The “bispectrum" is another statistic that is used to search for nonlinear interactions.
For a Fourier transformF(ω), it is defined by

B(ω1,ω2) = E[F(ω1)F(ω2)F(ω1+ω2)] (11.56)

A statistic defined analogously is the “bispectral coherency." In seismology, signals
rarely have adequate duration for making sensible bispectral estimates from time

averages.

11.6. SMOOTHING IN TWO DIMENSIONS
In previous sections we assumed that we were using one-dimensional models, and
smoothing was easy. Working in two dimensions is nominally much more costly,
but some tricks are available to make things easier. Here I tell you my favorite
trick for smoothing in two dimensions. You can convolve with a two-dimensional
(almost) Gaussian weighting functionof any areafor a cost of only sixteen additions
per output point. (You might expect instead a cost proportional to the area.)

11.6.1. Tent smoothing
First recall triangular smoothing in one dimension with subroutinetriangle()

/prog:triangle. This routine is easily adapted to two dimensions. First we smooth
in the direction of the 1-axis for all values of the 2-axis. Then we do the reverse,
convolve on the 2-axis for all values of the 1-axis. Now recall that smoothing with
a rectangle is especially fast, because we do not need to add all the points within

the rectangle. We merely adapt a shifted rectangle by adding a point at one end
and subtracting a point at the other end. In other words, the cost of smoothing is
independent of the width of the rectangle. And no multiplies are required. To get a
triangle, we smooth twice with rectangles.

Figure11.11shows the application of triangle smoothers on two pulses in a
plane. The plane was first convolved with a triangle on the 1-axis and then with
another triangle on the 2-axis. This takes each impulse and smooths it into an in-
teresting pyramid that I call a tent. The expected side-boundary effect is visible on
the foreground tent. In the contour plot (of the same 120 by 40 mesh), we see that
the cross section of the tent is rectangular near the base and diamond shaped near
the top. The altitude of thej th tent face isz= a(x− xj)(y− yj), where (xj , yj) is
the location of a corner anda is a scale. The tent surface is parabolic (likez= x2)
alongx = y but linear along lines parallel to the axes. A contour of constantz is the
(hyperbolic) curvey = a+b/(x+ c) (wherea, b, andc are different constants on
each of the four faces).

Figure 11.11: Two impulses in two dimensions filtered with a triangle function
along each spatial axis. Left: bird’s-eye view. Right: contours of constant altitude
z. rand-pyram[NR]

11.6.2. Gaussian mounds
In Figure 11.12we see the result of applying tent smoothing twice. Notice that

Figure 11.12: Two impulses in two dimensions filtered twice on each axis with
a triangle function. Left: bird’s-eye view. Right: contours of constant altitudez.
rand-mound[ER]

the contours, instead of being diamonds and rectangles, have become much more
circular. The reason for this is briefly as follows: convolution of a rectangle with
itself many times approachs the limit of aGaussianfunction. (This is a well-known
result called the “central-limit theorem .” It is explained in section11.7.) It happens
that the convolution of a triangle with itself is already a good approximation to the
Gaussian functionz(x) = e−x2

. The convolution iny gives z(x, y) = e−x2
−y2
=

e−r 2
, wherer is the radius of the circle. When the triangle on the 1-axis differs in

width from the triangle on the 2-axis, then the circles become ellipses.

11.6.3. Speed of 2-D Gaussian smoothing
This approximate Gaussian smoothing in two dimensions is very fast. Only eight
add-subtract pairs are required per output point, and no multiplies at all are required
except for final scaling. The compute time is independent of the widths of the
Gaussian(!). (You should understand this if you understood that one-dimensional
convolution with a rectangle requires just one add-subtract pair per output point.)
Thus this technique should be useful in two-dimensional slant stack.

EXERCISES:
1 Deduce that a 2-D filter based on the subroutinetriangle() /prog:triangle

which produces the 2-D quasi-Gaussian mound in Figure11.12has a gain of
unity at zero (two-dimensional) frequency (also known as (kx,ky)= 0).

2 Let the 2-D quasi-Gaussian filter be known asF . Sketch the spectral response
of F .

3 Sketch the spectral response of 1− F and suggest a use for it.

4 The tent filter can be implemented by smoothing first on the 1-axis and then on
the 2-axis. The conjugate operator smooths first on the 2-axis and then on the
1-axis. The tent-filter operator should be self-adjoint (equal to its conjugate),
unless some complication arises at the sides or corners. How can a dot-product
test be used to see if a tent-filter program is self-adjoint?

11.7. PROBABILITY AND CONVOLUTION
One way to obtainrandom integers from a knownprobability function is to write
integers on slips of paper and place them in a hat. Draw one slip at a time. After

each drawing, replace the slip in the hat. The probability of drawing the integeri is
given by the ratioai of the number of slips containing the integeri divided by the
total number of slips. Obviously the sum overi of ai must be unity. Another way to
get random integers is to throw one of a pair of dice. Then allai equal zero except
a1 = a2 = a3 = a4 = a5 = a6 =

1
6. The probability that the integeri will occur on

the first drawing and the integerj will occur on the second drawing isai aj . If we
draw two slips or throw a pair of dice, then the probability that the sum ofi and j
equalsk is the sum of all the possible ways this can happen:

ck =

∑
i

ai ak−i (11.57)

Since this equation is aconvolution, we may look into the meaning of theZ-
transform

A(Z) = ·· ·a−1Z−1
+a0+a1Z+a2Z2

+·· · (11.58)

In terms ofZ-transforms, the probability thati plus j equalsk is simply the coeffi-
cient of Zk in

C(Z) = A(Z) A(Z) (11.59)

The probability density of asumof random numbers is theconvolutionof their
probability density functions.

EXERCISES:
1 A random-number generator provides random integers 2, 3, and 6 with proba-

bilities p(2)= 1/2, p(3)= 1/3, andp(6)= 1/6. What is the probability that
any given integern is the sum of three of these random numbers? (HINT: Leave
the result in the form of coefficients of a complicated polynomial.)

11.8. THE CENTRAL-LIMIT THEOREM
Thecentral-limit theorem of probability and statistics is perhaps the most impor-
tant theorem in these fields of study. A derivation of the theorem explains why
the Gaussianprobability function is so frequently encountered in nature; not just
in physics but also in the biological and social sciences. No experimental scientist
should be unaware of the basic ideas behind this theorem. Although the central-

limit theorem is deep and is even today the topic of active research, we can quickly
go to the basic idea.

From equation (11.59), if we addn random numbers, the probability that the
sum of them equalsk is given by the coefficient ofZk in

G(Z) = A(Z)n (11.60)

The central-limit theorem says that asn goes to infinity, the polynomialG(Z) goes
to a special form, almost regardless of the specific polynomialA(Z). The specific
form is such that a graph of the coefficients ofG(Z) comes closer and closer to
fitting under the envelope of the bell-shaped Gaussian function. This happens be-
cause, if we raise any function to a high enough power, eventually all we can see
is the highest value of the function and its immediate environment, i.e., the second
derivative there. We already saw an example of this in Figure??. Exceptions to the
central-limit theorem arise (1) when there are multiple maxima of the same height,
and (2) where the second derivative vanishes at the maximum.

Although the central-limit theorem tells us that a Gaussian function is the limit
asn→∞, it does not say anything about how fast the limit is attained. To test
this, I plotted the coefficients of (14Z +

1
2+

1
4 Z)n for large values ofn. This signal

Figure 11.13: Left: wiggle plot style. Middle: perspective. Right: contour.
rand-clim [ER]

is made up of scaledbinomial coefficients. To keep signals in a suitable amplitude
scale, I multiplied them by

√
n. Figure11.13shows views of the coefficients of

√
n(1

4Z +
1
2+

1
4 Z)n (horizontal axis) versus

√
n (vertical axis). We see that scaling

by
√

n has kept signal peak amplitudes constant. We see also that the width of the
signal increases linearly with

√
n. The contours of constant amplitude show that the

various orders are self-similar with the width stretching.

Sums of independently chosen random variables tend to have Gaussian proba-
bility density functions.

Chapter 12

Entropy and Jensen inequality

Jensen inequality is my favorite theory-that-never-quite-made-it-into-practice, but
there is still hope!

In this book we have solved many problems by minimizing a weighted sum of

677

squares. We understand vaguely that the weights should somehow be the inverse to
the expected value of the object they weight. We really cannot justify thesquare,
however, except to say that it makes residuals positive, and positive residuals lead
to ready methods of analysis. Here we will think about a more general approach,
more clumsy in computation, but potentially more powerful in principle. As we
begin with some mathematical abstractions, you should think of applications where
populations such as envelopes, spectra, or magnitudes of residuals are adjustable by
adjusting model parameters. What you will see here is a wide variety of ways that
equilibrium can be defined.

12.1. THE JENSEN INEQUALITY
Let f be a function with a positive second derivative. Such a function is called
“convex" and satisfies theinequality

f (a) + f (b)

2
− f

(
a+b

2

)
≥ 0 (12.1)

Equation (12.1) relates a function of an average to an average of the function. The
average can be weighted, for example,

1

3
f (a) +

2

3
f (b) − f

(
1

3
a+

2

3
b

)
≥ 0 (12.2)

Figure12.1is a graphical interpretation of equation (12.2) for the function f = x2.
There is nothing special aboutf = x2, except that it is convex. Given three numbers
a, b, andc, the inequality (12.2) can first be applied toa andb, and then toc and
the average ofa and b. Thus, recursively, an inequality like (12.2) can be built
for a weighted average of three or more numbers. Define weightswj ≥ 0 that are
normalized (

∑
j wj = 1). The general result is

S(pj) =

N∑
j=1

wj f (pj) − f

 N∑
j=1

wj pj

 ≥ 0 (12.3)

If all the pj are the same, then both of the two terms inS are the same, andS
vanishes. Hence, minimizingS is like urging all thepj to be identical. Equilibrium
is whenS is reduced to the smallest possible value which satisfies any constraints

Figure 12.1: Sketch ofy = x2

for interpreting equation ((12.2)).
jen-jen [NR]

f (x) = x 2

A B

B 2

A2
x

)(21
3 3

2
BA +

1
3 3

2
BA +

3
2

B
1
3

A2 + 2

that may be applicable. The functionSdefined by (12.3) is like theentropy defined
in thermodynamics.

12.1.1. Examples of Jensen inequalities
The most familiar example of a Jensen inequality occurs when the weights are all
equal to 1/N and the convex function isf (x)= x2. In this case the Jensen inequality
gives the familiar result that the mean square exceeds the square of the mean:

Q =
1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

≥ 0 (12.4)

In the other applications we will consider, the population consists of positive mem-
bers, so the functionf (p) need have a positive second derivative only for positive
values ofp. The function f (p)= 1/p yields a Jensen inequality for theharmonic
mean:

H =

∑ wi

pi
−

1∑
wi pi

≥ 0 (12.5)

A more important case is thegeometric inequality. Here f (p)=− ln(p), and

G = −

∑
wi ln pi + ln

∑
wi pi ≥ 0 (12.6)

The more familiar form of the geometric inequality results from exponentiation and
a choice of weights equal to 1/N:

1

N

N∑
i=1

pi ≥

N∏
i=1

p1/N
i (12.7)

In other words, the product of square roots of two values is smaller than half the
sum of the values. A Jensen inequality with an adjustable parameter is suggested
by f (p)= pγ :

0γ =

N∑
i=1

wi pγ

i −

(
N∑

i=1

wi pi

)γ

(12.8)

Whether0 is always positive or always negative depends upon the numerical value
of γ . In practice we may see the dimensionless form, in which the ratio instead
of the difference of the two terms is used. A most important inequality in infor-
mation theory and thermodynamics is the one based onf (p) = p1+ε , whereε is a

small positive number tending to zero. I call this the “weak" inequality. With some
calculation we will quickly arrive at the limit:∑

wi p1+ε
i ≥

(∑
wi pi

)1+ε

(12.9)

Take logarithms
ln
∑

wi p1+ε
i ≥ (1+ ε) ln

∑
wi pi (12.10)

Expand both sides in a Taylor series in powers ofε using

d

dε
au

=
du

dε
au lna (12.11)

The leading term is identical on both sides and can be canceled. Divide both sides
by ε and go to the limitε = 0, obtaining∑

wi pi ln pi∑
wi pi

≥ ln
∑

wi pi (12.12)

We can now define a positive variableS′ with or without a positive scaling factor∑
wp:

S′intensive =

∑
wi pi ln pi∑

wi pi
− ln

∑
wi pi ≥ 0 (12.13)

S′extensive =
∑

wi pi ln pi −

(∑
wi pi

)
ln
(∑

wi pi

)
≥ 0(12.14)

Seismograms often contain zeros and gaps. Notice that a single zeropi can upset
the harmonicH or geometricG inequality, but a single zero has no horrible effect
on Sor 0.

12.2. RELATED CONCEPTS
In practice we may wonder which Jensen inequality to use.

12.2.1. Prior and posterior distributions
Random variables have aprior distribution and aposterior distribution . Denote
the prior bybi (for “before") and posterior byai (for “after"). Definepi = ai /bi , and
insertpi in any of the inequalities above. Now suppose we have an adjustable model
parameter upon which theai all depend. Suppose we adjust that model parameter
to try to make some Jensen inequality into an equality. Thus we will be adjusting it
to get all thepi equal to each other, that is, to make all the posteriors equal to their
priors. It is nice to have so many ways to do this, one for each Jensen inequality.
The next question is, which Jensen inequality should we use? I cannot answer this
directly, but we can learn more about the various inequalities.

12.2.2. Jensen average
Physicistsspeak of maximizingentropy, which, if we change the polarity, is like
minimizing the various Jensen inequalities. As we minimize a Jensen inequality, the
small values tend to get larger while the large values tend to get smaller. For each
population of values there is an average value, i.e., a value that tends to get neither
larger nor smaller. The average depends not only on the population, but also on

the definition of entropy. Commonly, thepj are positive and
∑

wj pj is an energy.
Typically the total energy, which will be fixed, can be included as a constraint, or we
can find some other function to minimize. For example, divide both terms in (12.3)
by the second term and get an expression which is scale invariant; i.e., scalingp
leaves (12.15) unchanged: ∑N

j=1wj f (pj)

f
(∑N

j=1wj pj

) ≥ 1 (12.15)

Because the expression exceeds unity, we are tempted to take a logarithm and make
a new function for minimization:

J = ln

∑
j

wj f (pj)

 − ln

 f

∑
j

wj pj

 ≥ 0 (12.16)

Given a populationpj of positive variants, and an inequality like (12.16), I am now
prepared to define the “Jensen average” p. Suppose there is one element, saypJ ,
of the populationpj that can be given a first-order perturbation, and only a second-
order perturbation inJ will result. Such an element is in equilibrium and is the

Jensen averagep:

0 =
∂ J

∂pJ

]
pJ=p

(12.17)

Let fp denote the derivative off with respect to its argument. Inserting (12.16) into
(12.17) gives

0 =
∂ J

∂pJ
=

wJ fp(pJ)∑
wj f (pj)

−
fp(
∑N

j=1wj pj)wJ

f
(∑

wj pj
) (12.18)

Solving,

p = pJ = f −1
p

eJ fp(
N∑

j=1

wj pj)

 (12.19)

But where do we get the functionf , and what do we say about the equilibrium
value? Maybe we can somehow derivef from the population. If we cannot work
out a general theory, perhaps we can at least find the constantγ , assuming the
functional form to bef = pγ .

12.2.3. Additivity of envelope entropy to spectral entropy
In some of my efforts to fill in missing data withentropy criteria, I have often based
the entropy on thespectrum and then found that theenvelopewould misbehave. I
have come to believe that the definition of entropy should involve both the spectrum
and the envelope. To get started, let us assume that the power of a seismic signal is
the product of an envelope function times a spectral function, say

u(ω,t) = p(ω)e(t) (12.20)

Notice that this separability assumption resembles thestationarity concept. I am
not defending the assumption (12.20), only suggesting that it is an improvement
over each term separately. Let us examine some of the algebraic consequences.
First evaluate the intensive entropy:

S′intensive =

∑
t
∑

ω u lnu∑
t
∑

ω u
− ln

1

N2

∑
t

∑
ω

u ≥ 0 (12.21)

=

∑∑
pe(ln p+ lne)

(
∑

p)(
∑

e)
− ln

(
1

N

∑
ω

p
1

N

∑
t

e

)
(12.22)

=

∑
e
∑

p ln p +
∑

p
∑

elne

(
∑

p)(
∑

e)
− ln

1

N

∑
p − ln

1

N

∑
e(12.23)

=

(∑
p ln p∑

p
− ln

1

N

∑
p

)
+

(∑
elne∑

e
− ln

1

N

∑
e

)
(12.24)

= S(p) + S(e)≥ 0 (12.25)

It is remarkable that all the cross terms have disappeared and that the resulting
entropy is the sum of the two parts. Now we will tackle the same calculation with
the geometric inequality:

G = ln
1

N2

∑∑
u −

1

N2

∑∑
lnu (12.26)

= ln

[(
1

N

∑
t

e

)(
1

N

∑
ω

p

)]
−

1

N2

∑
t

∑
ω

(ln pω + lnet)(12.27)

= lne + ln p −
1

N2

∑
t

1t

∑
ω

ln pω −
1

N2

∑
ω

1ω

∑
t

lnet (12.28)

= lne + ln p −
1

N

∑
ω

ln p −
1

N

∑
t

lne (12.29)

= G(t) + G(ω) (12.30)

Again all the cross terms disappear, and the resulting entropy is the sum of the two
parts. I wonder if this result applies for the other Jensen inequalities.

In conclusion, although this book is dominated by model building using the
method of least squares, Jensen inequalities suggest many interesting alternatives.

Chapter 13

RATional FORtran == Ratfor

Bare-bonesFortran is our most universal computer language for computational
physics. For general programming, however, it has been surpassed byC. “Ratfor " is
Fortran with C-like syntax. I believe Ratfor is the best available expository language

691

for mathematical algorithms. Ratfor was invented by the people who invented C.
Ratfor programs are converted to Fortran with the Ratforpreprocessor. Since the
preprocessor is publicly available, Ratfor is practically as universal as Fortran.1

You will not really need the Ratfor preprocessor or any precise definitions if
you already know Fortran or almost any other computer language, because then the
Ratfor language will be easy to understand. Statements on a line may be separated
by “;." Statements may be grouped together with braces { }. Do loops do not require
statement numbers because { } defines the range. Given thatif() is true, the
statements in the following { } are done.else{ } does what you expect. We may
not contractelse if to elseif . We may always omit the braces { } when they
contain only one statement.break will cause premature termination of the enclosing
{ }. break 2 escapes from {{ }}. while() { } repeats the statements in { }

1Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley.
Ratfor was invented at AT&T, which makes it available directly or through many
computer vendors. The original Ratfor transforms Ratfor code toFortran 66. See
http://sepwww.stanford.edu/sep/prof for a public-domain Ratfor translator to
Fortran 77.

while the condition () is true.repeat { ... } until() is a loop that tests at
the bottom. A looping statement more general thando is for(initialize; condition;
reinitialize) { } . next causes skipping to the end of any loop and a retrial of the test
condition. next is rarely used, but when it is, we must beware of an inconsistancy
between Fortran and C-language. Where Ratfor usesnext , the C-language uses
continue (which in Ratfor and Fortran is merely a place holder for labels). The
Fortran relational operators.gt. , .ge. , .ne. , etc. may be written>, >=, !=, etc.
The logical operators.and. and .or. may be written && and||. Anything from
a # to the end of the line is a comment. Anything that does not make sense to
the Ratfor preprocessor, such as Fortran input-output, is passed through without
change. (Ratfor has aswitch statement but we never use it because it conflicts with
the implicit undefined declaration. Anybody want to help us fix the switch in
public domain ratfor?)

Indentation inRatfor is used for readability. It is not part of theRatfor lan-
guage. Choose your own style. I have overcondensed. There are twopitfall s as-
sociated with indentation. The beginner’s pitfall is to assume that ado loop ends
where the indentation ends. The loop ends after the first statement. A larger scope
for thedo loop is made by enclosing multiple statements in braces. The other pitfall

arises in any construction likeif() ... if() ... else . Theelse goes with the
last if() regardless of indentation. If you want theelse with the earlierif() , you
must use braces likeif() { if() ... } else

The most serious limitation ofFortran -77 is its lack of ability to allocate tem-
porary memory. I have written apreprocessorto Ratfor or Fortran to overcome
this memory-allocation limitation. This program, namedsat , allows subroutines
to include the declarationtemporary real data(n1,n2) , so that memory is allo-
cated during execution of the subroutine where the declaration is written. Fortran-
77 forces us to accomplish something like this only with predetermined constants or
parameters. If thesat preprocessor is not available on your system, you can modify
the subroutines in this book by putting the appropriate numerical constants into the
memory arrays being allocated, or adapt the programs here to Fortran 90 (although
students at Stanford seem to prefer thesat approach).

Below are simple Ratfor subroutines for erasing an array (zero()), (null()),
for copying one array to another (copy()), for vector scaling (scaleit()), for the
signum function sgn(x) = x/|x| (signum()), for nearest-neighbor interpolation. In
the interpolation programs the mathematical conceptx = x0+n1x is expressed as
x = x0 +(ix-1)*dx . The idea of “nearest neighbor” arises when backsolving for

the integerix : a half is added to the floating-point value before rounding down
to an integer, i.e.,ix = .5 + 1 + (x-x0)/dx . The filequantile() /prog:quantile
contains two quantile-finding utilities. The method is the well-known one developed
by Hoare. zero null copy scaleit signum quantile rand01

subroutine zero(n, xx)
integer i, n; real xx(n)
do i= 1, n

xx(i) = 0.
return; end

Back

subroutine null(xx, n)
integer i, n; real xx(n)
do i= 1, n

xx(i) = 0.
return; end

Back

subroutine copy(n, xx, yy)
integer i, n; real xx(n), yy(n)
do i= 1, n

yy(i) = xx(i)
return; end

Back

subroutine scaleit(factor, n, data)
integer i, n
real factor, data(n)
do i= 1, n

data(i) = factor * data(i)
return; end

Back

real function signum(x)
real x

if (x > 0) { signum = 1. }
else if (x < 0) { signum = -1. }
else { signum = 0. }

return; end

Back

Two quantile utilities. Changed since formally tested.
#
value = value of bb(k) if bb(1...n) were sorted into increasing order.
subroutine quantile(k, n, bb, value)

integer i, k, n; real bb(n), value
temporary real aa(n)
do i= 1, n

aa(i) = bb(i)
call quantinternal(k, n, aa)
value = aa(k)
return; end

value = value of abs(bb(k)) if abs(bb(1...n)) were sorted to increasing order.
subroutine quantabs(k, n, bb, value)

integer i, k, n; real bb(n), value
temporary real aa(n)
do i= 1, n

aa(i) = abs(bb(i))
call quantinternal(k, n, aa)
value = aa(k)
return; end

subroutine quantinternal(k, n, a)
integer k, n; real a(n)
integer i, j, low, hi; real ak, aa
if(k>n || k<1) call erexit("quant: inputs not in range 1 <= k <= n ")
low = 1; hi = n
while(low < hi) {

ak = a(k); i = low; j = hi
repeat {

if(a(i) < ak)
i = i+1

else {
while(a(j) > ak) j = j-1
if(i > j) break
aa = a(i); a(i) = a(j); a(j) = aa
i = i+1; j = j-1
if(i > j) break
}

}
if(j < k) low = i
if(k < i) hi = j
}

return; end

Back

real function rand01(iseed)
integer ia, im, iseed
parameter(ia = 727,im = 524287)
iseed = mod(iseed*ia,im)
rand01 =(float(iseed) - 0.5)/float(im - 1)
return; end

Back

Chapter 14

Seplib and SEP software

At the time of writing, this book can be run on a variety of computers. You will have
noticed that each figure caption contains a box enclosing a label. In the electronic
book, this box is a pushbutton that generally activates a rebuilding of the figure,

701

sometimes after program or parameter changes and sometimes interactively. The
label in the box points to the location of the underlying software. My associates and
I have worked through complete cycles of “burn ing” and building all the figures
on various computers. To enable you to do the same, and to further enable you to
rapidly build on my work, I intend to release an electronic copy of the book soon.
This short appendix describes the utility software that is used extensively in the
electronic book.

Most of the seismic utility software at theStanford Exploration Project1

(SEP) handles seismic data as a rectangular lattice or “cube” of numbers. Each
cube-processing program appends to the history file for the cube. Preprocessors ex-
tendFortran (or Ratfor) to enable it to allocate memory at run time, to facilitate
input and output of data cubes, and to facilitate self-documenting programs.

At the SEP a library of subroutines known asseplib evolved for routine op-
erations. These subroutines mostly handle data in the form of cubes, planes, and
vectors. A cube is defined by 14 parameters with standard names and two files: one

1 Old reports of the Stanford Exploration Project can be found in the library of
the Society of Exploration Geophysicists in Tulsa, Oklahoma.

the data cube itself, and the other containing the 14 parameters and a history of the
life of the cube as it passed through a sequence of cube-processing programs. Most
of these cube-processing programs have been written by researchers, but several
nonscientific cube programs have become highly developed and are widely shared.
Altogether there are (1) a library of subroutines, (2) a library of main programs, (3)
some naming conventions, and (4) a graphics library calledvplot . The subroutine
library has good manual pages. The main programs rarely have manual pages, their
documentation being supplied by the on-line self-documentation that is extracted
from the comments at the beginning of the source file. Following is a list of the
names of popular main programs:

Byte Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Contour Contour plot a plane.
Cp Copy a cube.
Dd Convert between ASCI, floats, complex, bytes, etc.
Dots Plot a plane of floats.
Ft3d Do three-dimensional Fourier transform.
Graph Plot a line of floats.

In Check the validity of a data cube.
Merge Merge conforming cubes side by side on any axis.
Movie View a cube with Rick Ottolini’s cube viewer.
Noise Add noise to data.
Reverse Reverse a cube axis.
Spike Make a plane wave of synthetic data.
Ta2vplot Convert a byte format to raster display withvplot .
Tpow Scale data by a power of timet (1-axis).
Thplot Make a hidden line plot.
Transpose Transpose cube axes.
Tube View a vplot file on a screen.
Wiggle Plot a plane of floats as “wiggle traces.”
Window Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this document, and then for each
command, read its on-line self-documentation. To write cube-processing programs,
read the manual page forseplib and the subroutines mentioned there and here. To
write vplot programs, see the references onvplot .

14.1. THE DATA CUBE
The data cube itself is like a Fortran three-dimensional matrix. Its location in
the computer file system is denoted byin=PATHNAME, wherein= is the literal oc-
currence of those three characters, andPATHNAMEis a directory tree location like
/sep/professor/pvi/data/western73.F . Like the Fortran cube, the data cube can
be real, complex, double precision, or byte, and these cases are distinguished by the
element size in bytes. Thus the history file contains one ofesize=4 , esize=8 , or
esize=1 , respectively. Embedded blanks around the “=” are always forbidden. The
cube values are binary information; they cannot be printed or edited (without the
intervention of something like a Fortran “format”). To read and write cubes, see the
manual pages for such routines asreed, sreed, rite, srite, snap .

A cube has three axes. The number of points on the 1-axis isn1. A Fortran
declaration of a cube could bereal mydata(n1,n2,n3) . For a plane,n3=1 , and for
a line, n2=1 . In addition, many programs take “1” as the default for an undefined
value ofn2 or n3. The physical location of the single data valuemydata(1,1,1) ,
like a mathematical origin (o1,o2,o3), is denoted by the three real variableso1, o2,
and o3. The data-cube values are presumed to be uniformly spaced along these
axes like the mathematical increments (11,12,13), which may be negative and

are denoted by the three real variablesd1, d2, andd3. Each axis has a label, and
naturally these labels are calledlabel1 , label2 , and label3 . Examples of labels
are kilometers , sec , Hz, and "offset, km" . Most often, label1="time, sec" .
Altogether that is 2+3×4 parameters, and there is an optional title parameter that
is interpreted by most of the plot programs. An example istitle="Yilmaz and

Cumro Canada profile 25" . We reserve the namesn4,o4,d4, and label4 (a few
programs support them already), and please do not usen5 etc. for anything but a
five-dimensional cubic lattice.

14.2. THE HISTORY FILE
The 15 parameters above, and many more parameters defined by authors of cube-
processing programs, are part of the “history file" (which is ASCI, so we can print
it). A great many cube-processing programs are simple filters—i.e., one cube goes
in and one cube comes out—and that is the case I will describe in detail here. For
other cases, such as where two go in and one comes out, or none go in and one
comes out (synthetic data), or one goes in and none come out (plotting program), I
refer you to the manual pages, particularly to subroutine names beginning withaux

(as in “auxiliary").
Let us dissect an example of a simple cube-processing program and its use.

Suppose we have a seismogram in a data cube and we want only the first 500
points on it, i.e., the first 500 points on the 1-axis. A utility cube filter namedWin-

dow will do the job. Our command line looks like< mygiven.H Window n1=500

> myshort.H On this command line,mygiven.H is the name of the history file
of the data we are given, andmyshort.H is the history file we will create. The
momentWindow, or any otherseplib program, begins, it copiesmygiven.H to
myshort.H ; from then on, information can only be appended tomyshort.H . When
Window learns that we want the 1-axis on our output cube to be 500, it doescall

putch(’n1’,’i’,500) , which appendsn1=500 to myshort.H . But before this, some
other things happen. First,seplib ’s internals will get our log-in name, the date,
the name of the computer we are using, andWindow’s name (which isWindow), and
append these tomyshort.H . The internals will scanmygiven.H for in=somewhere

to find the input data cube itself, and will then figure out where we want to keep
the output cube.Seplib will guess that someone named professor wants to keep
his data cube at some place like/scr/professor/_Window.H@ . You should read the
manual page fordatapath to see how you can set up the default location for your

datasets. The reasondatapath exists is to facilitate isolating data from text, which
is usually helpful for archiving.

When a cube-processing filter wonders what the value is ofn1 for the cube
coming in, it makes a subroutine call likecall hetch("n1","i",n1) . The value
returned forn1 will be the last value ofn1 found on the history file.Window also
needs to find a differentn1, the one we put on the command line. For this it will
invoke something likecall getch("n1","i",n1out) . Then, so the next user will
know how big the output cube is, it willcall putch("n1","i",n1out) . For more
details, see the manual pages.

If we want to take input parameters from a file instead of from the command
line, we type something like<in.H Window par=myparfile.p > out.H . The .p

is my naming convention and is wholly optional, as is the.H notation for a history
file.

Sepcube programs are self-documenting. When you type the name of the pro-
gram with no input cube and no command-line arguments, you should see the self-
documentation (which comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can slice a plane out
of a data cube, make a contour plot, and display the plot, all with the command

line <in.H Window n3=1 | Contour | Tube where, as in UNIX pipes, the “| ”
denotes the passage of information from one program to the next. Pipelining is a
convenience for the user because it saves defining a location for necessary interme-
diate files. The history files do flow down UNIX pipes. You may not have noticed
that some location had to be assigned to the data at the intermediate stages, and
when you typed the pipeline above, you were spared that clutter. To writeseplib

programs that allow pipelining, you need to read the manual page onhclose() to
keep the history file from intermingling with the data cube itself.

A sample history file follows: this was an old one, so I removed a few anachro-
nisms manually.

Texaco Subduction Trench: read from tape by Bill Harlan

n1=1900 n2=2274

o1=2.4 it0=600 d1=.004 d2=50. in=/d5/alaska

Window: bill Wed Apr 13 14:27:57 1983

input() : in ="/d5/alaska"

output() : sets next in="/q2/data/Dalw"

Input: float Fortran (1900,2274,1)

Output: float Fortran (512,128,1)

n1=512 n2=128 n3=1

Swab: root@mazama Mon Feb 17 03:23:08 1986

input history file /r3/q2/data/Halw

input() : in ="/q2/data/Dalw"

output() : sets next in="/q2/data/Dalw_002870_Rcp"

#ibs=8192 #obs=8192

Rcp: paul Mon Feb 17 03:23:15 PST 1986

Copying from mazama:/r3/q2/data/Halw

to hanauma:/q2/data/Halw

in="/q2/data/Dalw"

Cp: jon@hanauma Wed Apr 3 23:18:13 1991

input() : in ="/q2/data/Dalw"

output() : sets next in="/scr/jon/_junk.H@"

14.3. MEMORY ALLOCATION
Sepcube programs can be written in Fortran, Ratfor, or C. A serious problem with
Fortran -77 (and hence Ratfor) is that memory cannot be allocated for arrays whose

size is determined at run time. We have worked around this limitation by using
two home-grown preprocessors, one calledsaw (Stanford Auto Writer) for main
programs, and one calledsat (Stanford Auto Temporaries) for subroutines. Both
preprocessors transform either Fortran or Ratfor.

14.3.1. Memory allocation in subroutines with sat
Thesat preprocessor allows us to declare temporary arrays of arbitrary dimension,
such astemporary real*4 data(n1,n2,n3), convolution(j+k-1) These decla-
rations must follow other declarations and precede the executable statements.

14.3.2. The main program environment with saw
Thesaw preprocessor also calls an essential initialization routineinitpar() , orga-
nizes the self-doc, and simplifies data-cube input. See the on-line self-documentation
or the manual pages for full details. Following is a completesaw program for a sim-
ple task:

<in.H Scale scaleval=1. > out.H

#

Copy input to output and scale by scaleval

keyword generic scale

#%

integer n1, n2, n3, esize

from history: integer n1, n2, n3, esize

if (esize !=4) call erexit(’esize != 4’)

allocate: real x(n1,n2)

subroutine scaleit(n1,n2, x)

integer i1,i2, n1,n2

real x(n1,n2), scaleval

from par: real scaleval=1.

call hclose() # no more parameter handling.

call sreed(’in’, x, 4*n1*n2)

do i1=1,n1

do i2=1,n2

x(i1,i2) = x(i1,i2) * scaleval

call srite(’out’, x, 4*n1*n2)

return; end

14.4. References
Claerbout, J., 1990, Introduction toseplib and SEP utility software:SEP–70, 413–

436.

Claerbout, J., 1986, A canonical program library:SEP–50, 281–290.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

14.5. Acknowledgments
Robert Clayton introduced the original parameter-fetching method. I introduced
history files. Stew Levin got pipes to work and brought the code to a high standard.
Dave Nichols generalized it to support many computer architectures and networks
of machines.

Chapter 15

Notation

The followingnotation is consistent throughout this book. Other notation defined
locally as applying to an exercise or a subsection is not given here. A few symbols
have several meanings (separated by semicolons), but never more than one meaning

715

per chapter.

15.1. OPERATORS
<z real part of complex numberz
=z imaginary part of complex numberz
E expectation; sum over ensemble

15.2. SCALARS
n,m, N number of components in a vector
x, y,z Cartesian coordinates
r radius
φ phase angle
z= x+ iy = rei φ complex number
z complex conjugate ofz

t time; transmission coefficient
j ,k index on discrete time
f generic function; frequency in cycles
ω = 2π f angular frequency (common)
Z = ei ω1t Z-transform variable
∗ convolution; multiplication (in programs)
1t ,dt sampling time interval
1 f ,d f frequency sampling interval
1T extent of time axis
1F extent of frequency axis
3T signal duration
3F spectral bandwidth
σ 2 variance
c reflection coefficient

15.3. FILTERS, SIGNALS, AND THEIR TRANS-
FORMS

The examplex(t), xt , Xk, X(Z), X(ω) can be understood as follows. A lower-
case letter with a function argument (t) denotes a continuous time function (rare).
Lower case with a subscript denotes a signal or filter as a function of discrete time
(common). Upper case with subscript denotes a discrete Fourier transform.Z-
transforms are denoted by the function argument (Z). Where a function argument
ω is occasionally seen, such as inA(ω), it is generally a shorthand forA(Z = ei ω).
For a definition of the complex conjugate of filters, see page??.

a A feedback filter (autoregression)
bB convolution filter
cC causal filter; reflected wave; cross-spectrum
d D downgoing wave
E escaping wave
f F component of layer matrix; force; generic function
gG component of layer matrix; analytic signal; causal garbage filter
hH admittance

I causal integration operator
J K L M O unused
N noise
pP phase shift; pressure; all-pass filter; generic input space
q Q quadrature filter; generic output space
r R impedance; reflection seismogram
sS Sis spectrum;st is autocorrelation
T transmitted wave
uU upcoming wave; logarithm ofS
vV velocity
W weighting function; vertical component of flow
x X generic input signal
yY generic output signal
φ8 phase

15.4. MATRICES AND VECTORS
Matrices are universally denoted by upper-case boldface. Vectors are lower-case
boldface everywhere except in the conjugate-gradient section of chapter5, where
vectors are capitalized when in transform space.

x generic model space, often unknown
y generic data space
d data, given
A generic matrix
B generic matrix
B′ conjugate transpose of generic matrix
I identity matrix
U unitary or pseudounitary matrix
W weighting diagonal matrix
D diagonal matrix
N NMO (normal-moveout) matrix
T tridiagonal matrix; matrix with timet on diagonal
Q quadratic form

15.5. CHANGES FROM FGDP
In FGDP I usedR(Z) to denote a reflection seismogram, an impedance function,
and a spectrum with autocorrelation coefficientsr t . I liked this classic notation,
which was used by the mathematicians Wiener and Levinson. It is confusing, how-
ever, to use in one equationr t both for the causal, one-sided, reflection seismogram
and for the two-sided autocorrelation. Thus I have introducedS, which is a natural
notation for spectrum, althoughs is admittedly less natural for autocorrelation.

723

Chapter 16

Interactive, 1-D, seismology
program ed1D

The ed1D program made 23 figures for this paper book, many of them in chapters
9 and11. In the electronic book, the caption for each of those 23 figures contains

a pushbutton that activatesed1D and initializes it to that figure.ed1D has a built-in
tutorial that will enable you to operate it without this document.

ed1D is an interactive program that shows two one-dimensional signals related
by various selectable mathematical transforms. Using a pointer, you can edit either
signal and see the effect on the other one. The signals can beFourier-transform
pairs, or a wide variety of other pairs created by transformations such asHilbert
transforms, spectralfactorization, autocorrelations, reflection coefficients, and
impedance. Some of these transformations are not described in this book, but are
described in chapter 8 of FGDP.

When you enter the program, you should move the pointer around the screen
until you find the “Tutor” button and then click pointer buttons on it, all the while
watching the message window for instructions.

You will see that there are several ways of editing a signal. First, you can use
the pointer simply to draw the signal you wish. Second, you can draw a weighting
function to multiply any signal that you have previously prepared. Third, there
are a variety of preexisting analytic signals that you can use as weights. These
mathematical weighting functions have two adjustable parameters, the shift and the
bandwidth, which you select with the pointer. Watch the message window for

instructions for selecting these parameters.
As long as the number of ordinates is less than about 256, edited changes in

one domain show up immediately in both domains. That is good for learning. With
more ordinates (more computational work), you see the changes only in the domain
you are editing, until later, when you move the cursor into the other domain.

The number of options in this program proved confusing to beginners, so I
commented out a few in the source code. See Claerbout (1988) for more details.
For example, there is a parabolic-shaped editing tool that can be pushed against any
signal to deform it. The curvature of the parabola is adjustable. You can reinstall
the parabolic pushing tool by uncommenting a few lines in the control panel. An-
other example is the huge number of transformations that can be studied with this
program: I hid these, since they have no obvious interest and proved confusing to
beginners.

16.1. References
Claerbout, J., 1988, Interaction with 1-D seismology:SEP–57, 513–522.

Chapter 17

The Zplane program

The Zplane program made 16 figures for this paper book. In the electronic book,
each of those 16 figure captions contains a pushbutton that activatesZplane and
initializes it to that figure.Zplane has a built-in tutorial that enables you to operate it

727

without this document. Huge gaps between the abstract and the concrete are bridged
by Zplane . First is the conceptual gap from the time-domain representation of a
filter to its poles and zeros in the complex frequency plane (as described in chapter
3). Second is a gap from the appearance of a filter to the appearance of field data
after applying it.Zplane gives youhands-on experiencewith all these relationships.
Z-plane theory conveniently incorporates causality and relates time and frequency
domains. WithZplane , you create and move poles and zeros in the complexZ-
plane. You immediately see the filterimpulse responseand itsspectrum as you
readjust thepoles andzeros. If you choose to touch a plane of seismograms, it is
filtered by your chosen filter and redisplayed after a few seconds.

Choice of a display filter is important for both field data and synthetic data.
Goals for filter design that are expressed in the frequency domain generally conflict
with other goals in the time domain. For example, when a filter is specified by
frequency cutoffs and rolloffs, then the time-domain behavior, i.e., filter length,
phase shift, and energy delay, are left to fall where they may.

17.1. THE SCREEN
The program displays four planes: (1) an impulse-response graph, (2) a frequency-
response graph, (3) a complex frequency plane for roots, and (4) a seismic data plane
(such as a gather or section). Planes (1), (2), and (3) are line drawings or “vector
plots," and they update immediately, whereas plane (4) is a variable brightness plane
that updates only on command and after a delay of several seconds.

17.1.1. Complex frequency plane
A frequency-response graph displays the amplitude spectra of the current filter. On
the same axes, the amplitude spectrum of a portion of data can be displayed. Fur-
ther, since the horizontal axis of these spectra is the realω-axis, it is convenient to
superpose the complexω-plane with<ω horizontal and scaled=ω vertical. The
location of the pointer in the complex frequency plane is printed in the message
window as the pointer moves. Theory suggests a display of the complexZ-plane.
Instead I selected a complexω-plane, because its Cartesian axes are well suited to
the superposition of the amplitude spectra of filters and data.

The letters “z” and “p” are plotted in the complexω-plane to show the locations

of poles and zeros. The location of these roots is under the exact center of the
letter. You may put one letter exactly on top of another, but that only disguises the
multiplicity of the root.

Recall from Z-plane theory that to keep the filter response real, any pole or
zero on the positiveω-axis must have a twin on the negativeω-axis. To save screen
space, I do not plot the negative axis, so you do not see the twin. Thus you need
to be careful to distinguish between a root exactly at zero frequency (or at Nyquist
frequency) with no twin, and a root slightly away from zero (or Nyquist) that has a
twin at negative frequency (not displayed).

Let the complex frequency be decomposed into its real and imaginary parts,
i.e.,ω = <ω+ i=ω. All filters are required to be causal and minimum-phase—that
is, all poles and zeros must be outside the unit circle in theZ-plane. SinceZ = ei ω,
the roots must all have negative values of=ω. Any attempt to push a root to positive
values of=ω simply leaves the root stranded on the axis of=ω= 0. Likewise, roots
can easily be placed along the edges<ω = 0 and<ω = π .

Although mathematics suggests plotting=ω along the vertical axis, I found it
more practical to plot something like the logarithm of=ω, because we frequently
need to put poles close to the real axis. The logarithm is not exactly what we

want either, because zeros may be exactly on the unit circle. I could not devise
an ideal theory for scaling=ω. After some experimentation, I settled on=ω =
−(1+ y3)/(1− y3), wherey is the vertical position in a window of vertical range
0 < y < 1, but you do not need to know this since the value ofρ can be read from
the message window as you move the pointer on theZ-plane.

17.1.2. The seismic data plane
The seismic data plane is displayed as wiggle traces or as raster information, i.e., gray
levels, with clipped values shown in a dull red.

The “clip" value is defined as that above which a signal cannot be displayed,
because the screen cannot be made brighter. To replot the filtered data with a differ-
ent clip value, you touch the data in a different place. The clip is taken as 1% more
than the maximum of the 30 time points surrounding the pointer.

There are no numbered axes on the data plane because none are needed. As
you move the pointer across the data plane, the values of time and space are written
near the ends of the axes. These values are more accurate than you could read from
numbered axes.

17.1.3. Burg spectra
The Burg spectral method is described in FGDP. A theoretical description is not
repeated in this book. The main feature of the Burg spectrum is its insensitivity to
the edges of the data window of estimation.

In building the Zplane program, several interesting practical aspects arose.
First, the program allows us to put a box on the data, and the Burg spectrum of
the data in that box is computed and displayed. Thus the Burg computation of the
reflection coefficients is a ratio of a numerator to a denominator, each of which is
averaged in your selected box. Second, some traditional literature suggests that the
only parameter you choose with the Burg spectrum is the filter length. After exper-
imenting a while, I decided to keep the filter length at a constant 25, and instead
let the variable be the corners of the estimation box that we draw on the data plane.
Third, I found it necessary to bias the reflection coefficients downward as the lag
approaches the data length.

17.2. References
Claerbout, J., 1987, Interactive filter design in theZ-plane:SEP–56, 263–271.

Index

Z-transform,4, 22
Z-transform

and Fourier transform,22
inverse,33

abstract vector,188, 190, 484
adjnull subroutine,66, 250
adjoint,xii , 243, 244, 246, 255, 269,

287

adjoint operator,269
adjoint truncation errors,268
adjugate,269
advance subroutine,257
AGC, 411, 412
airgun,63, 354, 385, 530
alias,437, 468
all-pass filter,173, 309, 408, 410, 426,

596, 617

735

amplitude spectrum,18, 120, 564
amplitude versus offset,264
analytic signal,87, 554, 555, 558
anticausal,161
arctic,376
autocorrelation,36–39, 47, 50, 306,

403, 415, 570, 626, 649
automatic gain control,411
AVO, 264, 287

back projection,245, 349
bandpass,588
bandwidth,215, 614, 615, 622, 725
basement rock,101
beat,631
beating,593
bilinear transform,135, 625
binomial coefficients,675
blind deconvolution,407, 410, 426

book3,365, 366
boundary, zero-slope,139
box car,126
boxconv subroutine,127
Burg,400, 401, 732
burn,702
bursty signal,388
butter subroutine,585
Butterworth filter,397, 580
Byte program,703

C, 691
C++,371
cascade of filters,10, 608
cascaded NMO,294
Cat program,703
Cauchy function,43
causal,85, 116, 161, 169, 407, 546,

549, 566, 588

causality,525
causint subroutine,302
central-limit theorem,669, 672
CG,334, 366, 367
cgmeth subroutine,347
cgstep subroutine,343
Cholesky,664
Cholesky decomposition,308
cinjof subroutine,481
cinlof subroutine,503
cinloi subroutine,481
coherency,661
color,201, 398, 400
comb,42, 48, 61, 213
commute,11
complex plane,29
complex-valued signal,18, 29, 44, 45,

161, 176, 557

conjugate gradient,342
conjugate signal in time-domain,46
conjugate-gradient method,334, 338–

340, 347, 365
conjugate-gradient program,343
constraint,440, 449, 509
contour,335, 503
Contour program,703
contran subroutine,252
contrunc subroutine,257
convin subroutine,261
convolution,1, 23, 250, 257, 420, 671
convolution, two-dimensional,471
convolve subroutine,14
copy subroutine,695
corkscrew,45
correlation,660
correlation

normalized,233, 660
sample normalized,660

covariance matrix,207, 323, 331, 414,
415, 461, 468, 506, 507, 663

Cp program,703
cross-spectrum,47
crosscorrelate,47, 50, 211, 250
crosstalk,189, 190
curvature,481

damping,212, 355
Darche,633
Dd program,703
deconvolution,217, 354, 395, 527
deconvolution

blind, 410
blind decon of all-pass filter,426
geometry based,527
known wavelet,213

deep-water seismogram,48
deghost subroutine,358
delay,75
dereverberation,529
designature,529
diag subroutine,487
differentiate,24, 143, 525
differentiate

by a complex vector,327
diffraction,264
digitizing, 2
dip, 223, 476, 488
divergence,166, 536
divergence

amplitude,536
dot-product test,266, 268
Dots program,703
double-sided exponential,42

doubling,110
duration,614

earthquake,601
edge,471
end effect,74, 129, 261
energy delay,605
ensemble,635
entropy,681, 685, 688
envelope,46, 488, 555, 558, 688
even function,44, 85
expectation,634, 635
expectation of the autocorrelation,649
expectation of the spectrum,649
exponential,42
exponential

double-sided,42
exponential of a causal,567
extrapolation,446

factor,11
factorization,664, 725
fast Fourier transform,92
feedback,116, 151
FGDP,xix, 400, 721
filter, 10
filter

2-D prediction-error,470, 494
3-D prediction-error,495
all-pass,173, 596, 617
Butterworth,581
causal bandpass,588
impedance,186
interpolation-error,395, 420, 425
inverse,211
matched,48, 211
minimum-phase,605
narrow-band,145, 154

nonrealizable,16
notch,177
parallel,608
prediction,392
prediction-error,395
prediction-error, gapped,497
quadrature,549, 555, 563
rational,159, 604
rho,525
two dimensional,471
two-dimensional,474

fitting, 318
fitting function,192, 327
fold, 63, 129
Fortran,98, 343, 367, 369–371, 691,

692, 694, 702, 710
Fourier integral,32
Fourier integral

inverse,33
Fourier sum,21, 32, 54
Fourier transform,22, 89
Fourier transform

andZ-transform,22
discrete,53
fast,92, 110
two-dimensional,100, 101, 103,

106
Fourier-transform,725
ft1axis subroutine,98
ft2axis subroutine,98
Ft3d program,703
ftderivslow subroutine,74
fth subroutine,96
ftlagslow subroutine,70
ftu subroutine,92

Gabor,622

gap,395, 404, 420, 426, 497
Gauss,207
Gaussian,26, 43, 129, 388, 389, 429,

575, 617, 669, 673
geometric inequality,682
geophysical inverse theory,xvi, 506
ghost,354, 385
Gibbs ripple,70
Gibbs sidelobes,42
gradient,337, 449, 460
gradient vector,503
Graph program,703
great circles,271
group delay,592, 594, 596, 603
group velocity,592, 594

halfdifa subroutine,525
halo,525
Harlan,214, 215, 369

harmonic mean,681
Helmholtz equation,143
Hertz,21, 59
Hestenes,365–367, 371
hestenes subroutine,367
Hilbert transform,87, 548, 576, 725
history file,706
hope subroutine,499
hydrophone,354, 385
hyperbola,513
Hz, 21

ice,376
idempotent,308
ident subroutine,358
IE filter, 420
IEI, xix
imaging,262
imo1 subroutine,290

imospray subroutine,290
impedance,171, 186
impulse response,6, 728
In program,704
inconsistency,294
indeterminate,504
index,735
inequality,617, 678
iner subroutine,421
instability,160, 161, 588
instantaneous energy,557
instantaneous frequency,557, 560, 603
integration

accuracy,135
causal,134
leaky,118, 143
numerical,118
two-sided leaky,139

interference,593
interlace,460, 475
interpolation,446
interpolation, nearest-neighbor,274
interpolation-error filter,395, 425, 455
inverseZ-transform,33
inverse filter,164, 211, 326
inverse Fourier transform,92
inverse theory,507
inversion,xiii , 244, 318, 349, 438
invstack subroutine,353
iterative method,333

Jacobian,315
Jensen average,686

Kirchhoff, 262
Kolmogoroff,565, 571
kolmogoroff subroutine,571

lag,420
Lagrange multiplier,510
languages, programming,367
Laplacian,205
Laurent expansion,172
leak subroutine,118
leaky integration,118, 143, 389
leaky subroutine,143
least squares,278, 318, 509
least squares, central equation of,323
least squares, stabilizing,421
least-squares method,440
line search,338
linear interpolation,295
linear inverse theory,xvi, 461
linear-estimation,196, 217, 221
linearity,6
linearized regression,464

log spectrum,570

magnetic field,578
matched filter,48, 211, 382
matmult subroutine,250
matrix multiply,247
mean,461, 634, 637
median,201
Merge program,704
mesh,19, 60, 77, 475, 516
metastable,220
migration,262, 263, 437
migration, Stolt,314
minimum phase,170, 400, 599, 605
minimum-phase,571, 573
misfip subroutine,464
miss1 subroutine,449
miss2 subroutine,484
missif subroutine,460

missing data,437–439
modeling,245, 264, 317
Movie program,704
mpwave subroutine,571
mudstone,378
multiple,529
multiple reflection,376, 378, 394
multiplex,188

narrow-band filter,154
nearest-neighbor interpolation,274
nearest-neighbor normal moveout,285
negative frequency,29, 69, 554
NMO, 279
NMO cascade,294
NMO pseudounitary,309
NMO stack,287
NMO stretch,281
NMO with multiple regression,533

nmo1 subroutine,285
noise,217
Noise program,704
nonlinear,429, 460, 462, 467, 488,

489, 492, 498
nonlinear optimization,366
nonlinear-estimation,196
nonlinearity,6
nonrealizable,16
nonstat subroutine,223
nonstat2 subroutine,225
normal,327
normal moveout,279, 282
notation,715
notch filter,177
null space,294, 488
null subroutine,695
Nyquist frequency,21, 32, 57, 63, 77

Nyquist frequency
straddle,70

object-oriented programming,370
odd function,44
odd-length transform,78
OOP,370
operator,244
operator, adjoint,269
orthogonal,188, 192

pack,458, 484
pad2 subroutine,91
partial derivative,319
Pascal’s triangle,26
PE filter,398, 404
pe2 subroutine,484
phase,555, 573, 576, 591, 601
physics,558, 685

picking,229
piecewise linear,231
pitfall, 194, 220, 265, 416, 433, 581,

646, 693
pixel precise,515
pixel-precise,515
plane wave,8, 470
plane-wave destructor,230
polarity,50, 76, 213, 354, 376
pole,122, 123, 554, 728
polydiv subroutine,151
polyft subroutine,81
polynomial division,149
polynomial multiplication,10, 471
posterior distribution,685
power spectrum,646
precision,88, 181, 573
preconditioning,347

prediction filter,392
prediction-error filter,395, 398, 407,

466, 565
prediction-error filter

2-D, 470, 494
3-D, 495
gapped,497
spatial,474

preprocessor,692, 694
pressure wave,189
prewhitening,406
prior distribution,685
probability,637, 671
processing,xii , 245, 318
programming languages,367
pseudocode,247, 514
pseudoinverse,293
pseudounitary,308

pseudounitary NMO,309
puck subroutine,233

quadratic form,320, 328, 331, 509
quadrature filter,549, 555, 563
quantile subroutine,695
quantum mechanics,558, 621
quefrency,42

radian,21, 32
rand01 subroutine,695
random,43, 389, 628, 671
random walk,138
Ratfor,367, 691, 694, 702
rational filter,159, 604
realizable,16, 116
rectangle function,42
recursive,151
reflection coefficient,213

regression,325, 356, 503
regression

linearized,464
regressor,319
relative error,196, 218
residual,192, 235, 327, 335, 449, 507
resolution,60, 61, 614, 659
Reverse program,704
rho filter,525
Ricker wavelet,26
ripple,70
rise time,614, 622, 623
Robinson,566, 605
root,24
root

two, 29
Rothman,499, 511
ruffen1 subroutine,299

sample mean,634
sampling,2
sat,viii , 694, 711
saw,711
scale factor,65
scaleit subroutine,695
scatter,261
seismogram

multiple-free,535
one-dimensional,535

self-adjoint,270
SEP,702, 713, 726, 733
seplib,702
sgn,551
shaper subroutine,383
shaping filters,383
shear wave,189
shifting,257

shrink,276
sign convention,32, 104
signal , complex-valued161

complex-valued,44, 45
sparse,388

signature,362
signum,144, 551
signum subroutine,695
simulated annealing,499
sinc,39, 622
slant stack,525
slider subroutine,239
slowft subroutine,69
smoothing,125, 555, 558, 665
Snell parameter,230
soil, 235, 400, 530
sparse signal,388
spatial alias,103, 108, 235, 434

spectral factorization,571, 573
spectral logarithm,570
spectral ratio,47
spectral-factorization,575
spectrum,18, 36, 43, 408, 455, 569,

576, 688, 728
spectrum

amplitude,18, 120
cross,47
spatial,204
velocity,310

spike,386
Spike program,704
Spitz,434, 468, 511
spot0 subroutine,274
spot1 subroutine,296
spray,261
spread,614

stabilize,382, 461, 484
stack,287, 350, 351
stack1 subroutine,287
stacking,435
standard deviation,636
Stanford Exploration Project,702
stationarity,222, 374, 410, 688
statistic,634
statistical independence,637
steepest descent,337, 338
Stolt migration,314
straddle,70
stretch,276
subroutine

adjnull , erase output,66, 250
advance , time shift,257
boxconv , convolve w. rectangle,

127

butter , Butterworth filter,585
causint , causal integral,302
cgmeth , demonstrate CG,347
cgstep , one step of CG,343
cinjof , 2-D convolution,481
cinlof , 2-D convolution,503
cinloi , 2-D convolution,481
contran , transient convolution,

252
contrunc , convolve and truncate,

257
convin , convolve internal,261
convolve , convolve,14
copy , copy a vector,695
deghost , deghost by CG,358
diag , diagonal matrix,487
ft1axis , FT 1-axis,98
ft2axis , FT 2-axis,98

ftderivslow , Fourier derivative,
74

fth , FT, Hale style,96
ftlagslow , shift fractional inter-

val, 70
ftu , unitary FT,92
halfdifa , half-order derivative,

525
hestenes , classic CG,367
hope , 2-D nonlinear missing data,

499
ident , identity operator,358
imo1 , inverse moveout,290
imospray , inverse NMO spray,

290
iner , interpolation error,421
invstack , inversion stacking,353
kolmogoroff , factor spectrum,571

leaky , tridiagonal smoothing,143
leak , leaky integration,118
matmult , matrix multiply,250
misfip , miss. data w. training,

464
miss1 , 1-D missing data,449
miss2 , 2-D missing data,484
missif , missing input and filter,

460
mpwave, minimum phase,571
nmo1, normal moveout,285
nonstat2 , moving window,225
nonstat , moving window,223
null , erase a vector,695
pad2 , round up to power of two,

91
pe2 , 2-D prediction error,484
polydiv , polynomial division,151

polyft , FT by polynomial mult.,
81

puck , picking on continuum,233
quantile , find quantile,695
rand01 , random numbers,695
ruffen1 , first difference,299
scaleit , scale a vector,695
shaper , shaping filter,383
signum , math function,695
slider , dip pick,239
slowft , slow FT,69
spot0 , nearest-neighbor,274
spot1 , linear interp,296
stack1 , NMO stack,287
triangle2 , conv. w. tri. in 2D,

133
triangle , conv. with triangle,

130

tris , tridiagonal equations,143
vspray , velocity spectrum,525
wavekill1 , zap plane wave,231
wcontrunc , weight and convlv,

417
zero , erase a vector,695

superpose,6, 21
symmetry,81
synthetic data,194

Ta2vplot program,704
thermodynamics,681
Thplot program,704
time-domain conjugate,46
time-series analysis,325, 374, 663
time-series analysis

multi-channel,663
Toeplitz,186, 415, 664
tolerance,614

tomography,245, 311, 504
Tpow program,704
training data,462
transient,77
transpose matrix,277
Transpose program,704
traveltime depth,281
triangle,270
triangle smoothing,129
triangle subroutine,130
triangle2 subroutine,133
tris subroutine,143
truncation,254, 255, 257, 261, 268,

424, 437
Tube program,704
two-dimensional filter,471, 474

uncertainty principle,614, 617, 621
uniqueness,462

unit circle,57, 136, 161, 165
unit-delay operator,4
unitary,307
univariate,187
unwinding,601

variance,200, 218, 461, 614, 636
variance of the sample mean,634, 639
variance of the sample variance,644
velocity spectrum,310
vplot, 703
vspray subroutine,525

wavekill1 subroutine,231
wavelet,10
wavelet

Ricker,26
wcontrunc subroutine,417

weighting function,195, 374, 423, 484,
488

weighting function
nonfactorable,365

white,400, 401, 403, 406, 497
Wiggle program,704
Window program,704

zero,24, 122, 144, 728
zero divide,210
zero frequency,23, 26
zero pad,88, 91, 254, 255
zero phase,407
zero slope,129, 139
zero subroutine,695

755

Jon F. Claerbout (M.I.T., B.S. physics, 1960; M.S. 1963;
Ph.D. geophysics, 1967), professor at Stanford University,
1967. Best Presentation Award from the Society of Explo-
ration Geophysicists (SEG) for his paper,Extrapolation of
Wave Fields.Honorary member and SEG Fessenden Award
“in recognition of his outstanding and original pioneering
work in seismic wave analysis.” Founded the Stanford Ex-
ploration Project (SEP) in 1973. Elected Fellow of the
American Geophysical Union. Authored three published
books and five internet books. Elected to the National
Academy of Engineering. Maurice Ewing Medal, SEG’s
highest award. Honorary Member of the European Assn. of
Geoscientists & Engineers (EAGE). EAGE’s highest recog-
nition, the Erasmus Award.

	Table of Contents
	0.1 References
	1 Convolution and Spectra
	1.1 SAMPLED DATA AND Z-TRANSFORMS
	1.2 FOURIER SUMS
	1.3 FOURIER AND Z-TRANSFORM
	1.4 CORRELATION AND SPECTRA

	2 Discrete Fourier transform
	2.1 FT AS AN INVERTIBLE MATRIX
	2.2 INVERTIBLE SLOW FT PROGRAM
	2.3 SYMMETRIES
	2.4 SETTING UP THE FAST FOURIER TRANSFORM
	2.5 TWO-DIMENSIONAL FT
	2.6 HOW FAST FOURIER TRANSFORM WORKS
	2.7 References

	3 Z-plane, causality, and feedback
	3.1 LEAKY INTEGRATION
	3.2 SMOOTHING WITH BOX AND TRIANGLE
	3.3 CAUSAL INTEGRATION FILTER
	3.4 DAMPED OSCILLATION
	3.5 INSTABILITY
	3.6 MINIMUM-PHASE FILTERS
	3.7 INTRODUCTION TO ALL-PASS FILTERS
	3.8 PRECISION EXHAUSTION
	3.9 MY FAVORITE WAVELET
	3.10 IMPEDANCE FILTERS

	4 Univariate problems
	4.1 INSIDE AN ABSTRACT VECTOR
	4.2 SEGREGATING P AND S CROSSTALK
	4.3 References
	4.4 HOW TO DIVIDE NOISY SIGNALS
	4.5 NONSTATIONARITY
	4.6 DIP PICKING WITHOUT DIP SCANNING

	5 Adjoint operators
	5.1 FAMILIAR OPERATORS
	5.2 ADJOINT DEFINED: DOT-PRODUCT TEST
	5.3 NORMAL MOVEOUT AND OTHER MAPPINGS
	5.4 DERIVATIVE AND INTEGRAL
	5.5 CAUSAL INTEGRATION RECURSION
	5.6 UNITARY OPERATORS
	5.7 VELOCITY SPECTRA
	5.8 INTRODUCTION TO TOMOGRAPHY
	5.9 STOLT MIGRATION
	5.10 References

	6 Model fitting by least squares
	6.1 MULTIVARIATE LEAST SQUARES
	6.2 ITERATIVE METHODS
	6.3 INVERSE NMO STACK
	6.4 MARINE DEGHOSTING
	6.5 CG METHODOLOGY
	6.6 References

	7 Time-series analysis
	7.1 SHAPING FILTER
	7.2 SYNTHETIC DATA FROM FILTERED NOISE
	7.3 THE ERROR FILTER FAMILY
	7.4 BLIND DECONVOLUTION
	7.5 WEIGHTED ERROR FILTERS
	7.6 CALCULATING ERROR FILTERS
	7.7 INTERPOLATION ERROR

	8 Missing-data restoration
	8.1 INTRODUCTION TO ALIASING
	8.2 MISSING DATA IN ONE DIMENSION
	8.3 MISSING DATA AND UNKNOWN FILTER
	8.4 2-D INTERPOLATION BEYOND ALIASING
	8.5 A FULLY TWO-DIMENSIONAL PE FILTER
	8.6 TOMOGRAPHY AND OTHER APPLICATIONS
	8.7 References

	9 Hyperbola tricks
	9.1 PIXEL-PRECISE VELOCITY SCANNING
	9.2 GEOMETRY-BASED DECON
	9.3 References

	10 Spectrum and phase
	10.1 HILBERT TRANSFORM
	10.2 SPECTRAL FACTORIZATION
	10.3 A BUTTERWORTH-FILTER COOKBOOK
	10.4 PHASE DELAY AND GROUP DELAY
	10.5 PHASE OF A MINIMUM-PHASE FILTER
	10.6 ROBINSON'S ENERGY-DELAY THEOREM
	10.7 FILTERS IN PARALLEL

	11 Resolution and random signals
	11.1 TIME-FREQUENCY RESOLUTION
	11.2 FT OF RANDOM NUMBERS
	11.3 TIME-STATISTICAL RESOLUTION
	11.4 SPECTRAL FLUCTUATIONS
	11.5 CROSSCORRELATION AND COHERENCY
	11.6 SMOOTHING IN TWO DIMENSIONS
	11.7 PROBABILITY AND CONVOLUTION
	11.8 THE CENTRAL-LIMIT THEOREM

	12 Entropy and Jensen inequality
	12.1 THE JENSEN INEQUALITY
	12.2 RELATED CONCEPTS

	13 RATional FORtran == Ratfor
	14 Seplib and SEP software
	14.1 THE DATA CUBE
	14.2 THE HISTORY FILE
	14.3 MEMORY ALLOCATION
	14.4 References
	14.5 Acknowledgments

	15 Notation
	15.1 OPERATORS
	15.2 SCALARS
	15.3 FILTERS, SIGNALS, AND THEIR TRANSFORMS
	15.4 MATRICES AND VECTORS
	15.5 CHANGES FROM FGDP

	16 Interactive, 1-D, seismology program ed1D
	16.1 References

	17 The Zplane program
	17.1 THE SCREEN
	17.2 References

	Index

