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FREEWARE, COPYRIGHT, LICENSE, AND CRED-
ITS

This disk contains freeware from many authors. Freeware is software you can cc
and give away. But it is restricted in other ways. Please see author’s copyrights
“public licenses” along with their programs.

As you saw on the copyright page and will find in the electronic files, my elec
tronic book is copyrighted. However, the programs | wrote that display the boc
and its figures are available to you under the GNU public license (see below).
have signed over copyright of the book text to a traditional book pubfisherv-
ever, | did not grant them the electronic rights. | license you, the general public,
make electronic copies of the entire book provided that you do not remove or al
this licensing statement. Please respect the publisher’s legal rights and do not m
paper copies from your copy of the electronic book.

We (you and I) are indebted to many people who have generously contribut
software to the public good. I'll mention here only those outside the Stanford Un

1 Blackwell Scientific Publications, 3 Cambridge Center, Cambridge, MA 0214



versity research group whose contributions are widely used and on which we dee
depend:

TeX Don Knuth, Stanford University

ATEX Leslie Lamport, Stanford Research Institute
ratfor77 Ozan Yigit, Arizona, and Wes Bauske, IBM
ratfor90 Bob Clapp

dvips Tomas Rokicki, Stanford University

| feel sure the list of valuable contributors is much longer. | am afraid | may hav
overlooked the names of some, and others have modestly omitted leaving their ng
and copyright.

My electronic book is free software; you can redistribute it and/or modify it un
der the terms of the GNU General Public License as published by the Free Softw
Foundation; either version 2 of the License, or (at your option) any later version.

My electronic book is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along wi



this program; if not, write to the Free Software Foundation, Inc., 675 Massachuse
Ave., Cambridge, MA 02139, USA.



PREFACE TO THE ELECTRONIC BOOK
Reproducibility

Each figure caption is followed by an [R] or an [NR] which denotes Reproducibl
or Not Reproducible. To actually burn and rebuild the illustrations you will need t
have “seplib” installed at your site.

SEP software

Contained on the CD-ROM distribution are two interactive progragasp and
Zplane . | originally wrote these programs in Sunview, an interactive software deve
opment platform from Sun Microsystems. Fortunately, Steve Cole converted the
to the X Window system, using the X toolkit and Xlib graphics, so they are no\
available on machines from many manufacturers. Unfortunately, in 1998, we do
have them compiled for our main machines at SEP, linux PC’s and SGI.



Acknowledgement

This textbook itself was updated in minor ways since the 1991 CD-ROM was pr
duced. The electronic document, however, is greatly enhanced through syste
improvements made by Martin Karrenbach, Steve Cole, and Dave Nichols. Most
the features described in this preface were absent or incomplete in 1991.



A note to the reader

In many branches of engineering and science there is a substantial computatic
element. Earth-imaging seismology is one of these. In taking up computatior
problems we should abandon books, journals, and reports and replace them \
electronic documents that can be used to recreate any print document, including
figures, from its underlying data and computations. Today, few published results
reproducible in any practical sense. To verify them requires almost as much effort
it took to create them originally. After a time, authors are often unable to reprodu



their own results! For these reasons, many people ignore most of the literature.
the past this scandalous waste of time and energy may have been justified by the |
cost and incompatibility of data-processing machines. But with standards for F
tran, C, UNIX? IATEX, Postscriptt Xwindow,* CD-ROM, and shirt-pocket-sized
two-gigabyte tapes, there is no longer any excuse for nonreproducible researct
is time to plunge into this new era.

This paper book of 300 pages presents theory implemented by sixty subre
tines, all included in the book, which in turn made the book’s 150 figures. Behir
the paper book are about seventy figure-making directories, a large volume of St
ford Exploration Project utility software, and some real datasets you can experime
with if you have access to the electronic form of the book. | made nearly all of t
figures myself. Even without the electronic book, from the printed subroutines onl
you should be able to produce results similar to mine and, beyond this, use the s
routines in your own work.

2AT&T
3Adobe Systems, Inc.
4Massachusetts Institute of Technology



If you have access to the electronic form of this book, you can read it from
computer screen and press the buttons in the figure captions to rebuild and redis
the figures. Some of the figures are in color, some are interactive, and some
movies. But this is not the goal of the electronic book. Its goal is to enable you
reproduce all my figures with reasonable ease, to change parameters, to try o
datasets, to modify the programs, and to experiment with the theoretical concep

| could have written the programs in this book in vanilla Fortran or C and su
fered the verbosity and blemishes of these languages. Instead | chose to write
programs in a Fortran dialect that, like mathematics, is especially suited to the
position of technical concepts. At Stanford we translate these programs to Fort
automatically by passing them first through a home-made processor ramed
which overcomes Fortran’s inability to create temporary arrays of arbitrary dime
sion, and second through AT&THRatfor (Rational Fortran) preprocessor. If you
wish, a program calleebc , freely available from AT&T, will translate the Fortran
to C.

My goal in writing the programs in this book was not to write the best possibl
code with the clearest possible definitions of inputs and outputs. That would be
laudable goal for a reference work such\agnerical RecipefPress et al.). Instead,



| present a full mathematical analysis with simple and concise code along wi
meaningful examples of its use. | use the code as others might use pseudocode
exemplify and clarify the concepts. These programs, which also made the boo
figures, are not guaranteed to be free of errors. Since the word processor and
compiler got the programs from the same place, however, there can be no error
transcription.

Why another book?

| decided to write this book for five reasons. First, seismologists and explorationis
as well as many others in science and engineering, share the ability to synthe:
the data implied by any physical model. They have much to learn, however, abc
“inverse modeling,” that is, given the data, the process of finding the most appi
priate model. This task is also called “model fitting,” words that hardly hint at th
ingenuity that can be brought to bear. There is no shortage of books about le:
squares regression, also called “inversion.” These books provide a wide range
mathematical concepts—often too many, and often with no real examples. In 1
teaching and research | have found that people are mostly limited, not by lack



theory, but by failure to recognize where elementary theory is applicable. To ci
an example, “zero padding” is a tiny bit of technology used nearly everywhere, b
few people seem to recognize its mathematical adjoint and so are ill prepared
invoke (A’A)~1A’d or set up a conjugate-gradient optimization. Therefore, a key
stone chapter of this book shows how adjoint operators can be a simple byproc
of any modeling operator. In summary, the first reason | am writing this book is
illuminate the concept of “adjoint operator” by examining many examples.

The second reason for writing the book is to present the conjugate-gradie
optimization algorithm in the framework of many examples. The inversion theor
found in most textbooks, while appearing generally applicable, really is not. M:
trix inversions and singular-value decompositions are limited in practice to matric
of dimension less than about one thousand. But practical problems come in
dimensions, from one to many millions (when the operator is a multidimension
wave equation). Conjugate-gradient methods—only beginning to find routine u
in geophysics—point the way to overcoming this dimensionality problem. As i
the case of inversion, many books describe the conjugate-gradient method, but
method is not an end in itself. The heart of this book is the many examples that :
set up in the conjugate-gradient framework. Setting up the problems is where in



nuity is required. Solving them is almost routine—especially using the subroutir
library in this book.

My third reason for writing the book is much narrower. Seismogram deconvolt
by far the largest use of geophysical inversion theory—is in a state of disarray. | <
serious discrepancies between theory and practice (as do others). | believe the d
ray stems from a tendency to cling to a large body of old quasi-analytic theory. Tt
theory had a place in my first bookundamentals of Geophysical Data Process-
ing, but | have omitted it here. It can be replaced by a simpler and less restricti
numerical approach.

My fourth reason for writing the book is to illuminate the place of missing
seismograms. Much data is analyzed assuming that missing data is equivaler
zero-valued data. | show how to handle the problem in a better way.

Finally, | am writing this book to illuminate the subtitlProcessing versus In-
version,by which | mean the conflicting approaches of practitioners and academi
to earth soundings analysis.

This book should be readable by anyone with a bachelor’s degree in engineer
or physical science. Itis easier for students to use than my first bomkdamentals
of Geophysical Data Processintj is written at about the level of my second book,



Imaging the Earth’s Interiar

Organization

Page numbers impose a one-dimensional organization on any book. | placed b
things early in the book, important things in the middle of the book, and theoretic:
less frequently used things at the end. Within chapters and sections, this book
swers the questionghatandhowbefore it answers/hy. | chose to avoid a strictly
logical organization because that would result in too much math at the beginni
and too long a delay before the reader encountered applications. Thus, you r
read about a single subject at different points in the book. It is not organized lil
an encyclopedia but is ordered for learning. For reference, please make use of
index.

Dedication

I am especially indebted to all those students who complained that | did not gi
enough examples in my classes. (Even with access to the book in its present fc



they still complain about this, so there is work left to do.)
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Introduction

Prospecting for petroleum is a four-step process: (1) echo soundings are recort
(2) they are analyzed for reflections; (3) the reflections are interpreted as a g
logical model; and (4) the prospect is tested by drilling. The first two stages, de
acquisition and analysis, are on a worldwide basis a multibillion-dollar-per-ye:
activity. This book describes only the echo soundings analysis. Together with r
1985 book]Jmaging the Earth’s Interiarit provides a complete introduction to echo
soundings analysis.

xi



The subtitle of this bookProcessing versus Inversipplaces the book equidis-
tant from two approaches, one generally practical and industrial and the other ger
ally theoretical and academic. This book shows how the two approaches are relz
and contribute to each other.

Adjoint processing defined

“Dataprocessing in earth soundings analysis could mean anything anybody doe
to seismic data. A narrower definition is those processes that are routinely appl
in industry, such as those described in Oz Yilmaz's b&#ismic Data Processing
As we will see in chapteb of this book, much of echo soundings analysis can be
interpreted as thadjointof seismogram modeling. Here we use the wadjbint”

in the mathematical sense to mean the complex conjugate of the matrix transpc
Not all processes can be accurately characterized as the adjoint to seismogram r
eling, but many can, including normal moveout, stacking, migration, dip moveot
and more. Since these are the heavyweights of the industry, the simple word “p
cessing” can almost be understood to stand for “processing by adjoint modelin
As we will see, such processing applied to perfect data generally gives an imperf



result. This imperfection leads thoughtful people to the concept of inversion.

Inversion defined

Principles of physics allow us to calculate synthetic data from earth models. Su
calculations are said to solve “forward” problems. In real life we are generall
interested in the reverse calculation, i.e., computing earth models from data. T
reverse calculation is callednversion.” The word “inversion” is derived from
“matrix inversion.” Despite its association with the well-known and well-definec
mathematical task of matrix inversion, echo sounding inversion is not simple and
often ill defined. Inversion promises to give us an earth model from our data desy
the likelihood that our data is inaccurate and incomplete. This promise goes too |
Inversion applied to perfect data, however, can give a perfect result, which mal
inversion more appealing academically than processing by adjoint modeling.



Processing versus inversion

Practical people often regard inversion theorists with suspicion, much as one mi
regard those gripped by an exotic religion. There is not one theory of inversi
of seismic data, but many—maybe more theories than theoreticians. The invent
of these theories are all ingenious, and some are illustrious, but many ignore
others’ work. How can this be science or engineering? The diversity of viewpoil
arises from the many practical problems that need to be solved, from the varic
ways that noise can be modeled, from the incompleteness of data, and above
from the many approaches to simplifying the underlying model.

Practitioners too are a diverse group of shrewd and talented people, many ill
trious in their highly competitive industry. As a group they have the advantage
the “real world” as a helpful arbitrator. Why do they prefer a adjoint operator whe
the correct answer, almost by definition, stems from the inverse? Adjoint proce:
ing requires no more than the data one has actually collected. It requires no nc
model, never uses divisions so cannot divide by zero, and often uses only additi
(no subtractions) so cannot amplify small differences. Anyone taking the first st
beyond adjoint processing loses these supports. Unfortunately, adjoint opera
handle missing data as if it were zero-valued data. This is obviously wrong and



known to limit resolution.

I hope to illuminate the gaps between theory and practice which are the hear
and soul of exploration seismology, as they are of any living science.

Fortunately there is a middle way between adjoint processing and inversion, ¢
this book is a guide to it. Adjoint processing and inversion stand at opposite en
of the spectrum of philosophies of data processing, but, as we will see in chapte
adjoint processing is also thast step of inversion. Whether treecondand any
subsequent steps are worthwhile depends on circumstances.

The theme of this book is not developed in an abstract way but instead is dra
from the details of many examples: normal moveout, stacking, velocity analys
several kinds of migration, missing data, tomography, deconvolution, and weight
deconvolution. Knowing how processing relates to inversion suggests different c
portunities in each case.



Linear inverse theory

In mathematical statistics is a well-established theory calle@dr inverse the-
ory.” “Geophysical inverse theory is similar, with the additions that (1) vari-
ables can be sample points from a continuum, and (2) physical problems are of
intractable without linearization. Once | imagined a book that would derive tecl
nigues used in industry from general geophysical inverse theory. After thirty yee
of experience | can report to you that very few techniques in routine practical u
arise directly from the general theory! There are many reasons for this, and | he
chosen to sprinkle them throughout discussion of the applications themselves ra
than attempt a revision to the general theory. | summarize here as follows: t
computing requirements of the general theory are typically unrealistic since th
are proportional to the cube of a huge number of variables, which are sample \
ues representing a continuum. Equally important, the great diversity of spatial a
temporal aspects of data and residuals (statistical nonstationarity) is impractica
characterize in general terms.



Our route

Centrally, this book teaches how to recognize adjoint operators in physical proces
(chapter5), and how to use those adjoints in model fitting (inversion) using leas
squares optimization and the technique of conjugate gradients (cleqpter

First, however, we review convolution and spectra (chapteliscrete Fourier
transforms (chapte®), and causality and the comple&= €“ plane (chapteB),
where poles are the mathematically forbidden points of zero division. In chapte
we travel widely, from the heaven of theoretically perfect results through a life «
practical results including poor results, sinking to the purgatory of instability, and f
nally arriving at the “big bang” of zero division. Chaptéis a collection of solved
problems with asingle unknowrthat illustrates the pitfalls and opportunities that
arise from weighting functions, zero division, and nonstationarity. Thus we are pr
pared for the keystone chapter, chagiewhere we learn to recognize the relation
of the linear operators we studied in chapters 1-3 to their adjoints, and to see f
computation of these adjoints is a straightforward adjunct to direct computatic
Also included in chaptes are interpolation, smoothing, and most of the many oper
ators that populate the world of exploration seismology. Thus further prepared, !
pass easily through the central theoretical concepts of least-squares optimizat



basic NMO stack, and deconvolution applications in chafter

In chapter7 we see the formulation and solution of many problems in time
series analysis, prediction, and interpolation and learn more about mathemat
formulations that control stability. Chapt&rshows how missing data can be esti-
mated. Of particular interest is a nonstationary world model where, locally in tirm
and space, the wave field fits the model of a small number of plane waves. H
we find “magical” results: data that is apparently undersampled (spatially aliase
is recovered.

Hyperbolas are the reflection seismologist's delight. My béolaging the
Earth’s Interior could almost have been namelyperbolas and the EarthThat
book includes many techniques for representing and deforming hyperbolas, es
cially using various representations of the wave equation. Here | repeat a minin
part of that lore in chapte??. My goal is now to marry hyperbolas to the conjugate-
gradient model-fitting theme of this book.

Having covered a wide range of practical problems, we turn at last to mo
theoretical ones: spectra and phase (chapfier and sample spectra of random
numbers (chaptetl). | have begun revising three theoretical chapters from m
first book, Fundamentals of Geophysical Data Processihgreinafter referred to



asFGDP), which is still in print. Since these revisions are not yet very extensive

| am excluding the revised chapters from the current copy of this book. (My 19¢

book,Imaging the Earth’s Interiofhereinafter referred to d&l ), deserves revision

in the light of the conjugacy methods developed here, but that too lies in the futur
Finally, every academic is entitled to some idiosyncrasies, and | find Jensen

equalities fascinating. These have an unproved relationship to practical echo an

sis, but | include them anyway in a brief concluding chapter.
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Chapter 1

Convolution and Spectra

In human events, the word “convoluted” implies complexity. In science and el
gineering, “convolution” refers to a combining equation for signals, waves, or in
ages. Although the combination may be complex, ¢dbavolution equation is an

1



elementary one, ideally suited to be presented at the beginning of my long bc
on dissecting observations. Intimately connected to convolution are the concept:
pure tones and Fourier analysis.

Time and space are ordinarily thought of as continuous, but for the purposes
computer analysis we must discretize these axes. This is also csilegpfing’ or
“digitizing.” You might worry that discretization is a practical evil that muddies all
later theoretical analysis. Actually, physical concepts have representations that
exact in the world of discrete mathematics. In the first part of this book | will re
view basic concepts of convolution, spectra, and causality, while using and teach
techniques of discrete mathematics. By the time we finish with ch&ptethink
you will agree with me that many subtle concepts are easier in the discrete wo
than in the continuum.

1.1. SAMPLED DATA AND Z-TRANSFORMS

Consider the idealized and simplified signal in Figliré To analyze such an ob-
served signal in a computer, it is necessary to approximate it in some way by a list
numbers. The usual way to do this is to evaluate or obdgtyeat a uniform spac-



Figure 1.1: A continuous sig-
nal sampled at uniform time in-
tervals. (Press button for trivial

interaction with plot.)
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ing of points in time, call this discretized signal For Figurel.l, such a discrete
approximation to the continuous function could be denoted by the vector

bk = (..0,0,1,20~1,-1,0,0,..) (1.1)

Naturally, if time points were closer together, the approximation would be more a
curate. What we have done, then, is represent a signal by an alpstfiaceénsional
vector.

Another way to represent a signal is as a polynomial, wheredb#icientsof
the polynomial represent the valuelgfat successive times. For example,

B(z) = 1+42zZ+0z°-27%-27* (1.2)

This polynomial is called aZ-transform.” What is the meaning o here? Z
should not take on some numerical value; it is insteaditliedelay operator. For
example, the coefficients @B(Z) = Z +22Z2 — Z* — Z° are plotted in Figuré..2.
Figure 1.2 shows the same waveform as Figurd, but now the waveform has
been delayed. So the sigralis delayedh time units by multiplyingB(Z) by Z".
The delay operato? is important in analyzing waves simply because waves take
certain amount of time to move from place to place.



Figure 1.2: The coefficients
of ZB(Z) are the shifted ver-
sion of the coefficients oB(Z).

[ER]




Another value of the delay operator is that it may be used to build up mol
complicated signals from simpler ones. Supplasepresents the acoustic pressure
function or the seismogram observed after a distant explosion. Bhincalled
the ‘impulse responsé€ If another explosion occurred at= 10 time units after
the first, we would expect the pressure functig) depicted in Figurel.3. In
telrgns ofZ-transforms, this pressure function would be express&qas= B(Z) +
Z-"B(2).

1.1.1. Linear superposition

If the first explosion were followed by an implosion of half-strength, we would hav
B(Z) — $Z19B(Z). If pulses overlapped one another in time (as would be the ca:
if B(Z) had degree greater than 10), the waveforms would simply add together
the region of overlap. The supposition that they would just add together without a
interaction is called thelthearity ” property. In seismology we find that—although
the earth is a heterogeneous conglomeration of rocks of different shapes and type
when seismic waves travel through the earth, they do not interfere with one anott
They satisfy lineaisuperposition The plague ohonlinearity arises from large



Figure 1.3: Response to two ex-

plosions. [ER]




amplitude disturbances. Nonlinearity is a dominating feature in hydrodynamic
where flow velocities are a noticeable fraction of the wave velocity. Nonlinearit
is absent from reflection seismology except within a few meters from the sourc
Nonlinearity does not arise from geometrical complications in the propagation pa
An example of twgplane waves superposing is shown in Figutes.

1.1.2. Convolution with Z-transform

Now suppose there was an explosiohat0, a half-strength implosion &t 1, and
another, quarter-strength explosiort at 3. This sequence of events determines &
“source” time seriesy; = (1,—3%,0,3). The Z-transform of the source iX(Z) =

1- %Z + %123. The observedy; for this sequence of explosions and implosions
through the seismometer hageransformY(Z), given by

z z3
Y(2) = B(Z)— > B(Z2)+ = B(2)

z z3
(1-2+Z) e
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= X(2)B(2) (1.3)

The last equation shovmolynomial multiplication as the underlying basis of time-
invariant linear-system theory, namely that the outp(if) can be expressed as the
input X(Z) times the impulse-responier B(Z). When signal values are insignif-
icant except in a “small” region on the time axis, the signals are calledéless.”
There are many examples of linear systems. The one of most interest to u:
wave propagation in the earth. A simpler example, around which a vast literatt
exists, is electronic filters. Aascade of filterds formed by taking the output of one
filter and plugging it into the input of another. Suppose we have two linear filte
characterized b (Z) andC(Z). Then the question arises, illustrated in Figlirg
as to whether the two combined filters are equivalent.

B(7) C(z) = Y(7)

Figure 1.5: Two equivalent fiP—<<Z)

tering systems. [cs-commute
INR] X(7) B | ()

The use oZ-transforms makes it obvious that these two systems are equivale




since products of polynomiatommute i.e.,
Yi(z) = [X(9)B(2)]C(2) = XBC
Y2(Z) = [X(Z2)C(2)]B(z) = XCB = XBC (1.4)

1.1.3. Dissecting systems by factoring

Consider a system with an impulse response-(2;-1). Its Z-transform isB(Z) =

2— Z — Z?. This polynomial can béactored into 2— Z — Z2 = (2+ Z) (1 — Z).
Thus our original filter could be thought of as a cascade of two filters, (2,1) ar
(1,—1). Either of the two filters could be applied first and the other second: tt
output would be the same. Since any polynomial can be factored, any impulse
sponse can be simulated by a cascade of two-term filters (impulse responses wi
Z-transforms are linear i#).

1.1.4. Convolution equation and program

What do we actually do in a computer when we multiply tdxdransforms together?
The filter 24+ Z would be represented in a computer by the storage in memory



the coefficients (2,1). Likewise, for4 Z, the numbers (1) would be stored.
The polynomial multiplication program should take these inputs and produce t
sequence (2;1,—1). Let us see how the computation proceeds in a general cas
say

X(2)B(Z) = Y(2) (1.5)
(Xo+X1Z+%2Z%+--)(bo+b1Z+b2Z?) = yo+y1Z+Yy2Z?+-(1.6)
Identifying coefficients of successive powersAfwe get
Yo = Xobo
yi. = xibo+xobh
) = Xobo + X101 + Xgh2 a.7)
Y3 = Xabo+Xxzb1+xibz

Ya = X4bo+x3by+x2b2



In matrix form this looks like

Yo
Yl
Y2
Y3
Y4
Y5
Y6

Xo
X1
X2
X3
X4
0
0

0
Xo
X1
X2
X3
X4

0

0
0
Xo
X1
X2
X3
X4

bo
b1 (1.8)
bo

The following equation, called the “convolution equation,” carries the spirit of th

group shown in1.7):

Np
Ve = Y Xciby
i=0

(1.9)

To be correct in detail when we associate equatiof) (with the group {.7), we
should also assert that either the inputvanishes befor& = 0 or N, must be ad-
justed so that the sum does not extend betgr& hese end conditions are expressec



more conveniently by defining=k —i in equation {.9) and eliminatingk getting
Np

Vi = )Xy (1.10)
i=0

A convolution program based on equatidnl(Q including end effects on both ends,
is convolve() . Some details of the Ratfor programming language are

given in an appendix, along with the subroutiren() |/prog:zerd, which erases
the space for the output.

1.1.5. Negative time

Notice thatX(Z) andY(Z) need not strictly be polynomials; they may contain both
positive and negative powers @f such as

X_ X_
X(Z) = ...+Z_22+71+XO+X1Z+--- (1.11)
Y(Z) = 4+ 2 izt (1.12)

z? 4



# convolution: Y(2) = X(@2) * B(2)

#
subroutine convolve( nb, bb, nx, xx, yy )
integer nb # number of coefficients in filter
integer nx # number of coefficients in input
# number of coefficients in output will be nx+nb-1
real bb(nb) # filter coefficients
real xx(nx) # input trace

real yy(l)  # output trace
integer ib, ix, iy, ny
ny = nx + nb -1
call null( yy, ny)
do ib= 1, nb

do ix= 1, nx

yy( ix+ib-1) = yy( ix+ib-1) + xx(ix) * bb(ib)

return; end

Back



The negative powers df in X(Z) andY(Z) show that thedatais defined before

t = 0. The effect of using negative powersfin thefilter is different. Inspection
of (1.9) shows that the outpuy that occurs at timéx is a linear combination of
current and previous inputs; that is; (i < k). If the filter B(Z) had included a term
like b_1/Z, then the outpugk at timek would be a linear combination of current
and previous inputs a1, an input that really has not arrived at tikeSuch a
filter is called a honrealizabl€’ filter, because it could not operate in the real world
where nothing can respond now to an excitation that has not yet occurred. Howe'
nonrealizable filters are occasionally useful in computer simulations where all t
data is prerecorded.

1.2. FOURIER SUMS

The world is filled with sines and cosines. The coordinates of a point on a spinnil
wheel are X, y) = (cos@t + ¢), sin(t + ¢)), wherew is the angular frequency of

revolution andg is the phase angle. The purest tones and the purest colors ¢
sinusoidal. The movement of a pendulum is nearly sinusoidal, the approximati
going to perfection in the limit of small amplitude motions. The sum of all the tone



in any signal is its “spectrum.”

Small amplitude signals are widespread in nature, from the vibrations of ator
to the sound vibrations we create and observe in the earth. Sound typically cc
presses air by a volume fraction of 1to 10-6. In water or solid, the compression
is typically 107 to 10-9. A mathematical reason why sinusoids are so common i
nature is that laws of nature are typically expressible as partial differential equatio
Whenever the coefficients of the differentials (which are functions of material pro|
erties) are constant in time and space, the equations have exponential and sinus:
solutions that correspond to waves propagating in all directions.

1.2.1. Superposition of sinusoids

Fourier analysis is built from the complex exponential
e = coswt—i sinwt (1.13)
A Fourier component of a time signal is a complex number, a sum of real ar
imaginary parts, say
B = 9%B+i3B (1.14)



which is attached to some frequency. ljebe an integer andj be a set of fre-
guencies. A signab(t) can be manufactured by adding a collection of comple>
exponential signals, each complex exponential being scaled by a complex coe
cientBj, namely,

bty = Y Bje'! (1.15)
j

This manufactureseomplex-valued signal How do we arrange fdu(t) to be real?
We can throw away the imaginary part, which is like addbfg) to its complex
conjugateb(t), and then dividing by two:

1 T
Rb(t) = EZ(BJ e et By ity (1.16)
i

In other words, for each positivg; with amplitudeBj, we add a negative wj with
amplitudeB; (likewise, for every negative; ...). TheB; are called the “frequency
function,” or the “Fourier transform.” Loosely, thg; are called the $pectrum,”
though technically, and in this book, the word “spectrum” should be reserved f

the productB; B;. The words amplitude spectrum’ universally mean/ B; B;.



In practice, the collection of frequencies is almost always evenly spacedl. Le
be an integet» = j Aw so that

bt) = > BjeUael (1.17)
j

Representing a signal by a sum of sinusoids is technically known as “inverse Fout
transformation.” An example of this is shown in Figuré.

1.2.2. Sampled time and Nyquist frequency

In the world of computers, time is generally mapped into integers toot say
nAt. This is called “discretizing” or “sampling.” The highest possible frequency
expressible on emeshis (---,1,—-1,+1,—1,+1,—1,---), which is the same a&™".
Settinge/ ®mat = 7" we see that the maximum frequency is
b4

At

Time is commonly given in either seconds or sample units, which are the sai
whenAt = 1. In applications, frequency is usually expressed in cycles per secor

(1.18)

Wmax



Low frequency Time domain

Higher frequency Time Domain

Sum of two frequencies Time domain

Figure 1.6: Superposition of two sinusoids. (Press button to activate pregram

See appendix for details|cs-cosinef[NR]



which is the same ddertz, abbreviatedHz. In computer work, frequency is usually
specified in cycles per sample. In theoretical work, frequency is usually expressec
radians where the relation between radians and cycles4s2rz f. We use radians
because, otherwise, equations are filled wittis2 When time is given in sample
units, the maximum frequency has a name: it is tNgduist frequency,” which is

7 radians or 12 cycle per sample.

1.2.3. Fourier sum

In the previous section we superposed uniformly spaced frequencies. Now we v
superposedelayed impulses. The frequency function of a delayed impulse at tin
delaytg is €“%. Adding some pulses yields th&durier sum”:

B@) = > by = Y peenat (1.19)
n n

The Fourier sum transforms the sigiato the frequency functioB(w). Time will
often be denoted by, even though its units are sample units instead of physics
units. Thus we often se& in equations like 1.19 instead ofby, resulting in an
implied At = 1.



1.3. FOURIER AND Z-TRANSFORM

The frequency function of a pulse at tirge= nAt is € "2t = (€ ®A1)". The factor
€ @At occurs so often in applied work that it has a name:

zZ = ¢eont (1.20)

With this Z, the pulse at tima, is compactly represented &&'. The variableZ
makesFourier transform s look like polynomials, the subject of a literature called
“Z-transforms.” The Z-transform is a variant form of the Fourier transform that is
particularly useful for time-discretized (sampled) functions.

From the definition1.20), we havez? = @®2At | 73 — g@3At etc. Using these
equivalencies, equatiod (19 becomes

Blw = B@Z) = > bZ" (1.21)

1.3.1. Unitcircle

In this chapterg is a real variable, s@ = € “A! = coswAt +i sinwAt is a complex
variable. It has unit magnitude because’sitos = 1. Asw ranges on the real



axis, Z ranges on the unit circleZ| = 1. In chapteB we will see how the definition
(1.20 also applies for complex values of

1.3.2. Differentiator

A particularly interesting factor is (& Z), because the filter (3;1) is like a time
derivative. The time-derivative filter destrogsro frequencyin the input signal.
The zero frequency is{-,1,1,1; --) with a Z-transform (- - + 22+ 23+ 74 +...).

To see that the filter ( Z) destroys zero frequency, notice that{Z)(- - - + 2%+
Z3+7%+...)=0. More formally, consider outpi(Z) = (1— Z)X(Z) made from
the filter (1— Z) and any inpuiX(Z). Since (1~ Z) vanishes aZ = 1, then likewise
Y(Z) must vanish aZ = 1. Vanishing atZ = 1 is vanishing at frequenay =0
becauseZ = exp(wAt) from (1.20. Now we can recognize that multiplication
of two functions ofZ or of w is the equivalent of convolving the associated time
functions.

Multiplication in the frequency domain ionvolution in the time domain.

A popular mathematical abbreviation for the convolution operator is an asteris



equation {.9), for example, could be denoted y= x¢xb;. | do not disagree with
asterisk notation, but | prefer the equivalent expressitn) = X(Z)B(Z), which
simultaneously exhibits the time domain and the frequency domain.

The filter (1— Z) is often called adifferentiator .” It is displayed in Figurel.7.

The letter “z” plotted at the origin in Figurg.7 denotes theoot of 1 — Z at
Z =1, wherew = 0. Another interesting filter is 4 Z, which destroys the highest
possible frequency (%1,1,—1,---), wherew = 7.

A root is a numerical value for which a polynomial vanishes. For example
2—7Z—7?=(2+Z)(1- Z) vanishes whenevet = —2 or Z = 1. Such a root is
also called a Zero” The fundamental theorem of algebra says that if the highe:s
power of Z in a polynomial isZN, then the polynomial has exactly roots, not
necessarily distinct. AN gets large, finding these roots requires a sophisticate
computer program. Another complication is that complex numbers can arise. \
will soon see that complex roots are exactly what we need to design filters tt
destroy any frequency.



Amp(omega)

filter(t)

0 omega pi

Figure 1.7: A discrete representation of the first-derivative operator. The filt
(1,—1) is plotted on the left, and on the right is an amplitude responseli-e.Z|
versusw. (Press button to activate prograzplane . See appendix for details.)
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1.3.3. Gaussian examples

The filter (14 Z)/2 is a running average of two adjacent time points. Applying this
filter N times yields the filter (& Z)N/2N. The coefficients of the filter (& Z)N

are generally known aBascal’s triangle For largeN the coefficients tend to a
mathematical limit known as @aussianfunction, exp{a(t — to)?), wherea and

tp are constants that we will determine in chagtér We will not prove it here, but
this Gaussian-shaped signal has a Fourier transform that also has a Gaussian s
exp(—pBw?). The Gaussian shape is often called a “bell shape.” Figusshows

an example folN ~ 15. Note that, except for the rounded ends, the bell shar
seems a good fit to a triangle function. Curiously, the filter {7852)N also tends

to the same Gaussian but with a differént A mathematical theorem (discussed
in chapterll) says that almost any polynomial raised to theth power yields a
Gaussian.

In seismology we generally fail to observe thero frequency. Thus the ide-
alized seismic pulse cannot be a Gaussian. An analytic waveform of longstand
popularity in seismology is the second derivative of a Gaussian, also known a
“Ricker wavelet” Starting from the Gaussian and putting two more zeros at th
origin with (1— Z)? = 1—2Z + Z2 produces this old, favorite wavelet, shown in



Amp(omega)

filter(t)

0 omega pi

Figure 1.8: A Gaussian approximated by many powers afZ). NR]



Figurel.9.

Amp(omega)

filter(t)

0 omega pi

Figure 1.9: Ricker wavelet|cs-ricke [NR]

1.3.4. Complex roots

We have seen how a simple two-term filter can destroy the zero frequency or 1
Nyquist frequency. When we try to destroy any other frequency, we run into a ne



difficulty—we will see complex-valued signas. Let Zg take the complex value
Zo = €%, wherewy is real. Further, chooseyg = /2 and as a resulfp =i. So
the filter (1— Z/Zo) = (1+iZ) has the complex coefficients (}, and its output

is a complex-valued signal. Naturally this is annoying, because we usually prefe
real output signal.

The way to avoid complex-valued signals is to hanmdigative frequency—wg
the same way we handley. To do this we use a filter witkwo roots, one atwg
and one at-wg. The filter (1+iZ)(1—iZ) = 1+ Z? has real-valued time-domain
coefficients, namely, (1,0, 1). The factor{1Z) vanishes wheiZ =i orw = /2,
and (1-iZ) vanishes ato = —n/2. Notice what happens when the filter (1,0, 1)
is convolved with the time serids = (---1,0,—1,0,1,0-1,---): the outputis zero
at all times. This is becaud® is a sinusoid at the half-Nyquist frequeney2, and
the filter (1,0, 1) has zeros at plus and minus half-Nyquist.

Let us work out the general case for a root anywhere irctimplex plane Let
the rootZg be decomposed into its real and imaginary parts:

Zo = X+iy = NRZo+i3Zp (1.22)



and let the root be written in a polar form:

deo
Zp = — (1.23)
o)
wherewg andp are constants that can be derived from the constadtsand3Zg

and vice versa. The conjugate roofds = e '“0/p. The combined filter is

z z 1 1 Z2
Zo Zo Zo Zop ZoZo
= 1- 2pcoswpZ + p3Z? (1.25)

So the convolutional coefficients of this filter are the real values 2b,coswo, p2).

Taking p = 1, the filter completely destroys energy at frequengy Other values

of p near unity suppress nearby frequencies without completely destroying them
Recall that to keep the filter response real, any root on the positaes must

have a twin on the negative-axis. In the figures | show here, the negative axis is

not plotted, so we must remember the twin. FiglireOshows a discrete approx-

imation to the second derivative. It is like 1Z)2, but since both its roots are in
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0 omega pi

Figure 1.10: Approximation to the second difference operator211).
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the same place & = 1, | pushed them a little distance apart, one going to positivt
frequencies and one to negative.

1.3.5. Inverse Z-transform

Fourier analysis is widely used in mathematics, physics, and engineerifgasar
integral transformation pair:

+00 .
B(w) = [ b(t)e'“tdt (1.26)
_ +00 .
b(t) = /_ B(w)e ' dw (1.27)

These integrals correspond to the sums we are working with here except for sc
minor details. Books in electrical engineering redehé ase . That is like
switchingw to —w. Instead, we have chosen tsign conventionof phyS|cs which

is better for wave-propagation studies (as explained in IEIl). The infinite limits o
the integrals result from expressing tNgquist frequency in radians/second as
7/ At. Thus, asAt tends to zero, th€ourier sum tends to the integral. When we



reach equationl(31) we will see that if a scaling divisor ofi2is introduced into
either (L.26) or (1.27), thenb(t) will equal b(t).

The Z-transform is always easy to make, but the Fourier integral could be di
ficult to perform, which is paradoxical, because the transforms are really the sar
To make aZ-transform, we merely attach powers &fto successive data points.
When we haveB(Z), we can refer to it either as a time function or a frequency
function. If we graph the polynomial coefficients, then it is a time function. It is ¢
frequency function if we evaluate and graph the polynorBigd = € ) for various
frequencieso.

If the Z-transform amounts to attaching powersdfto successive points of
a time function, then théverse Z-transform must be merely identifying coef-
ficients of various powers o with different points in time. How can this mere
“identification of coefficients” be the same as the apparently more complicated c
eration of inverse Fourier integration? Let us see. ifiverse Fourier integral
(1.27) for integer values of time is

1 +

bk = — B(w)e ' dw (1.28)
2 J_,



Substituting {.21) into (1.28), we get
1 /" : , _
by = Z/ (---+b_1e7'? +by+ e +..) e dw (1.29)
—7T

Since sinusoids have as much area above the axis as below, the integratitsh of
over—m < w < +m gives zero unless = 0, that is,

1 /" . 1 /"
— | "™do = — | (cosnw+isinnw)dw
27 J_, 27 J_,
1 ifn=0
- { 0 if n=non-zero integer (1.30)

Of all the terms in the integrand 29, we see from1.30 that only the term with
b: will contribute to the integral; all the rest oscillate and cancel. In other word:
it is only the coefficient ofZ to the zero power that contributes to the integral, sc

(1.29 reduces to
1 [t ;
b = o b €70 dw (1.31)
-7



This shows how inverse Fourier transformation is just like identifying coefficient
of powers ofZ. It also shows why the scale factor in equati@r@ is 2.

EXERCISES:
1 LetB(Z)=1+Z+ 2%+ 23+ 7*. Graphthe coefficients &(Z) as a function
of the powers oZ. Graph the coefficients ¢B(Z)]?.

2 Asw moves from zero to positive frequencies, wher2 isnd which way does
it rotate around the unit circle, clockwise or counterclockwise?

3 Identify locations on the unit circle of the following frequencies: (1) the zerc
frequency, (2) the Nyquist frequency, (3) negative frequencies, and (4) a fr
guency sampled at 10 points per wavelength.

4 Given numerical constani$Zg and3 Zo, derivewg andp.

Sketch the amplitude spectrum of Figur®from 0 to 4r.



1.4. CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how mu
of each tone is present. The Fourier transform of a spectrum yields an interest
function called an &utocorrelation,” which measures the similarity of a signal to
itself shifted.

1.4.1. Spectra in terms of Z-transforms

Let us look at spectra in terms @-transforms. Let &pectrum be denoted(w),
where

Sw) = IB@P = B(B() (1.32)
Expressing this in terms of a three-poifvtransform, we have
S) = (Eo+Ele—iw+Eze-‘Zw)(bo+b1eiw+bzei2w) (1.33)
SZz) = (Eo+ + = >(bo+b12+b222) (1.34)
—(1
S(z) = B(E) B(Z) (1.35)



Itis interesting to multiply out the polynomiﬁ(l/Z) with B(Z) in order to exam-
ine the coefficients 0§(Z):

bobo  (bibg + boby)

S2) = 5+ +(Bobo+biby +bobp) + (boby + b1b2) Z + bobo 2
S(2) % + % +S0+s1Z+92Z2 (1.36)
The coefficiens of ZK is given by
% = ) bibiu (1.37)
i

Equation (.37) is theautocorrelation formula. The autocorrelation vals at lag
10 issyp. It is a measure of the similarity df with itself shifted 10 units in time.
In the most frequently occurring cadg,is real; then, by inspection of.(37), we
see that the autocorrelation coefficients are real sprds_y.

Specializing to a real time series gives

S2) = 50+31<Z+%>+32(22+%) (1.38)



Z(w) = So+s(€C+e7?)+5(e%+e7%) (1.39)

S(w) = S0+ 251C0Sw+ 25,C0S 2 (1.40)

Sw) = ) xcoskw (1.41)
k

S(w) = -cosine transform ofs, (1.42)

This proves a classic theorem that for real-valued signals can be simply statec
follows:

For any real signal, the cosine transform of #h&ocorrelation equals the
magnitude squared of the Fourier transform.

1.4.2. Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spe
trum: (1) compute all theg coefficients from {.37) and then form the cosine sum
(1.4 for eachw; and alternately, (2) evaluat®(Z) for some value of Z on the
unit circle, and multiply the resulting number by its complex conjugate. Repeat f



many values oZ on the unit circle. When there are more than about twenty lag:
method (2) is cheaper, because the fast Fourier transform discussed in Eragpter
be used.

1.4.3. Common signals

Figure1.11shows some common signals and treitocorrelations. Figurel.12
shows the cosine transforms of the autocorrelations. Cosine transform takes us fi
time to frequency and it also takes us from frequency to time. Thus, transform pa
in Figure 1.12 are sometimes more comprehensible if you interchange time ar
frequency. The various signals are given names in the figures, and a descriptiol
each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was trt
cated (multiplied by a rectangle function). The autocorrelation is a sinuso
under a triangle, and its spectrum is a broadened impulse (which can
shown to be a narrow sinc-squared function).

sinc The sinc function is sinfpgt)/(wot). Its autocorrelation is another sinc func-
tion, and its spectrum is a rectangle function. Here the rectangle is corrupt
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slightly by “Gibbs sidelobeg’ which result from the time truncation of the
original sinc.

wide box A wide rectangle function has a wide triangle function for an autocor-
relation and a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.
twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but tl
spectrum is modulated (multiplied) by a sinusoidal function of frequency
where the modulation frequency measures the time separation of the narr
boxes. (An oscillation seen in the frequency domain is sometimes callec
“quefrency.”)

comb Fine-toothedcombfunctions are like rectangle functions with a lower Nyquis
frequency. Coarse-toothed-comb functions have a spectrum which is a fir
toothed comb.

exponential The autocorrelation of a transieexponential function is adouble-
sided exponentialfunction. The spectrum (energy) is a Cauchy function,



1/(w2+a)(2)). The curious thing about th@auchy functionis that the ampli-
tude spectrum diminishes inversely with frequency tofitst power; hence,
over an infinite frequency axis, the function has infinite integral. The shat
edge at the onset of the transient exponential has much high-frequency
ergy.

Gauss The autocorrelation of &aussianfunction is another Gaussian, and the
spectrum is also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surround
by some short grass. The spectrum is positive random numbers. For m
about random signals, see chapitér

smoothed random Smoothed random numbers are much the same as random nt
bers, but their spectral bandwidth is limited.

1.4.4. Spectra of complex-valued signals

The spectrum of a signal is the magnitude squared of the Fourier transform of th
function. Consider the real signal that is a delayed impulseZsnsform is sim-



ply Z; so the real part is cas, and the imaginary part is sin The real part is thus
aneven functionof frequency and the imaginary partadd function of frequency.
This is also true o2 and any sum of powers (weighted by real numbers), and tht
it is true of any time function. For any real signal, therefore, the Fourier transfor
has an even real part RE and an imaginary odd part 10. Taking the squared ma
tude gives (REHO)(RE—ilO)= (RE} + (10)2. The square of an even function is
obviously even, and the square of an odd function is also even. Thus, because
spectrum of a real-time function is even, its values at plus frequencies are the se
as its values at minus frequencies. In other words, no special meaning should
attached to negative frequencies. This is not so of complex-valued signals.
Although most signals which arise in applications are real signals, a discL
sion of correlation and spectra is not mathematically complete without consideri
complex-valued signas. Furthermore, complex-valued signals arise in many dif
ferent contexts. In seismology, they arise in imaging studies when the space axi
Fourier transformed, i.e., when a two-dimensional funcidh x) is Fourier trans-
formed over space tB(t,kx). More generally, complex-valued signals arise where
rotation occurs. For example, consider two vector-component wind-speed indi
tors: one pointing north, recording, and the other pointing west, recording.



Now, if we make a complex-valued time serigs= n; +iwy, the magnitude and
phase angle of the complex numbers have an obvious physical interpretation:
corresponds to rotation in one direction (counterclockwise), afag) o rotation in
the other direction. To see why, suppose= cosgot +¢) andw; = — sin(wpt + ¢).
Thenv; = e 1@it+9)  The Fourier transform is

+00 . .
V(w) = f gl (@ot+e) oty (1.43)
—0o0
The integrand oscillates and averages out to zero, except for the frequeneys.
So the frequency function is a pulsewat= wo:
V(w) = 8(w—wo)e'? (1.44)

Conversely, ifwy were sinfot + ¢), then the frequency function would be a pulse
at —wg, meaning that the wind velocity vector is rotating the other way.

1.4.5. Time-domain conjugate

A complex-valued signakuch ag/ o can be imagined asa@rkscrew, where the
real and imaginary parts are plotted on theand y-axes, and time¢ runs down



the axis of the screw. The complex conjugate of this signal reversesdhis and
gives the screw an opposite handednesZ -transform notation, thBme-domain
conjugateis written

B(Z) = bo+be®+bd?+... (1.45)

Now consider the complex conjugate of a frequency functiorZ -tnansform nota-
tion this is written

- _/1 o
Blw) = B(f) = bo+bie ' ?+be ... (1.46)

To see that it makes a difference in which domain we take a conjugate, contrast
two equations .45 and (L.46. The functionB(%)B(Z) is a spectrum, whereas

the functionby by is called an &nvelopefunction.”

For example, given complex-valuédvanishing fort < 0, the composite filter
B(Z)B(Z) is a causal filter with a real time function, whereas the fl8€Z)B(1/Z)
is noncausal and also a real-valued function of time. (The latter filter would turn o
to be symmetric in time only if alty were real.)

You might be tempted to think tha@ = 1/Z, but that is true only ifv is real,
and often it is not. Chapté¥is largely devoted to exploring the meaning of complex



frequency.

1.4.6. Spectral transfer function

Filters are often used to change the spectra of given data. With Xy, fil-
tersB(Z), and outputy(Z), we haveY(Z) = B(Z)X(Z) and the Fourier conjugate
Y(1/Z) = B(1/Z)X(1/Z). Multiplying these two relations together, we get

YY = (BB)(XX) (1.47)

which says that the spectrum of the input times the spectrum of the filter equals:
spectrum of the output. Filters are often characterized by the shape of their spec
this shape is the same as #pectral ratio of the output over the input:
_ YY
BB = — (1.48)
XX

1.4.7. Crosscorrelation

The concept ofutocorrelation and spectra is easily generalizedctosscorrela-
tion andcross-spectra Consider twoZ-transformsX(Z) andY(Z). The cross-



spectrumC(Z) is defined by

Cc(z) = 7(%) Y(2) (1.49)

The crosscorrelation function is the coefficieqts|f some particular coefficiert
in C(2) is greater than any of the others, then it is said that the wavetpmmost
resembles the waveform if either x; or y; is delayedk time units with respect to
the other.

1.4.8. Matched filtering

Figure1.13shows adeep-water seismogranwhere the bottom is unusually hard.
The second signal is the wavelet that results from windowing about the first wat:
bottom reflection. Notice that the wavelet has a comparatively simple spectrum,
principal feature being that it vanishes at low frequencies and high frequencies. T
input has a spectrum that is like that of the wavelet, but multiplied by a fine-toothe
comb reminiscent of “cmb5” in Figuré.12

“Matched filtering” is crosscorrelating with a wavelet. Equivalently, it is con-
volving with the time-reversed wavelet. Matched filtering Ug€8) = F(1/Z)X(Z)
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instead ofY (Z) = F(Z)X(Z). The third signal in Figuré.13shows the data cross-
correlated with the sea-floor reflection. Notice that the output sea-floor reflecti
is symmetric like amautocorrelation function. Later bounces amosscorrela-
tions, but they resemble the autocorrelation. Ideally, alternate water-bottom refle
tions have alternatingolarities. From the figure you can see that matched filtering
makes this idealization more apparent. An annoying feature of the matched filte
that it is noncausal, i.e., there is an output before there is an input. You can see
in Figure1.13just before the water-bottom reflection.

EXERCISES:
1 Suppose a wavelet is made up of complex numbers. Is the autocorrelati
relationse = s_ true? Issc real or complex? 1§(w) real or complex?

2 If concepts of time and frequency are interchanged, what does the meaning
spectrum become?

3 Suggest a reason why the spectrum of the wavelet in Fidfxontains more
low-frequency energy than the whole seismogram.



4 Suggest areason why the spectrum of the wavelet in Figdfxontains more
high-frequency energy than the whole seismogram.






Chapter 2

Discrete Fourier transform

Happily, Fourier sums are exactly invertible: given the output, the input can t
quickly found. Because signals can be transformed to the frequency domain, r
nipulated there, and then returned to the time domain, convolution and correlati

53



can be done faster. Time derivatives can also be computed with more accurac
the frequency domain than in the time domain. Signals can be shifted a fraction
the time sample, and they can be shifted back again exactly. In this chapter we \
see how many operations we associate with the time domain can often be done
ter in the frequency domain. We will also examine some two-dimensional Fouri
transforms.

2.1. FT AS AN INVERTIBLE MATRIX

A Fourier sum may be written

Blw) = Y be' = Y bz (2.1)
t t
where the complex valug is related to the real frequeney by Z = €®. This
Fourier sum is a way of building a continuous functiorn.dfom discrete signal val-
uesb in the time domain. In this chapter we will study the computational tricks as
sociated with specifying both time and frequency domains by a set of points. Be
with an example of a sighal that is nonzero at four successive instagts;, 02, bs).



The transform is
Blw) = bo+biZ+bpZ%+b3Z? 2.2)

The evaluation of this polynomial can be organized as a matrix times a vector, st
as

Bo 1 1 1 1 bo
By 1 W W2 ws by
B> - 1 w2 w4 we [ (2.3)
Bs 1 w3 wbé we bs

Observe that the top row of the matrix evaluates the polynomidl-atl, a point
where alsaw = 0. The second row evaluat® = B(Z = W = €“0), wherewg

is some base frequency. The third row evaluates the Fourier transfornawgor 2
and the bottom row for@p. The matrix could have more than four rows for more
frequencies and more columns for more time points. | have made the matrix squ
in order to show you next how we can find the inverse matrix. The size of the mati
in (2.3) is N = 4. If we choose the base frequensy and hencaV correctly, the



inverse matrix will be

bo 1 1 1 1 Bo
by _ 1 1w 1/W? 1/ws By
o | = YN 1 oyw?r ywt ywe || B, @4
bs 1 yws 1/wé 1/w° B3

Multiplying the matrix of @.4) with that of 2.3), we first see that the diagonals
are +1 as desired. To have the off diagonals vanish, we need various sums, <
as 14+W +W? + W8 and 1+ W? 4+ W* + W5, to vanish. Every elemenw(®, for
example, or IW?) is a unit vector in the complex plane. In order for the sums o
the unit vectors to vanish, we must ensure that the vectors pull symmetrically aw
from the origin. A uniform distribution of directions meets this requirement. Ir
other wordsW should be theN-th root of unity, i.e.,

w = V1 = /N (2.5)

The lowest frequency is zero, corresponding to the top rov2 Gj.( The next-
to-the-lowest frequency we find by settiklgin (2.5) to Z = €“0. Sowp = 27/N;



and for @.4) to be inverse to4.3), the frequencies required are

o = (0,1,2,...l,\lN—1)27r 26)

2.1.1. The Nyquist frequency

The highest frequency in equatioh @), w = 27 (N —1)/N, is almost Z. This fre-
guency is twice as high as the Nyquist frequency . TheNyquist frequency is
normally thought of as the “highest possible” frequency, becelfdefor integert,
plots as (--,1,—1,1,—1,1,—1,---). The double Nyquist frequency functiogi?"t,
for integert, plots as {(--,1,1,1,1,1,--). So this frequency above the highest fre-
guency is really zero frequency! We need to recall fAab) = B(w — 27). Thus,
all the frequencies near the upper end of the ra2g®) ére really small negative
frequencies. Negative frequencies on the intervat (0) were moved to interval
(7, 27) by the matrix form of Fourier summation.

Figure2.1shows possible arrangements for distributing points uniformly arour
theunit circle. Those circles labeled “even” and “odd” have even and odd humbe
of points on their perimeters. Zero frequency is the right edge of the circles, a



nyq=1 nyq=0

Figure 2.1: Possible arrangech
ments of uniformly spaced fre-
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Nyquist frequency is the left edge. Those circles labeled “nygq=1" have a point
the Nyquist frequency, and those labeled “nyq=0" do not.

Rewriting equations2.3) and @.4) with different even values oN leads to
arrangements like the upper left circle in Fig@ré Rewriting with odd values afl
leads to arrangements like the lower right circle. Although the “industry standar
is the upper-left arrangement, the two right-side arrangements are appealing for
reasons: the Nyquist frequency is absent, and its time-domain equivalent, the ju
from large positive time to large negative time (a philosophical absurdity), is als
absent. We will be testing and evaluating all four arrangements in Fiybire

2.1.2. Laying out a mesh

In theoretical work and in programs, the definitidn= e @At is often simplified to
At =1, leaving us withZ = €“. How do we know whethew is given in radians
per second or radians per sample? We may not invoke a cosine or an exponel
unless the argument has no physical dimensions. So where we wibout At,
we know it is in units of radians per sample.

In practical work, frequency is typically given in cycles dertz, f, rather



than radianse (wherew = 27 f). Here we will now switch tof . We will design
a computemeshon a physical object (such as a waveform or a function of space
We often take the mesh to begintat 0, and continue till the ent,ax of the object,
so the time rang&ange= tmax. Then we decide how many points we want to use
This will be the N used in the discrete Fourier-transform program. Dividing the
range by the number gives a mesh interal

Now let us see what this choice implies in the frequency domain. We custor
arily take the maximum frequency to be the Nyquist, eitfighx = .5/ At Hz or
wmax = 1/ At radians/sec. The frequency ranfigngegoes from—.5/At to .5/At.
In summary:

o At = tange/ N istimeresolution.
o frange = 1/At = N/tange isfrequency range.

In principle, we can always increa$¢ to refine the calculation. Notice that in-
creasingN sharpens the time resolution (mak&s smaller) but does not sharpen
the frequency resolution f, which remains fixed. Increasirid increases the fre-

guencyrange,but not the frequencsesolution.



What if we want to increase the frequency resolution? Then we need to choc
trange larger than required to cover our object of interest. Thus we either reco
data over a larger range, or we assert that such measurements would be zero. T
equations summarize the facts:

At frange = 1 (27)

Af trange == 1 (28)
1

Af At = — 2.9

S 2.9)

Increasingangein the time domain increasessolutionin the frequency do-
main and vice versa. Increasingsolution in one domain does not increase
resolution in the other.

2.1.3. The comb function

Consider a constant function of time. In the frequency domain, it is an impulse
zero frequency. Theomb function is defined to be zero at alternate time points



Multiply this constant function by the comb function. The resulting signal contain
equal amounts of two frequencies; half is zero frequency, and half is Nyquist fr
guency. We see this in the second row in Figlrg where the Nyquist energy is
in the middle of the frequency axis. In the third row, 3 out of 4 points are zeroe
by another comb. We now see something like a new Nyquist frequency at half t
Nyquist frequency visible on the second row.

| y
Figure 2.2: A zero-frequenﬂ“ﬁ“ﬂﬂ“ﬂﬂ”ﬂﬂ”ﬂmﬂﬂﬂmwmﬂﬂm H H

function and its cosine transform,
Successive rows show incre H H H H
ingly sparse sampling of the ze

frequency function. m
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2.1.4. Undersampled field data

Figure2.3shows a recording of agirgun along with its spectrum. The original data
is sampled at an interval of 4 milliseconds, which is 250 times per second. Tht
the Nyquist frequency 1/(2At) is 125 Hz. Negative frequencies are not shown,
since the amplitude spectrum at negative frequency is identical with that at posit
frequency. Think of extending the top row of spectra in Figirgto range from
minus 125 Hz to plus 125 Hz. Imagine the even function of frequency centered
zero frequency—we will soon see it. In the second row of the plot, | decimate
the data to 8 ms. This drops the Nyquist frequency to 62.5 Hz. Energy that w
at—10 Hz appears at 12510 Hz in thesecondow spectrum. The appearance of
what were formerly small negative frequencies near the Nyquist frequency is call
“folding” of the spectrum. In the next row the data is sampled at 16 ms interval
and in the last row at 32 ms intervals. The 8 ms sampling seems OK, whereas
32 ms sampling looks poor. Study how the spectrum changes from one row to-
next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 n
data could be used to construct the original 4 ms data by transforming the 8 ms ¢
to the frequency domain, replacing values at frequencies above 125/2 Hz by ze
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Figure 2.3: Raw data is shown on the top left, of about a half-second duratic

Right shows amplitude spectra (magnitude of FT). In successive rows the dat:
sampled less densely dft-undersamplgER]



and then inverse transforming to the time domain.

(Airguns usually have a higher frequency content than we see here. Some hi
frequency energy was removed by the recording geometry, and | also removed sc
when preparing the data.)

2.2. INVERTIBLE SLOW FT PROGRAM

Because Fourier sums are exactly invertible, some other things we often require:
be done exactly by doing them in the frequency domain.

Typically, signals are real valued. But the programs in this chapter are f
complex-valued signals. In order to use these programs, copy the real-valued :
nal into a complex array, where the signal goes into the real part of the compl
numbers; the imaginary parts are then automatically set to zero.

There is no universally correct choice sfale factorin Fourier transform:
choice of scale is a matter of convenience. Equati@r®d and @.4) mimic the Z-
transform, so their scaling factors are convenient for the convolution theorem—tt
a product in the frequency domain is a convolution in the time domain. Obviousl
the scaling factors of equation®.8) and @.4) will need to be interchanged for the



complementary theorem that a convolution in the frequency domain is a prod
in the time domain. | like to use a scale factor that keeps the sums of squares
same in the time domain as in the frequency domain. Since | almost never ne
the scale factor, it simplifies life to omit it from the subroutine argument list. Whe|
a scaling program is desired, we can use a simple onesdie)
Complex-valued data can be scaled withie() merely by doubling the value of
n.

Fourier transform is just one of many transforms discussed in this book.
the case of most other transforms, the number of output values is different than
number of inputs. In addition, inverse transforms (and conjugate transforms), whi
will also be represented in code included in this book, transform in reverse, outpi
to inputs. Finally, we will eventually combine transformations by addition or con
catenation (one occurring after the other). All these considerations are expresse
the simple programadjnull) , which erases output before we begijnull()

may seem like too trivial a function to put in a library routine, but at last count, 1
other routines in this book use ijadjnull



subroutine adjnull( adj, add, x, nx, y, ny )

integer ix, iy, adj, add, nx, ny
real x( nx), y( ny )
ifl add == 0 )
if( adj == 0 )
do iy= 1, ny
y(y) =
else
do ix= 1, nx
x(ix) = 0.
return; end

Back



subroutine slowft( adj, add, nyq, t0.dt,nttt, f0,df, nfff)

integer it,ie, adj, add, nyq, .

complex cexp, cmplx, tt(nt),
real pi2, freq, time, scale, t0,dt, f0,df
call adjnull( adj, add, tt,2*nt

pi2= 2. * 3.14159265;
df = (1./dt) / nf
if( nyg>0)
fo

else

= - .5/dt

fo = - .5/dt + dff2.
do ie = 1, nf { freqg= fO + df*(ie-1)
doit =1, nt{ time= t0 + dt*(it-1)
if( adj ==

else

nf
ff(nf)

ff,2*n

scale = 1./sqrt( 1.*nt)

)
ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

return; end

Back



2.2.1. The slow FT code

Theslowft()  routine exhibits features found in many physics and engineering prt
grams. For example, the time-domain signal (which | cafl “ "), hasnt values
subscripted, fromy(1) tot(nt) . The first value of this signai1) is located
in real physical time ato . The time interval between valuesds. The value of
t(it) is at timetw+(it-1)*dt . 1 do not use if ” as a pointer on the frequency
axis becaus& is a keyword in most programming languages. Instead, | cour
along the frequency axis with a variable named The total frequency
band is Zr radians per sample unit oy At Hz. Dividing the total interval by the
number of pointsif givesAf. We could choose the frequencies to run from 0 to
27 radians/sample. That would work well for many applications, but it would b
a nuisance for applications such as differentiation in the frequency domain, whi
require multiplication by—iw including thenegative frequenciesas well as the
positive. So it seems more natural to begin at the most negative frequency and :
forward to the most positive frequency. Next, we must make a confusing choice.
Refer to Figure2.1. We could begin the frequency axis at the negative Nyquist
—.5/At Hz; then we would finish one point short of the positive Nyquist. This is
shown on the left two circles in Figurd L Alternately, for the right two circles



we could shift by half a mesh interval, so the points wosiichddle the Nyquist
frequency. To do this, the most negative frequency would have to-b&/ At +
Af/2 Hz. Inroutineslowft)  and in the test resultspyg=1" is a logical statement
that the Nyquist frequency is in the dataset. Oppositely, if the Nyquist frequency
interlaced by the given frequencies, then=0. Finally, the heart of the program is
to compute either a Fourier sum, or its inverse, which uses the complex conjugai

The routineftlagslow() below simply transforms a signal to the Fourier do-
main, multiplies by expto), wheretg is some desired timiag , and then inverse
transforms to the time domain. Notice that if the negative Nyquist frequency
present, it is treated as the average of the negative and positive Nyquist frequenc
If we do not take special care to do this, we will be disappointed to find that the tin
derivative of a real-time function develops an imaginary p

Figure2.4 shows what happens when an impulse is shifted by various fractiol
of a sample unit with subroutin@agsiow() . Notice that during the delay, the
edges of the signatipple —this is sometimes called th&fbbs ripple.” You might
find these ripples annoying, but it is not easy to try to represent an impulse halfw
between two mesh points. You might think of doing so with (.5,.5), but that lack
the high frequencies of an ideal impulse.



subroutine ftlagslow( nyq, lag, t0,dt, ni, ctt)
integer nyq, ni, ie

real lag, t0, dt, fO, df, freq

complex ctt(nl), cexp, cmplx

temporary complex cff(nl)

call slowft( 0, 0, nyqg, t0, dt, ni, ctt, fO, df, nl, cff)
do ie= 1, n1 { freqg= fO + (|e 1)*df
if( ie==1 && nyq )
cff(l) = cff(l) * cos( 2.*3.14159265 * freq * lag )
else
cff(ie) = cff(ie) * cexp( cmplx(0., 2.*3.14159265 * freq * lag))
call slowft( 1, 0, nyqg, t0, dt, ni, ctt, fO, df, nl, cff)

return; end

Back



Figure 2.4: An impulse func e
tion delayed various fractions
of a mesh point. Pushbut-
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subroutine ftderivslow( nyq, t0,dt, ntf, ctt, cdd)
integer nyq, ntf, ie

real t0,dt,f0,df, freq

complex ctt(ntf), cdd(ntf), cmplx

temporary complex cff(ntf)

call slowft( 0, 0, nyqg, t0, dt, ntf, ctt, fO, df, ntf, cff)

do ie= 1, ntf { freq= fO+(ie-1)*df
cff(ie) = cffie) * cmplx( 0., - 2. * 3.141549265 * freq )

ift nyg > 0 ) # if( omega0 == -pi/dt)
cff(1) = 0.

call slowft( 1, 0, nyq, t0, dt, ntf, cdd, fO, df, ntf, cff)
return; end

Back



The routineftderivslow() below is the Fourier-domain routine for computing
a time derivative by multiplying in the frequency domain biw.

2.2.2. Truncation problems

When real signals are transformed to the frequency domain, manipulated there,
then transformed back to the time domain, they will no longer be completely re:
There will be a tiny noise in the imaginary part due to numerical roundoff. Th
size of the imaginary part, theoretically zero, is typically about®16f the real
part. This is also about the size of the error on the real part of a signal after inve
transform. It is almost always much smaller than experimental errors and is of litf
consequence. As a check, | viewed these near-zero imaginary parts, but | do
show them here.

A more serious error is a relative one of aboyiNlon anN-point signal. This
arises from insufficient care in numerical analysis, especially associated with t
ends of the time or frequency axis. To shend effecs, | will print some numbers
resulting from processing very short signals watbwft() . Below

| show first the result that a transform followed by an inverse transform gives tt



original signal. | display this for both even and odd lengths of data, and for the tv
Nyquist arrangements as well.

Inversion: You should see (2,1,0,0)

nyg=0 2.00
nyg=1 2.00
nyg=0 2.00
nyg=1 2.00

1.00
1.00
1.00
1.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00

Second, | display the result of a test of the convolution theorem by convolvir
(2,1) with (1,—1). We see that the scale factor varies with the data size becau
we are using the energy-conserving FT, instead of equatBsgnd @.4). No

problems yet.

Convolution theorem: Proportional to (0,2,-1,-1,0,0,0,0)

nyg=0 0.00
nyg=1 0.00
nyg=0 0.00
nyg=1 0.00

0.89
0.89
0.82
0.82

-0.45
-0.45
-0.41
-0.41

-0.45
-0.45
-0.41
-0.41

0.00
0.00
0.00
0.00

0.00
0.00

The third test iglelaying a signal by two samples usinggslow() /prog:ftlagslo



Here the interesting question is what will happen at the ends of the data samj
Sometimes what shifts off one end shifts back in the other end: then the sig
space is like the perimeter of a circle. Surprisingly, another aggravating possibil
exists. What shifts off one end can return in the other witd oppositepolarity.
When this happens, a figure likke4 looks much rougher because of the disconti-
nuity at the ends. Even if there is no physical signal at the ends, the ripple we ¢
in Figure2.4 reaches the ends and worsens. (Recalljigtt means the Nyquist
frequency is included in the spectrum, and thyat0 means it is interlaced.)

Delay tests:

In 11.0 120 130 140 150 16.0 17.0
Out n=7 nyg=0 16.0 170 11.0 120 130 140 15.0
Out n=7 nyg=1 -16.0 -17.0 11.0 120 130 140 15.0
Out n=6 nyg=0 -15.0 -16.0 11.0 120 13.0 14.0

Out n=6 nyg=1 15.0 16.0 11.0 12.0 13.0 14.0

The fourth test is to do a time derivative in the frequency domain with subrot
tine ftderivsiow() /prog:ftderivslow. Here we do not have quite so clear an idea
of what to expect. The natural position for a time derivative is to interlace the orig
nal data points. When we make the time derivative by multiplying in the frequenc




domain by—iw, however, the derivative does not interlace the origmash but is

on the same mesh. The time derivative of the small pulse we see here is the expe
doublet aligned on the original mesh, and it has some unexpected high-frequel
ripple that drops off slowly. The ripple resembles that on a pulse shifted half a me
point, as in Figure2.4. It happens that this rippling signal is an accurate represer
tation of the derivative in many examples where such mesh alignment is needed
(as with time shift) the ripple is worth having. Here again, we notice that there

an unfortunateransient on the ends of the data on two of the tests. But in two of
the four tests below, the transient is so huge that it overwhelms the derivative of 1

small pulse in the middle of the signal.

Derivative tests:

In

Out
Out
Out
Out

n=9
n=9
n=8
n=8

10.0
nyg=0 -0.7
nyg=1 13.5
nyg=0 13.2
nyg=1 0.0

10.0 10.0 10.0 12.0 10.0

0.8

-5.1
-5.7

0.3

-11
2.0
35

-0.8

2.0
0.7

-1.9
1.9

0.0

0.0

3.9
0.0

-2.0
-0.7

-6.6
-1.9

10.0 10.0 10.0
11 -08 0.7

-2.0 5.1 -13.5

7.6 -14.8
0.8 -0.3

Examining all the tests, we conclude that if the data has an even number

points, it is best to include thidyquist frequency in the frequency-domain repre-



sentation. If the data has an odd number of points, it is better to exclude the Nyqt
frequency by interlacing it. A more positive way of summarizing our results i
that the zero frequency should always be present. Given this conclusion, the n
guestion is whether we should choose to use an even or an odd number of point

The disadvantage of an even number of data values is that the programs tha
frequency-domain manipulations will always need to handle Nyquist as a spec
case. The value at the Nyquist frequency must be handled as if half of it were
plus Nyquist and the other half at minus Nyquist. The Nyquist aggravation wi
get worse in two dimensions, where we have corners as well as edges. Eigure
reproduces the four arrangements in Fig@ré along with a one-word summary
of the suitability of each arrangement: “standard” for the standard arrangeme
“risky" for arrangements that have end effects that are likely to be undesirable, &
“best" for the arrangement that involves no risky end effects and no pesky Nyqu
frequency.

Later in this chapter we will see the importance of usirfget FT program—
one which is orders of magnitude faster thadgwft() /prog:slowft. Unfortu-
nately, among fast FT programs, | could not find one fopdd-length transform
that is suitable for printing here, since odd-length FT programs seem to be me




even

Figure 2.5: Evaluation of vari-
ous arrangements of frequencies.

[ER]
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pages in length. So further applications in this book will use the even-length pr
gram. As a result, we will always need to fuss with the Nyquist frequency, makir
use of the frequency arrangement labeled “standard" and not that labeled “best.

A discrete Fourier-transform program designed foroald number of points
would make applications somewhat simpler. Alas, there seems to be no|pro
gram for odd-length transforms that is both simple and fast.

2.2.3. FT by Z-transform

The progransiowft()  is unnecessarily slow, requiring us to compute a comple:
exponential at each step. By reorganizing easily usingZtinsform, the compu-
tational load can be reduced by about a factor of five (from a complex exponent
to a complex multiply) at every step.

For simplicity we consider a signal that is only four points long:

Blw) = bo+biZ+02%+b3Z? (2.10)



Reorganizing the polynomialP (10 by nesting gives
B(w) = bo+ Z(b1+ Z(b2+ Z(b3))) (2.11)
A subroutine for evaluatin@®(w) in this way ispolyft() . |polyft

2.3. SYMMETRIES

Next we examine odd/evesymmetriesto see how they are affected in Fourier
transform. The even pag of a signalb; is defined as

_ PAbo (2.12)
2
The odd part is
o = b _Zb‘t (2.13)

By adding €.12 and .13, we see that a function is the sum of its even and odt

parts:
bk = ea+o (2.14)



# Fourier transform by polynomial evaluation.
subroutine polyft( nttt, nw,cww )

integer nt # number of points in the time domain
integer nw # number of points in the fourier transform
real tt(nt) # sampled function of time
complex cww(nw) # sampled fourier transform

integer it, iw

real omega

complex cz, cw
do iw= 1, nw {
omega = 3.14159265 * (iw-1.) / ( nw-1.)
cz = cexp( cmplx( 0., omega ) )
cw = tt(nt)
do it= nt-1, 1, -1 # loop runs backwards
cw = cw * cz + tt(it)
cww(iw) = cw

return; end

Back



Consider a simple, real, even signal suchlas, (bg,b1) = (1,0,1). Its trans-
form Z +1/Z = €% + e7'® = 2cosw is an even function ofv, since cos =
COS(—w).

Consider the real, odd signdd_(1,bg,b1) = (—1,0,1). Its transfornZ —1/Z =
2i sinw is imaginary and odd, since sin= —sin(—w).

Likewise, the transform of the imaginary even functioyO(i) is the imaginary
even function 2 cosw. Finally, the transform of the imaginary odd functioni(0,i)
is real and odd.

Letr andi refer to real and imaginarg ando to even and odd, and lower-
case and upper-case letters to time and frequency functions. A summary of
symmetries of Fourier transform is shown in Figaré.

More elaborate signals can be made by adding together the three-point fu
tions we have considered. Since sums of even functions are even, and so on,
diagram in Figure2.6 applies to all signals. An arbitrary signal is made from these
four parts only, i.e., the function has the fobmn= (re+ro); +i(ie+io);. On trans-
formation ofby, each of the four individual parts transforms according to the table

Most “industry standard” methods of Fourier transform set the zero frequen
as the first element in the vector array holding the transformed signal, as impli



Figure 2.6: Odd functions sw
real and imaginary. Even fun

tions do not get mixed up witp
complex numbers.
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by equation 2.3). This is a little inconvenient, as we saw a few pages back. Th
Nyquist frequency is then the first point past the middle of the even-length arre
and the negative frequencies lie beyond. Fighiieshows an example of agven
function as it is customarily stored.

2.3.1. Plot interpretation

Now we will get away from the ends and think about what is in the middle of signal
Figure2.7 shows even functions in both time and frequency domains. This figu
was computed with the matrix equatioris3) and @.4). Displaying both the left
and right halves of each function wastes half the paper; equivalently, for a fixe
amount of paper, it wastes half the resolution. Typically, only the left half of eac
function is displayed. Accepting this form of display, we receive a bonus: eac
figure can be interpreted in two more ways.

Since imaginary parts are not shown, they are arbitrary. If you see only half
an axis, you cannot tell whether the function is even or odd or neither. A frequen
occurring function is the¢ausal function, i.e., the function that vanishes fok 0.

Its even part cancels its odd partbr 0. The ro transforms to an 10, which, being



E Time function, even ! Frequency function, even

I Negative frequencies l
Negative time

I Positive frequencies I

Figure 2.7: Even functions as customarily stored by “industry standard” FT pr

grams. [NR]



imaginary, is not shown.

The third interpretation of these displays is that the frequency function is on

sided, and the time signal is complex. Such signals are cadledlytic signals.”

For analytic signals, RE extinguishes RO at negativand the imaginary even part,

ie, is not displayed.

In summary, plots that show only half the axes can be correctly interprete
three ways:

left side right side
evenfi f (t)] evenpiF (w)]
9 causall) NRF (o)

Nf(t) 9 OneSidedy)

din

How can we compute these invisible imaginary parts? Their computation
called Hilbert transform .” Briefly, the Hilbert transform takes aosinusoidal
signal (like the real part of the FT of a delayed impulse, l&/“%) and converts

it to asinusoidalsignal of the same amplitude (like the imaginary part of a del
impulse,J€ “0).

aye



2.3.2. Convolution in the frequency domain

Let Y(Z) = X(Z)B(Z). The coefficients; can be found from the coefficients
and by by convolution in the time domain or by multiplication in the frequency
domain. For the latter, we would evaluate batfiz) andB(Z) at uniform locations
around the unit circle, i.e., compute Fourier su¥ysand By from x; andb;. Then
we would formCy = X B for all k, and inverse Fourier transformyp. The values

Vt come out the same as by the time-domain convolution method, roughly that
our calculatiorprecision (typically four-byte arithmetic or about one part inX).
The only way in which you need to be cautious is to mem padding greater than
the combined lengths o§ andby.

An example is shown in Figur2.8. It is the result of a Fourier-domain com-
putation which shows that the convolution of a rectangle function with itself gives
triangle. Notice that the triangle is clean—there are no unexpected end effects.

Because of the fast method of Fourier transform described next, the frequen
domain calculation is quicker when boXy(Z) and B(Z) have more than roughly
20 coefficients. If eitheX(Z) or B(Z) has less than roughly 20 coefficients, then
the time-domain calculation is quicker.



Figure 2.8: Top shows *a

rectangle transformed to a sinc. HL&/W
Bottom shows the sinc squar

back transformed to a trlangTF\— FIL_
[dfcboxctriangla N

2.4. SETTING UP THE FAST FOURIER TRANS-
FORM

Typically weFourier transform seismograms about a thousand points long. Unde
these conditions another Fourier summation method works about a hundred tir
faster than those already given. Unfortunately, the faster Fourier transform progr
is not so transparently clear as the programs given earlier. Also, it is slightly le
flexible. The speedup is so overwhelming, however, that the fast program is alwe
used in routine work.

Flexibility may be lost because the basic fast program works with comple;




integer function pad2( n )
integer n
pad2 = 1
while( pad2 < n )

pad2 = pad2 * 2
return; end

Back



valued signals, so we ordinarily convert our real signals to complex ones (by addi
a zero imaginary part). More flexibility is lost because typical fast FT program
require the data length to be an integral power of 2. Thus geophysical datasets o
have zeros appended (a process callestd padding”) until the data length is a
power of 2. From time to time | notice clumsy computer code written to deduce
number that is a power of 2 and is larger than the length of a dataset. An answe
found by rounding up the logarithm to base 2. The more obvious and the quick
Wai to get the desired value, however, is with the simple Fortran fungsidag) .

How fast is the fast Fourier transform method? The answer depends on the ¢
of the data. The matrix times vector operationn3 requiresN2 multiplications
and additions. That determines the speed of the slow transform. For the fast met
the number of adds and multiplies is proportionaNdog, N. Since 3° = 1024,
the speed ratio is typically 1024/10 or about 100. In reality, the fast method is n
quite that fast, depending on certain details of overhead and implementation.
1987 | tested the three programs on a 1024-point real signal and found times

slowft 153s
polyft 36s



ftu .7s

Below isftu() , a version of thdast Fourier transform program. There are
many versions of the program—I have chosen this one for its simplicity. Conside
ing the complexity of the task, it is remarkable that no auxiliary memory vectors a
required; indeed, the output vector lies on top of the input vector. To run this pr
gram, your first step might be to copy your real-valued signal into a complex-valu
array. Then append enough zeros to fill in the remaining s.

The following two lines serve to Fourier transform a vector of 1024 complex
valued points, and then toverse Fourier transform them back to the original
data:

call ftu( 1., 1024, cx)
call ftu( -1., 1024, cx)

An engineering reference given at the end of this chapter contains many otl
versions of the FFT program. One version transforms real-valued signals to comp
valued frequency functions in the intervakOw < 7. Others that do not transform
data on top of itself may be faster with specialized computer architectures.



subroutine ftu( signi, nx, cx )
complex fourier transform with unitary scaling

#
#
# 1 nx signi*2*pi*i*(j-1)*(k-1)/nx
# ox(k) = - * sum cx(j) * e
# sgrt(nx)  j=1 for k=1,2,...,nx=2**integer
#
integer nx, i, j, k, m, istep, pad2
real signi, scale, arg
complex cx(nx), cmplx, cw, cdel, ct
if( nx = pad2(nx) ) call erexit('ftu: nx not a power of 2’)
scale = 1. / sqrt( 1.*nx)
do i= 1, nx
cx(l) cx(i) * scale
j=1 k=
do i= 1, nx
|f (|<—J) { ct = cx(j); cx() = cx(i); cx@i) = ct }
yvh||<=T (]>m & & m>1) {j =jm; m=m/i2} # "&&" means .AND.
] = Jtm
repeat {
istep = 2*k; cw = 1. arg = signi*3.14159265/k
cdel = cmplx( cos(arg) sin(arg))
do m=1, k {
do i= m, nx, istep
{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }
cw = cw * cdel
k = istep
if(k>= nx) break
return; end

Back



EXERCISES:

1 Consider an even time function that is constant for all frequencies lessthan
and zero for all frequencies abowg. What is the rate of decay of amplitude
with time for this function?

2 Waves spreading from a point source decay in energy as the area on a sph
The amplitude decays as the square root of energy. This implies a cert:
decay in time. The time-decay rate is the same if the waves reflect from plar
interfaces. To what power of tintedo the signal amplitudes decay? For waves
backscattered to the source from point reflectors, energy decays as distanc
the minus fourth power. What is the associated decay with time?

2.4.1. Shifted spectra

Customarily, FT programs store frequencies in the interval® < 2. In some

applications the intervaln < w < = is preferable, and here we will see how this
shift in one domain can be expressed as a product in the other domain. First
examine shifting by matrix multiplication. A single unit shift, wrapping the end



value around to the beginning, is

Bs . Bo
Bo _ 1 . . . By
B, | = | 1. . B, (2.15)
B> . 1. Bs

You might recognize that equatioi.(5 convolves a wavelet with a delayed im-
pulse, where the bottom of the matrix is wrapped back in to the top to keep t
output the same length as the input. For this 4 matrix, shifting one more point
does the job of switching the high and low frequencies:

B, 1 Bo
Bs _ . . 1 By
BB | = |1 . . . B, (2.16)
B, T Bs

We are motivated to seek an algebraic identity for theddmatrix which represents
the fact that convolution in the time domain is multiplication in the frequency do
main. To this end we will look at the converse theorem, that multiplication in th
time domain does shifting in the frequency domain. On the left of equalidn)(is



the operation that first transforms from time to frequency and then swaps high &
low frequencies. On the right is the operation that weights in the time domain, a
then Fourier transforms. To verify the equation, multiply the matrices and simplif
with W4 = 1 to throw out all powers greater than 3.

1 . 1 1 1 1 1 1 1 1 1.
A | 1 W w2 w3 1 W W2 w3 . W2
1. .. 1 w2 w4 we | T 1 w2 w4 owe )
1. . 1 w3 wé we 1 w3 wé we
(2.17)

For an FT matrix of arbitrary siz&, the desired shift idN/2, so values at
alternate points in the time axis are multiplied-bg. A subroutine for that purpose
is fth) . To Fourier transform a 1024-point complex vectg(1024) and
then inverse transform it, you would

call fth( 0, 1., 1, 1024, 1, cx)

call fth( 1, 1., 1, 1024, 1, cx)

You might wonder about the apparent redundancy of using both the argosnint
and the argumentgn . Having two arguments instead of one allows us to define th



# FT a vector in a matrix, with first omega = - pi

subroutine  fth( adj,sign, m1, nl12, cx)
integer i, adj, ml, n12
real sign
complex cx(m1,n12)
temporary complex temp(n12)
do I= 1, n12
temp(i) = cx(1,i)
ift adj == 0) { do i= 2, n12, 2
temp(i) = -temp(i)
call ftu( sign, nl2, temp)

else { call ftu( -sign, n12 temp)
do i= 2, nl2,
temp(l) -temp(i)

do i= 1, nl12
cx(1,i) = temp(i)
return; end

Back



forward transform for atime axis with the opposite sign as the forward transform
for aspaceaxis. The subroutingh() is somewhat cluttered by the inclusion of a
frequently needed practical feature—namely, the facility to extract vectors from
matrix, transform the vectors, and then restore them into the matrix.

2.5. TWO-DIMENSIONAL FT

The prograntth() is set up so that the vectors transformed can be either rows
columns of a two-dimensional array. To see how this works, recall thzdriman a
matrix allocated ag1,n2) can be subscripted as a mafiix2) orasalong vec-
tor (i1 + n1*(i2-1),1) , andcall sub(x(i1,i2)) passes the subroutine a pointer
tothe@1,2) element. To transform an entire axis, the subroutiness() and
ft2axis() are given. For a two-dimensional FT, we simply call bathxis()
andfizaxis()  in either order]ftlaxis| |ft2axis|

I confess that there are faster ways to do things than those | have shown \
above. When we are doing many FTs, for example, the overhead calculations d
the first time should be saved for use on subsequent FTs, as in the subrou
rocca() included in IEIl. Further, manufacturers of computers for heavy numer




# 1D Fourier transform on a 2D data set along the 1-axis
#

subroutine  ftlaxis( adj, signl, nl,n2, cx)
integer 2, adj, ni,n2
complex cx(nl,n2)
real signl
do i2= 1, n2
call fth( adj, signl, 1,n1, cx(1,i2))
return; end

Back

# 1D Fourier transform on a 2D data set along the 2-axis
#

subroutine  ft2axis( adj, sign2, nl,n2, cx)
n

integer i1, adj, ni,
complex cx(n1,n2)
real sign2
do il= 1, nl1
call fth( adj, sign2, n1,n2, cx(i1,1))
return; end

Back



cal use generally design special FT codes for their architecture. Although the bg
fast FT used here ingeniously stores its output on top of its input, that feature is 1
compatible with vectorizing architectures.

2.5.1. Basics of two-dimensional Fourier transform

Before going any further, let us review some basic facts absotdimensional

Fourier transform . A two-dimensional function is represented in a computer a
numerical values in a matrix, whereas a one-dimensional Fourier transform ir
computer is an operation on a vector. A 2-D Fourier transform can be computed
a sequence of 1-D Fourier transforms. We can first transform each column vecto
the matrix and then each row vector of the matrix. Alternately, we can first do tt



rows and later do the columns. This is diagrammed as follows:

p(t, x) <«— P(t, ky)

! !

P(w, X) <«— P(w, ky)

The diagram has the notational problem that we cannot maintain the usual c
vention of using a lower-case letter for the domain of physical space and an upp
case letter for the Fourier domain, because that convention cannot include the mi
objectsP(t, ky) andP(w,X). Rather than invent some new notation, it seems best t
let the reader rely on the context: the arguments of the function must help name
function.

An example oftwo-dimensional Fourier transforms on typical deep-ocean
data is shown in Figur2.9. In the deep ocean, sediments are fine-grained and d
posit slowly in flat, regular, horizontal beds. The lack of permeable rocks such
sandstone severely reduces the potential for petroleum production from the d
ocean. The fine-grained shales overlay irregular, igndmasement rocls. In the



p(t.x) P(t.ky)

i 1/lkm]

P(w,x) P(w,ky)

i 1/lkm]

Figure 2.9: A deep-marine datasg(t, x) from Alaska (U.S. Geological Survey)
and thereal part of various Fourier transforms of it. Because of the long traveltimi

through the water, the time axis does not begin-at0. |dft-plane4 [ER]



plot of P(t,kyx), the lateral continuity of the sediments is shown by the strong spe
trum at lowky. The igneous rocks showlka spectrum extending to such largg
that the deep data may be somewszatially aliased(sampled too coarsely). The
plot of P(w,X) shows that the data contains no low-frequency energy. The dip «
the sea floor shows up im(ky)-space as the energy crossing the origin at an angle

Altogether, thetwo-dimensional Fourier transform of a collection of seis-
mograms involves only twice as much computation as the one-dimensional Fout
transform of each seismogram. This is lucky. Let us write some equations to ¢
tablish that the asserted procedure does indeed do a 2-D Fourier transform.
first that any function ok andt may be expressed as a superposition of sinusoidz
functions:

p(t,x) = / / e X Py k) dov dky (2.18)

The double integration can be nested to show that the temporal transforms are d
first (inside):

pit,x) = /eikxx U e ! P(w,ky) dw}dkx



_ /eikxx P(t, ky) dk

The quantity in brackets is a Fourier transform owedone for each and every
kx. Alternately, the nesting could be done with theintegral on the inside. That
would imply rows first instead of columns (or vice versa). It is the separability c
exp(=iwt + ikgX) into a product of exponentials that makes the computation thi
easy and cheap.

2.5.2. Signs in Fourier transforms

In Fourier transforming-, X-, andz-coordinates, we must choose a sign conventior
for each coordinate. Of the two alternatisigin conventiors, electrical engineers
have chosen one and physicists another. While both have good reasons for t
choices, our circumstances more closely resemble those of physicists, so we "
use their convention. For theverseFourier transform, our choice is

pt,x,2) = ///e—iw‘“kx“‘kzz P(w, Ky, kz) do dky dk; (2.19)



For theforward Fourier transform, the space variables carmyegativesign, and
time carries gositivesign.

Let us see the reasons why electrical engineers have made the opposite cht
and why we go with the physicists. Essentially, engineers transform only the tir
axis, whereas physicists transform both time and space axes. Both are simplify
their lives by their choice of sign convention, but physicists complicate their tim
axis in order to simplify their many space axes. The engineering choice minimiz
the number of minus signs associated with the time axis, because for engine
d/dt is associated withw instead of, as is the case for us and for physicists, witt
—iw. We confirm this with equatior2(19. Physicists and geophysicists deal with
many more independent variables than time. Besides the obvious three space
are their mutual combinations, such as midpoint and offset.

You might ask, why not makall the signs positive in equatior2.(l9? The
reason is that in that case waves would not move in a positive direction along 1
space axes. This would be especially unnatural when the space axis was a rac
Atoms, like geophysical sources, always radiate from a point to infinity, not th
other way around. Thus, in equatidh 19 the sign of the spatial frequencies must
be opposite that of the temporal frequency.



The only good reason | know to choose the engineering convention is that \
might compute with an array processor built and microcoded by engineers. Conf
of sign convention is not a problem for the programs that transform complex-valu
time functions to complex-valued frequency functions, because there the sign c
vention is under the user’s control. But sign conflict does make a difference wh
we use any program that converts real-time functions to complex frequency fur
tions. The way to live in both worlds is to imagine that the frequencies produced |
such a program do not range from O4ta@ as the program description says, but from
0to—mx. Alternately, we could always take the complex conjugate of the transforr
which would swap the sign of the-axis.

2.5.3. Examples of 2-D FT

An example of awo-dimensional Fourier transform of a pulse is shown in Fig-

ure 2.10 Notice the location of the pulse. It is closer to the time axis than th
frequency axis. This will affect the real part of the FT in a certain way (see exe
cises). Notice the broadening of the pulse. It was an impulse smoothed over ti
(vertically) by convolution with (1,1) and over space (horizontally) with (1,4,6,4,1)



1/[space]

[ewm]/1

A broadened pulse (left) and the real part of its FT (right)

Figure 2.10:
dft-ft2dofpulse [ER]



This will affect the real part of the FT in another way.

Another example of a two-dimensional Fourier transform is given in Figuire
This example simulates an impulsive air wave originating at a point ox-tods.
We see a wave propagating in each direction from the location of the source of 1
wave. In Fourier space there are also two lines, one for each wave. Notice that th
are other lines which do not go through the origin; these lines are cadfeatial
aliases.” Each actually goes through the origin of another square plane that is |
shown, but which we can imagine alongside the one shown. These other planes
periodic replicas of the one shown.

EXERCISES:
1 Writeftlag()  starting fromftiagslow() andfth()

2 Most time functions are real. Their imaginary part is zero. Show that thi
means thaF (w,k) can be determined from (—w, —k).

3 What would change in Figur2.10if the pulse were moved (a) earlier on the
t-axis, and (b) further on thg-axis? What would change in Figug10 if
instead the time axis were smoothed with (1,4,6,4,1) and the space axis w
(1,2)?
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Figure 2.11: A simulated air wave (left) and the amplitude of its FT (right)

[ER]



4 What would Figure?2.11look like on an earth with half the earth velocity?

5 Numerically (or theoretically) compute the two-dimensional spectrum of .
plane wave §(t — px)], where the plane wave has a randomly fluctuating am
plitude: say, rand() is a random number betweerl, and the randomly mod-
ulated plane wave is [(% .2rand))s(t — px)].

6 Explain the horizontal “layering” in Figur&.9in the plot of P(w,x). What
determines the “layer” separation? What determines the “layer” slope?

2.6. HOW FAST FOURIER TRANSFORM WORKS

A basic building block in théast Fourier transform is called ‘doubling.” Given a
series Xo, X1, . ..,XN—1) and its sampled Fourier transforiXd, X1,..., Xn-1), and
another series, y1, . .., yn—1) and its sampled Fourier transforivp(Ys, ..., Yn—1),
there is a trick to find easily the transform of the interlaced double-length series

zz = (X0,Y0,X1,Y1,-- -, XN-1,YN-1) (2.20)



The process of doubling is used many times during the computing of a fe
Fourier transform. As the word “doubling” might suggest, it will be convenient tc
suppose thal is an integer formed by raising 2 to some integer power. Suppos
N = 8= 23. We begin by dividing our eight-point series into eight separate se
ries, each of length one. The Fourier transform of each of the one-point series
just the point. Next, we use doubling four times to get the transforms of the fo
different two-point seriesxg, Xa), (X1,Xs), (X2,Xs), and &s,x7). We use doubling
twice more to get the transforms of the two different four-point sesigs<$, X4, Xs)
and (1,X3, Xs,X7). Finally, we use doubling once more to get the transform of the
original eight-point seriesx, x1,X2,...,X7). It remains to look into the details of
the doubling process. Let

vV = ¥/N w2 (2.21)
vN = é7=-1 (2.22)
By definition, the transforms of twbl-point series are
N-1

Xk = Y xVI* (k=0,1,..,N-1) (2.23)
j=0



N—1
e = > yvi* (k=0,1...,N-1) (2.24)

j=0
Likewise, the transform of the interlaced serigs= (Xo, Yo, X1, Y1, .., XN—1, YN-1)

IS
2N-1

ze = > zV¥ (k=0,1....2N-1) (2.25)
1=0
To makeZy from Xy and Yk, we require two separate formulas, one ot 0, 1,
..., N—1, and the other fok = N, N+1, ..., 2N — 1. Start from the sum
2N-1
Z« = > zV¥ (k=0,1...,N-1) (2.26)
1=0
and then split the sum into two parts, noting tRaimultiplies even powers 0¥,
andy; multiplies odd powers:
N-1 ' N-1 '
Ze = ) xVAKpVRY Ty Rk (2.27)
j=0 j=0



= X+ VRY

We obtain the last half of th&y by

Zy

2N—-1

> V% (k=N,N+1,...,2N-1)

1=0

2N-1

> VI (k-N=m=0,1,..,N-1)
1=0

2N-1

Z Z|V|m(VN)I

1=0

2N—-1

Z Z|V|m(—1)l

1=0

N—-1 N—-1

\/2jm m \/2jm
> " xVAM_ym Yy vl
j=0 j=0

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)



= Xm—=V™Yy (2.34)
Zx = Xeen=VENY N (k=N,N+1,...,2N-1) (2.35)
The subroutinegwu() | /prog:ftu| does not follow this analysis in detail.

If you would like some industrial grade FFT programs, search the web fc
"prime factor FFT".

2.7. References

Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and El
troacoustics (now known as IEEE Trans. on Acoustics, Speech, and Signal F
cessing)AU-17, entire issue (66-172).



Chapter 3

Z-plane, causality, and feedback

All physical systems share the property that they do not respond before they
excited. Thus the impulse response of any physical system is a one-sided time ft
tion (it vanishes beforé = 0). In system theory such a filter function is called

115



“realizable" or “causal” In wave propagation this property is associated with
causalityin that no wave may begin to arrive before it is transmitted. The lag-tim
pointt = 0 plays a peculiar and an important role. Thus many subtle matters can
more clearly understood with sampled time than with continuous time. When a f
ter responds at and after lag time- 0, we say the filter is realizable or causal. The
word “causal” is appropriate in physics, where stress causes instantaneous st
and vice versa, but one should return to the less pretentious words “realizable’
“one-sided" when using filter theory to describe economic or social systems whe
simultaneity is different from cause and effect.

The other new concept in this chapter fe¢dback" Ordinarily a filter pro-
duces its output using only paisiputs A filter using feedback uses also its past
outputs After digesting the feedback concept, we will look at a wide variety o
filter types, at what they are used for, and at how to implement them.

First a short review: th&-transform of an arbitrary, time-discretized sigwal
is defined by

X(Z) = X222+ x1Z 4 x0+X1Z 4+ %22+ (31)
In chapterl we saw that$.1) can be understood as a Fourier sum (wheee €®).



Itis not necessary faZ to take on numerical values, however, in order for the idea
of convolution and correlation to be useful. In chapteve definedZ to be the unit
delay operator. Defined thug? delays two time units. Expressions lik¢Z) B(Z)
andX(Z) B(1/2) are useful because they imply convolution and crosscorrelation «
the time-domain coefficients. Here we will be learning how to interpf&(Z) as

a feedback filter, i.e., as a filter that processes not only past inputs, but past outp
We will see that this approach brings with it interesting opportunities as well &
subtle pitfalls.

3.1. LEAKY INTEGRATION

The convolution equatiori(9)
Yo = ) Xiby (3.2)
i=0

says that the present output is created entirely from present and past values of
input Now we will include past values of theutput The simplest example is



numerical integration, such as
Yo = Y1+ X (3.3)

Notice that whernx; = (0,0,0,1,0,0,--), vt =(0,0,0,1,1,1, L, ), which shows that
the integral of an impulse is a step.

A kind of deliberately imperfect integration used in numerical work is callec
“leaky integration.” The name derives from the analogous situation of electrica
circuits, where the voltage on a capacitor is the integral of the current: in real lif
some of the current leaks away. An equation to model leaky integration is

Vo = pY-1+ X (3-4)

wherep is a constant that is slightly less than plus one. Notice thatwere greater
than unity, the output of(4) would grow with time instead of decaying. A program
for this simple operation igak() . | use this program so frequently that | wrote it so
the output could be overlaid on the inpudak() uses a trivial subroutineppy()
, for copying.|leak]

et us see whaZ-transform equation is implied by3(4). Move they terms to
the left:

Yo — oY1 = X (3.5)



subroutine leak( rho, n, xx, yy)
integer i, n; real xx(n), yy(n), rho
temporary real tt( n)

call null( tt, n)
tt(1) = xx(1)
do i= 2, n

tt(i) = rho * ti(i-1) + xx(i)
call copy( n, tt, yy)
return; end

Back



Given theZ-transform equation
A-p2)Y(Z) = X2 (3.6)
notice that 8.5) can be derived from3(6) by finding the coefficient oZ!. Thus

we can say that the outp¥i(Z) is derived from the inpuK(Z) by the polynomial
division

X(2)
Y(Z 3.7
@ = =7 (37
Therefore, the effective filtelB(Z) in Y(Z) = B(Z2)X(Z) is
1
B(Z) = = 1+4pZ+p°Z%+p3%2%+--. (3.8)
1-pZ

The left side of Figur&.1shows a damped exponential function that consists of th
coefficientso! seen in equatior8(8). The spectrum df is defined byB(1/Z)B(Z).
Theamplitude spectrumis the square root of the spectrum. It can be abbreviate
by |B(Z)|. The amplitude spectrum is plotted on the right side of Figufe Or-
dinary integration has a Fourier respongé-di w) that blows up ato = 0. Leaky
integration smooths off the infinite valueat= 0. Thus in the figure, the amplitude
spectrum looks likel/w|, except that it is noto atw = 0.
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Figure 3.1: Leftis the impulse response of leaky integration. Right is the amplituc
1/|1— pZ| in the Fourier domain. INR]



3.1.1. Plots

A poleis a place in the complex plane where a filB{Zp) becomes infinity. This
occurs where a denominator vanishes. For example, in equ&ti®nafe see that
there is one pole and it is located Zp = 1/p. In plots like Figure3.1, a pole
location is denoted by a “p” and a zero location by a “z." | chose to displapdhe
andzerolocations in thevg-plane instead of in th&p-plane. Thus real frequencies
run along the horizontal axis instead of around the circlZdt= 1. | further chose
to superpose the complex-plane on the graph gF (w)| versusw. This enables
us to correlate the pole and zero locations to the spectrum. | plétiegl  IJwo) in
order that ther andRwp axes would coincide. As we will see later, some poles give
stable filters and some poles give unstable filters. At the risk of some confusior
introduced the minus sign to put the stable poles atop the positive spectrum. Si
we will never see a negative spectrum and we will rarely see an unstable pole, t
economizes on paper (or maximizes resolution for a fixed amount of paper).

In Figure 3.1, moving the “p” down toward the horizontal axis would cause a
slower time decay and a sharper frequency function.



3.1.2. Two poles

Integration twice is an operation with twamles. Specifically,
ﬁ = (A4+Z+2%4+ 234 YA+ 2422+ 23 +-.-) = 1422 +32%2+423 457

(3.9)
Notice that the signal is (1, 2,3,), which is a discrete representation of the function
f(t) = tstep€). Figure3.2 shows the result when the two integrations are leak
integrations. We see the signal begintasut then drop off under some weight
that looks exponential. A second time-derivative filteri ¢)? has an amplitude
spectrumw?|. Likewise, a second integration has an amplitude spectfyn?|,
which is about what we see in FiguBe2, except that ab» = 0 leaky integration has
rounded off thexo.

Instead of allowing two poles to sit on top of each other (which would look like
just one pole), | moved the pole slightly v = 0 so thatiw > 0. As in Figure??,
another pole is included (but not shown) at negative frequency. This extra pole
required to keep the signal real. Of course the two poles are very close to each ot
The reason | chose to split them this way is to prepare you for filters where the po
are far apart.
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Figure 3.2: A cascade of two leaky integrato| zp-leak? [NR]



EXERCISES:

1

Show that multiplication by (+ Z) in discretized time is analogous to time
differentiation in continuous time. Show that dividing by-{1Z2) is analogous
to integration. What are the limits on the integral?

A simple feedback operation & = (1 —¢€)yi—1 + X. Give a closed-form
expression for the output if x; is an impulse. Estimate the decay timef
your solution (the time it takes fog to drop toe~1yp)? For smalk, say = 0.1,
.001, or 0.0001, what is?

Find an analytic expression for the plot on the right side of Figlufieas a
function ofw. Show that it is like ¥|w|.

In continuous time, the signal analogous to that in Figugds te~t. What is
the analogous frequency function?

3.2. SMOOTHING WITH BOX AND TRIANGLE

Simple “smoothing’ is a common application of filtering. A smoothing filter is
one with all positive coefficients. On the time axis, smoothing is often done with



single-pole damped exponential function. On space axes, however, people genel
prefer a symmetrical function. We will begin with rectangle and triangle function:
When the function width is chosen to be long, then the computation time can
large, but recursion can shorten it immensely.

3.2.1. Smoothing with a rectangle

The inverse of any polynomial reverberates forever, although it might drop off fa
enough for any practical need. On the other hand, a rational filter can suddenly d
to zero and stay there. Let us look at a popular rational filter, the rectangteowr “
car™

1-2°

1-7
The filter 3.10 gives a moving average underextangularwindow. This is a basic
smoothing filter. A clever way to apply it is to move the rectangle by adding a ne
value at one end while dropping an old value from the other end. This approact
formalized by the polynomial division algorithm, which can be simplified becaus
so many coefficients are either one or zero. To find the recursion associated v

= 1472+2%+72%3+27% (3.10)




Y(Z) = X(Z)(1 - Z%)/(1 - Z), we identify the coefficient oZ! in (1— Z)Y(Z) =
X(Z)(1— Z%). The result is

Vo = Yi—1+X —X-5 (3.11)

This approach boils down to the prograixconv() which is so
fast it is almost free! Its last line scales the output by dividing by the
rectangle length. With this scaling, the zero-frequency component of the input
unchanged, while other frequencies are suppressed.

Let us examine the pole and zero locations in equaBiol). The denominator
vanishes a¥ = 1, so the filter has a pole at zero frequency. Smoothing something
like boosting frequencies near the zero frequency. The numerator vanishes at the
roots of unity, i.e.,Z = €27"/5, These five locations are uniformly spaced arounc
the unit circle. Any sinusoid at exactly one of these frequencies is exactly destroy
by this filter, because such a sinusoid has an integer number of wavelengths ur
the boxcar. An exception is the zero frequency, where the radtatl is canceled
by a pole at the same location. This cancellation is the reason the right-hand s
ends at the fourth power—there is no infinite series of higher powers.



subroutine boxconv( nb, nx, XX, yy)

# inputs: nx, xx(i), i=1,nx the data
# nb the box length
# output: yy(i),i=1,nx+nb-1 smoothed data

integer nx, ny, nb, i

real xx(nx), yy(1)

temporary real bb(nx+nb)

ift nb <1 || nb > nx) call erexitChoxconv’) # "[|" means .OR.
ny = nx+nb-1
do i= 1, ny
bb(i) = 0.

bb(1) = xx(1)
do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(2)/(1-2)
do i= nx+1, ny

bb(i) = bb(i-1)
do i= 1, nb . )

) yy() = bb()

do i= nb+l, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)
do i= 1, ny

yy(i) = yy(i) / nb
return; end

Back



3.2.2. Smoothing with a triangle

Triangle smoothing is rectangle smoothing done twice. For a mathematical de
scription of the triangle filter, we simply square equati@il(). Convolving a
rectangle function with itself many times yields a result that mathematically ten
towards aGaussianfunction. Despite the sharp corner on the top of the triangle
function, it has a shape that is remarkably similar to a Gaussian, as we can see
looking at Figurel1.2

With filtering, end effecs can be a nuisance. Filtering increases the lengt
of the data, but people generally want to keep input and output the same len
(for various practical reasons). This is particularly true when filtering a space ax
Suppose the five-point signal (1,1, 1,1, 1) is smoothed usingptaenv() program
with the three-point smoothing filter (1,1,/8. The outputis 53— 1 points long,
namely, (1,2,3,3,3,2,13. We could simply abandon the points off the ends, bu
| like to fold them back in, getting instead 12, 3,3, 3,14+ 2). An advantage of
the folding is that a constant-valued signal is unchanged by the smoothing. This
desirable since a smoothing filter is a low-pass filter which naturally should pass 1
lowest frequency» = O without distortion. The result is like a wave reflected by
a zero-slopeend condition. Impulses are smoothed into triangles except near tl



boundaries. What happens near the boundaries is shown in Biguidote that at

Bt
ot e,

Figure 3.3: Edge effects when

smoothing an impulse with a tri-
angle function. Inputs are spikﬁﬁﬁmm
at various distances from the

edge. [ER]

the boundary, there is necessarily only half a triangle, but it is twice as tall.
Figure3.3was derived from the routingangle() . | frequently



# Convolve with triangle
#

subroutine triangle( nr, m1, n12, uu, w)

# input: nr rectangle width (points) (Triangle base twice as wide.)
# input: uu(m1,i2),i2=1,n12 is a vector of data.
# output: w(mi,i2),i2=1,n12 may be on top of uu

integer nr,m1,n12, i,np,nq

real uu( ml, nl12), wv( ml, nl2)

temporary real pp(nl2+nr-1), qg(nl2+nr+nr-2), tt(n12)
do 1=1,n12 { qq() = uu(1,) }

if( n12 ==
caII copy( nl12, qq, tt)
else {
call boxconv( nr, n12, qq, pp); np
call boxconv( nr, np , pp, qq); nq
do i= 1, nl12
tt(i) = qq(i+nr-1)
do i= 1, nr-1
tt@i) = tt() + qq(nr-i)
do i= 1, nr-1

nr+nl2-1
nr+np-1

# fold back near end

# fold back far end

tt(n12-i+1) = tt(n12-i+1) + qq(nl2+(nr-1)+i)

do i:1,n12}{ w(l,)) = tt(i) }
return; end

Back



# smooth by convolving with triangle in two dimensions.
#

subroutine triangle2( rectl, rect2, nl, n2, uu, w)
integer i1,i2, rectl, rect2, nl, n2

real uu(nl,n2), vv(nl,n2)

temporary real ss(nl,n2)

do il1= 1, nl1

call triangle( rect2, nl, n2, uu(il,1), ss(i1,1))
do i2= 1, n2

call triangle( rectl, 1, nl, ss(1,i2), vv(1,i2))
return; end

Back



use this program, so it is cluttered with extra features. For example, the outy
can share the same location as the input. Further, since it is commonly neces:
to smooth along the 2-axis of a two-dimensional array, there are some Fortran-st
pointer manipulations to allow the user to smooth either the 1-axis or the 2-axis. F
those of you unfamiliar with Fortran matrix-handling tricks, | include below anothe
routine, triangle2() , that teaches how a two-dimensional array can be smoothe
over both its 1-axis and its 2-axis. Some examples of two-dimensional smoothi

are given in chaptet1.

EXERCISES:
1 The Fourier transform of a rectangle function is ai)(«t, also known as a
“sinc” function. In terms ofx, how wide is the rectangle function?

2 ExpressZ—2+Z 141+ Z+ Z?inthew-domain. This is a discrete represen-
tation of a rectangle function. Identify the ways in which it is similar to anc
different from the sinc function.

3 Explain the signal second from the bottom in Fig8ra

Sketch the spectral response of the subroutisele() /prog:triangle.



3.3. CAUSAL INTEGRATION FILTER

Begin with a function in discretized timg. The Fourier transform with the substi-
tution Z = €4t js the Z-transform

X(Z) = - 4%x2Z224+x1Z 4+ x0+x1Z+x22+-- (312)
Define—i® (which will turn out to be an approximation tei w) by
1 11+2
= = 3.13
—ido At 21-2 3.13)
Define another signak with Z-transformY (Z) by applying the operator t¥(Z):
11+2
Y(Z2) = = X(Z 14
2) = 515 X@ (3.14)
Multiply both sides by (3~ 2):
1
1-2)Y2) = > 1+ 2) X(2) (3.15)
Equate the coefficient o' on each side:
Xt + Xi—
Vo — Vo1 = 2 (3.16)

2



Taking x; to be an impulse function, we see thatturns out to be a step function,
that is,

x = ---0,0,0,0,0,1,0,0,0,0,0,0, (3.17)
1
% = --000005111111L- (3.18)

Soy; is the discrete-domain representation of the integrat dfom minus infinity
to timet. The operator (¥ Z)/(1— Z) is called the bilinear transform ."

3.3.1. The accuracy of causal integration

The accuracy of the approximation @ft6 » can be seen by dividing the top and

bottom of equationd.13 by +/Z and substitutingz = & ®At:
. WAt 1-Z
—i > = 117 (3.19)
DA 1YNZ - VZ sin @At A
_peat Y = i 2 = —itan © 843 %0)
2 1YVZ+VZ cos2at 2




At At
R taan (3.21)

O ~ w (3.22)
This is a valid approximation at low frequencies.

3.3.2. Examples of causal integration

The integration operator has a polez&at= 1, which is exactly on thenit circle
|Z| = 1. The implied zero division has paradoxical implications (pag@ that are
easy to avoid by introducing a small positive numbeand definingo = 1 — e.
The integration operator becomes

(2) = % 1J_r Z; (3.23)
1(Z2) = %(1 + pZ) [1 + pZ + (02)% + (p2)® + ]
@) = 5+0Z+ (2P + (02 + - (3.24)

2



Becausep is less than one, this series converges for any valug oh the unit
circle. If e had been slightly negative instead of positive, a converging expansic
could have been carried out in negative power&ofA plot of |(Z) is found in
Figure3.4.

Amp(omega) & Im(omega0)

filter(t)

[T—

0 omega & Re(omegaO0) pi

Figure 3.4: A leaky causal-integration operator| zp-cint [NR]

Just for fun | put random noise into an integrator to see an economic simulatic
shown in Figure3.5. With p = 1, the difference between today’s price and tomor-



row’s price is a random number. Thus the future price cannot be predicted from t
past. This curve is called adandom walk."

Price / barrel

Figure 3.5: Random numbers into an integrat zp-price| [NR]



3.3.3. Symmetrical double integral

Thetwo-sided leaky integralcommonly arises as an even function, which is an or-
dinary leaky integral in one direction followed by another in the opposite directiol
We will see also that the single leaky integral need not be causal; it could be an c
function.

The causal-integration operator flows one direction in time. Anticausal integr
tion flows the other. Causal integration followed by anticausal integration mak
a symmetrical smoothing operation, frequently used on the horizontal space a
Since the idea of integration is generally associated with a long decay constant,
since data is generally limited in space, particular attention is usually given to tl
side boundaries. The simplest side boundaries are zero values, but these are
erally rejected because people do not wish to assume data is zero beyond wl|
it is measured. The most popular side conditions are not much more complicat
however. These are zero-slope side boundaries like those shown in Bigure
habitually smoothed with damped exponentials, but | switched to triangles afte
encountered several examples where the exponential tails decreased too slowly

The analysis for double-sided damped leaky integration régtb-slopebound-
aries is found in my previous books and elsewhere, so here | will simply sta



Figure 3.6: Pulses at variomm
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# keyword: tridiagonal smoothing on 1-axis or 2-axis
subroutine leaky( distance, m1, nl12, uu, w )

integer i, ml, nl2

real distance # input: 1. < distance < infinity

real uu(mil,nl2) # data in is the vector (uu( 1, i), i=1,n12)
real vv(m1,nl2) # data out is the vector (vv( 1, i), i=1,n12)

real a, b, dc, side

temporary real vecin( n12), vecout( n12)

a (1. l/dlstance) b = a*a; dc = btata
a = a/dc b = b/dc; S|de —a+b

do i= ln12 { vecin(i) = uu(l i)}

if( distance<=1.|| n12==1) {call copy( nl2, vecin, vecout)}
else {call tris( n12, side, a, b, a, side, vecin, vecout)}
do i= 1,n12 { wv(1,i) = vecout(i) }

return; end

Back



# tridiagonal simultaneous equations as in FGDP and IEI
#

subroutine tris( n, endl, a, b, c, endr, d, t)
integer i, n

real endl, a, b, c, endr, d(n), t(n)
temporary real e(n), f(n) deni(n)

iftn==1){ 1) = d@) / b; return }
e(l) =-a/ end
do i= 2, n-1

deni(i) = 1. / (b + c * e(i-1) )
e(@) = - a * deni()

f(1) = d(1) / endl
do i= 2, n-1
f(i) = (()- C*f01» * deni(i)
t(n) = (dn) - c *f(nl)) (endr + ¢ * e(n-1) )
do i= n-1, 1, -1
t(|) e() * t(i+1) + f(i)

return; end

Back



the result and leave you with a working program. This kind of integration arise
in the numerical solution of wave equations. Mathematically, it means solvir
(Bxx — @)V (X) = U (x) for V(x) givenU (x). In the limit of small«, the operation
is simply double integration. Nonzetomakes ileaky integration. The operation
looks like theHelmholtz equation of physics but is not, because we take- 0O
for damped solutions, whereas the Helmholtz equation typically take® for os-
cillating wave solutions. Figurd.6 was created witleaky() , which performs the
smoothing task using a double-sided exponential response with a decay to am
tudee 1 in a givendistance. It invokes the routinais() , a solver of tridiagonal
simultaneous equations, which is explained in FG leaky|

It is convenient to refer to the symmetrical doubieegrationoperator ag*X,
where the superscripts denote integration, in contrast to the usual subscripts, wt
denotedifferentiation . Since differentiation is widely regarded as an odd operatol
it is natural also to define the odd integration operétos 53 .



3.3.4. Nonunigueness of the integration operator

Integration can be thought of ag(tiw). The implied division by zero ab =0
warns us that this filter is not quite normal. For exampl&—1w) appears to be
an imaginary, antisymmetric function ef. This implies that the time function is
the real antisymmetrisignum function, namely, sgnjf = t/|t|. The signum is not
usually thought of as an integration operator, but by adding a constant we hav
step function, and that is causal integration. By subtracting a constant we he
anticausal integration. We can play games with the constant because it is at z
frequency that the definition contains zero division.

EXERCISES:

1 Show that the mean of the input lefky() is the mean of the output, which
demonstrates that the gain of the filter is unity at zero frequency.

3.4. DAMPED OSCILLATION

In polynomial multiplication,zeros of filters indicate frequencies where outputs
will be small. Likewise, in polynomial division, zeros indicate frequencies wher



outputs will be large.

3.4.1. Narrow-band filters

It seems we can represent a sinusoidbiransforms by setting a pole on the unit
circle. TakingZ, = €“°, we have the filter
1 1

B(Z = _— = _— = 1 Ze_iwo Zze_l 2wo ..
) 1-7/7 1_Ze oo + + +
(3.25)

The signalb; seems to be the complex exponenﬁal“’ot, but it is not quite that
becauséy, is “turned on” att = 0, whereag'“o! is nonzero at negative time.

Now, how can we make geal-valued sinusoid starting &at= 0? Just as with
zeros, we need to complement the pole-at, by one at-wp. The resulting signal
by is shown on the left in Figurd.7. On the right is a graphical attempt to plot the
impulse function of dividing by zero at = wo. _

Next, let us look at a damped case like leaky integration.Agt= €0/ p and
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Figure 3.7: A pole on the real axis (and its mate at negative frequency) gives
impulse function at that frequency and a sinusoidal function in tinjzp-sinug
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lp| < 1. Then ¥Z, = pe~'°. Define

1 1 z Z\?
BZ) = — = ——_ = 1+=24(£ ... (3.26
@ =2 T 1zz +zp+<zp)+ (3.20)
B(Z) = 1+42Zpe 4 72p%e 1200 4. .. (3.27)

The signalb is zero beford = 0 and ispte "ot aftert = 0. It is a damped sinu-
soidal function with amplitude decreasing with timeddsWe can readily recognize
this as an exponential decay

,Ot — gllgr o g t@-p) (3.28)

where the approximation is best for valueseafiear unity.
The waveleby is complex. To have a real-valued time signal, we need anoth
pole at the negative frequency, say. So the composite denominator is

z z
AZ) = <1——) 1-=—| = 1-Zp2coswp+p?Z? (3.29)
Zp Zp

Multiplying the two poles together as we did for roots results in the plots ©
1/A(Z) in Figure3.8 Notice the “p” in the figure. It indicates the location of the
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Figure 3.8: A damped sinusoidal function of time transforms to a pole near the re

w-axis, i.e., just outside the unit circle in tiZeplane. |zp-dsinus[NR]



pole Zp, but is shown in thevp-plane, whereZ, = €@, Pushing the “p” left and
right will lower and raise the resonant frequency. Pushing it down and up will rais
and lower the duration of the resonance.

EXERCISES:

1 How far from the unit circle are the poles of(1 —.1Z +.9Z2)? What is the
decay time of the filter and its resonant frequency?

3.4.2. Polynomial division

Convolution with the coefficients; of B(Z) = 1/A(Z) is a narrow-banded filtering
operation. If the pole is chosen very close to the unit circle, the filter bandpa
becomes very narrow, and the coefficient8¢¥) drop off very slowly. A method
exists of narrow-band filtering that is much quicker than convolution Withrhis

is polynomial division by A(Z). We have for the output (Z):
X(2)

Y(Z) = B(Z)X(2) 2D

(3.30)



Multiply both sides of 8.30 by A(Z):
X(Z) = Y(2)A2Z2) (3.31)

For definiteness, let us suppose thatthandy; vanish beforé = 0. Now identify
coefficients of successive powersoto get

Xo = Yoao

X1 = Yiao+Yoau

X2 = Yoa0+Yia1+ Yoar (3.32)
X3 = Yzao+Ya1+Yyia

X4 = Yaao+Yyzap+ Yo
Let N, be the highest power af in A(Z). Thek-th equation (wher& > Ng) is

Na

Yao + ) Veid = X (3:33)
i—1



Solving foryg, we get
Na
Xk — > Yk—id
i=1
K = — 3.34
Y 2 (3.34)
Equation 8.34) may be used to solve fof onceyk_1, Yk—2, - - - are known. Thus the
solution isrecursive. The value ofN, is only 2, wherea$Ny, is technically infinite
and would in practice need to be approximated by a large value. Sedtback
operation 8.34) is much quicker than convolving with the filté&(Z) = 1/ A(Z).
A program for the task is given below. Data lengths suchaag the program
polydiv() include coefficients of alNy powers ofZ as well as 1= Z°, sona =

3.4.3. Spectrum of a pole

Now that we have seen the single-pole filter and the pole-pair filter in both the tin
domain and the frequency domain, let us find their analytical expressions. Taki



# polynomial division feedback filter: Y(2) = X(2) I A@2)
#

subroutine polydiv( na, aa, nx, xx, ny, yy )

integer na # number of coefficients of denominator
integer nx # length of the input function
integer ny # length of the output function
real aa(na) # denominator recursive filter
real xx(nx) # input trace
real yy(ny) # output trace, as long as input trace.
integer ia, iy
do iy= 1, ny
if( iy <= nx)
yy(iy) = xx(iy)
else )
, yy(iy) = 0.
do iy= 1, na-1 {
do ia= 2, iy

yy(y) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(y) / aa(l)

do iy= na, ny {
do ia= 2, na i o
yy(ly) = yy(iy) - aa(ia) * yy(iy-ia+1)
yy(iy) = yy(iy) / aa(1)

return; end

Back

# lead-in terms

# steady state



the pole to bez, = €“0/p, we have

AZ) = 1- zip - 1- ﬁ o = 1 pdl@—) (3.35)
The complex conjugate is
A (%) = 1-pe @) (3.36)
The spectrum of a pole filter is the inverse of
A(Z)A@ = a-peiCoe) @ pete)

= 14 p%— p(e7!@7w0) 4 d@mwo)y
= 1+ p%—2pcos —wo)
14 p2—2p +2p[1 - cos @ — wo)]

= (1—,0)2—+-4,osin2w_w0

(3.37)



With the definition of a smakk = 1— p > 0, inverting gives

—_/1 1
B(=-)B(Z) ~ —— 3.38

(Z> 2 €2+ 4sir? e (3:38)
Specializing to frequencies close 4@, where the denominator is small and the
function is large, gives

/1 1
B<Z> BZ) ~ — (3.39)

€24 (w — wp)?

This is called a harrow-band filter " because in the Fourier domain the func-
tion is large only in a narrow band of frequencies. Set@®§to half its peak value
of 1/€2, we find a half-bandwidth aAw/2 = | — wo| = €. The damping time con-
stantAt of the damped sinusoid is shown in the exercises following this section
to be At =1/e.

Naturally we want a real-time function, so we multiply the filtg1— Z / Z ;)
times 1/(1— Z/Zp). The resulting time function is real because conjugate poles a
like the conjugate roots. The spectrum of the conjugate faglidr12/Zy) is like
(3.39, except thatwg is replaced by-wg. Multiplying the response3(39 by itself
with —wq yields the symmetric function @ displayed on the right in Figur.9.
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Figure 3.9: A pole near the real axis gives a damped sinusoid in time on the le

On the right is ¥| A(w)| for w real. | zp-disappoint[NR]



You might be disappointed if you intend to apply the filter of Fig@r@ as a
narrow-band filter. Notice that the passband is asymmetric and that it passes
zero frequency. Equatio (39 is symmetric aboudyg, but taking the product with
its image about-wg has spoiled the symmetry. Should we be concerned about th
“edge effect”? The answer is yes, whenever we handle real data. For realtiata,
is usually small enough. Recall thatgiangsample= @radiangsecAt. Consider a pole
at a particulaeradiangses decreasinght pushesoradiangsampletowards zero, which
is where a pole and its mate at negative frequency create the asymmetrical resp
shown in Figure3.9.

So in practice we might like to add a zero at zero frequency and at the Nyqu
frequency, i.e., (+ Z2)(1+ Z), as shown in Figur8.10 Compare Figur&.10and
3.9. If the time functions were interchanged, could you tell the difference betwee
the figures? There are two ways to distinguish them. The most obvious is that 1
zero-frequency component is made evident in the time domain by the sum of
filter coefficients (theoreticallyi- (Z = 1)). A more subtle clue is that the first half-
cycle of the wave in Figur8.10is shorter than in Figur&.9;, hence, it contains
extra high frequency energy, which we can see in the spectrum.
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Figure 3.10: Poles atwo; a root aiw = 0 and another root ai = 7.
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EXERCISES:

1 Sketch the function in equatio.38 over the range-7 <= w <= 7, taking
care to distinguish it from Figur@.9.

2 Figure3.9shows a bump aroundg that does not look symmetric because it
is theproductof equation 8.38 with a frequency-reversed copy. Consider the
sum[1/(1—Z/Zp)] +[1/(1— Z/Zp)]. Is the time filter real? Where are its
poles and zeros? How will its amplitude as a function of frequency compa
with the amplitude of Figur&.9? Will the bump look more symmetric?

3.4.4. Rational filters

A general model for filtering includes both convolution (numeratetransforms)
and feedback filtering (denominatdrtransforms):
B(2)
Y(Z) = —=X(Z 3.40
(2) A <@ (3.40)
There are a variety of ways to implement equati®d () in a computer. We could do
the polynomial divisionX(Z)/A(Z) first and then multiply (convolve) witB(Z2),



or we could do the multiplication first and the division later. Alternately, we coulc
do them simultaneously if we identified coefficientsA{iz)Y (Z) = B(Z) X(Z) and
solved for recursive equations, as we did f813().

The rational filter is more powerful than either a purely numerator filter or a
purely denominator filter because, like its numerator part, the rational filter can e:
ily destroy any frequency totally, and, like its denominator part, it can easily enhan
any frequency without limit. Finite-difference solutions of differential equations of
ten appear as rational filters.

EXERCISES:

1 Consider equation3(40. What time-domain recurrence (analogous to equa
tion (3.34) is implied?



3.5. INSTABILITY

Consider the examplB(Z) = 1— Z/2. The inverse

1 z 72 73
AZ) = — = 1+—4+—"—4—1.. 3.41
(2) 2 +tot Tt T (3.41)

can be found by a variety of familiar techniques, such as (1) polynomial divisiol
(2) Taylor's power-series formula, or (3) the binomial theorem. In equagohi)
we see that there are an infinite number of filter coefficients, but because they d
off rapidly, approximation in a computer presents no difficulty.

We are not so lucky with the filtéB(Z) = 1— 2Z. Here we have

A(Z) = ﬁ = 1+42Z+47%+873+162%+32Z%+... (3.42)
The coefficients of this series increase without bound. This is caltetdbility .”
The outputs of the filteiA(Z) depend infinitely on inputs of the infinitely distant
past. (Recall that the present outputA(fZ) is ag times the present inpug, plus
a; times the previous input;_1, etc., soa, represents memory af time units
earlier.) This example shows that some filt&&) will not have useful inverses



A(Z) determined by polynomial division. Two sample plots of divergence are give
in Figure3.11

For the filter 1— Z/Zo with a single zero, the inverse filter has a single pole
at the same location. We have seen a stable inverse filter when théZpole 1
exceeds unity anisstability when the pol¢Z,| < 1is less than unity. Occasionally
we seecomplex-valued signas. Stability for wavelets with complex coefficients is
as follows: if the solution valu€q of B(Zp) = 0 lies inside theaunit circle in the
complex plane, then/B(Z) will have coefficients that blow up; and if the root lies
outside the unit circle, then the inversgB(Z) will be bounded.

3.5.1. Anticausality
Luckily, unstable filters can be made stable as follows:
1 1 1 1 1 1
T2z T T@maiig _§<1+§+W+“'> (3.43)

Equation 8.43 is a series expansion it Z—in other words, a series about infinity.
It converges fromZ| = oo all the way in to a circle of radiugZ| = 1/2. This means
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Figure 3.11: Top: the growing time function of a pole inside the unit circle at zer
frequency. Bottom: at a nonzero frequency. Where the time axis is truncated,

signals are growing, and they will increase indefinite zp-divergd [NR]



that the inverse converges on the unit circle where it must, if the coefficients are
be bounded. In terms of filters, it means that the inverse filter must be one of thc
filters that responds to future inputs. Hence, although it is not physically realizab
it may be used in computer simulation.

Examining equations3(42 and @3.43, we see that the filter/{1 — 2Z) can be
expanded into powers & in (at least) two different ways. Which one is correct?
The theory of complex variables shows that, given a particular numerical vaHiie of
only one of the sums3(42 or (3.43 will be finite. We must use the finite one, and
since we are interested in Fourier series, we want the numerical N&jue 1 for
which the first series diverges and the second converges. Thus the only accept
filter is anticausal.

The spectra plotted in FiguB1lapply to the anticausal expansion. Obviously
the causal expansion, which is unbounded, has an infinite spectrum.

We saw that a polynomiaB(Z) of degreeN may be factored intdN subsys-
tems, and that the ordering of subsystems is unimportant. Suppose we have fact
B(Z) and found that some of its roots lie outside the unit circle and some lie insid
We first invert the outside roots with equatid41) and then invert the inside roots
with equation 8.43). If there are any roots exactly on the unit circle, then we have



a special case in which we can try either inverse, but neither may give a satisfact
result in practice. Implied zero division is nature’s way of telling us that what w
are trying to do cannot be done that way (if at all).

3.5.2. Inverse filters

Let by denote a filter. Theg is its “inverse filter” if the convolution ofa; with by
is an impulse function. Filters are said to be inverse to one another if their Four
transforms are inverse to one another. So in terma-tinsforms, the filteA(Z)
is said to be inverse to the signal B{Z) if A(Z)B(Z) = 1. What we have seen so
far is that the inverse filter can be stable or unstable depending on the location of
poles. Likewise, ifB(Z) is a filter, thenA(Z) is a usable filter inverse tB(2), if
A(Z)B(Z) =1 and if A(Z) does not have coefficients that tend to infinity.

Another approach to inverse filters lies in the Fourier domain. There a filte
inverse tob; is thea; made by taking the inverse Fourier transform ¢B{Z (w)).
If B(Z) has its zeros outside the unit circle, thernwill be causal; otherwise not.
In the Fourier domain the only danger is dividing by a zero, which would be a po
on the unit circle. In the case df-transforms, zeros should not only be off the



circle but also outside it. So the-domain seems safer than thedomain. Why not
always use the Fourier domain? The reasons we do not always inverse filter in
w-domain, along with many illustrations, are given in chapter

3.5.3. The unit circle

What is the meaning of a pole? We will see that the location of poles determin
whether filters are stable (have finite output) or unstable (have unbounded outp
Considering both positive and negative value pive find that stability is associ-
ated with|p| < 1. The pole|p| < 1 happens to be real, but we will soon see tha
poles are complex more often than not. In the case of complex poles, the condit
of stability is that they all should satisfyp| > 1. In the complexZ-plane, this
means that all the poles should be outside a circle of unit radius, the so-gaited
circle.



3.5.4. The mapping between Z and complex frequency

We are familiar with the fact thaeal values ofw correspond to complex values of
Z =¢€“. Now let us look atomplexvalues ofw:
7 = WNZ+ixZ = ei Oo+iSw)  _ e—?&w eifh‘w — amplitudeei phase
(3.44)
Thus, whenSw > 0, |Z] < 1. In words, we transform the upper half of the
plane to the interior of the unit circle in thé-plane. Likewise, the stable region
for poles is the lower half of the-plane, which is the exterior of the unit circle.
Figure3.12shows the transformation. Some engineering books choose a differe
sign conventionZ = e~'?), but | selected the sign convention of physics.

3.5.5. The meaning of divergence

To prove that one equals zero, take an infinite series such-ak, %1, —1,+1, ...,
group the terms in two different ways, and add them as follows:

Q-1+ 1=+ Q=D+ = 14 (=141 + (=141) + ---
0 + 0 4+ 0 4. = 1 4+ 0 + 0 «+
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Figure 3.12: Left is the complex-plane with axesx,y) = (fiwo, Swo). Right is
the Z-plane with axesx,y) = (RZg,3Zp). The words “Convergent” and “Diver-

gent” are transformed by = €. [ER]




o = 1

Of course this does not prove that one equals zero: it proves that care must
taken with infinite series. Next, take another infinite series in which the terms m:
be regrouped into any order without fear of paradoxical results. For example,
a pie be divided into halves. Let one of the halves be divided in two, giving tw
guarters. Then let one of the two quarters be divided into two eighths. Contin
likewise. The infinite series is 1/2, 1/4, 1/8, 1/16.,. No matter how the pieces are
rearranged, they should all fit back into the pie plate and exactly fill it.

The danger of infinite series is not that they have an infinite number of tern
but that they may sum to infinity. Safety is assured if the sum of the absolute valt
of the terms is finite. Such a series is called “absolutely convergent.”

3.5.6. Boundedness

Given different numerical values f@r, we can ask whethet(2) is finite or infinite.
Numerical values ofZ of particular interest ar& = +1, Z = —1, and all those
complex values oZ which are unit magnitude, say | =1 or Z = €, wherew
is the real Fourier transform variable. Wheris the variable, th&-transform is a



Fourier sum.

We can restrict our attention to those signajsthat have a finite amount of
energy by demanding thik(Z) be finite for all values o on the unit circld Z| =
1. Filter functions always have finite energy.

3.5.7. Causality and the unit circle

The most straightforward way to say that a filteccausalis to say that its time-
domain coefficients vanish before zero lag, thatlis+ 0 fort < 0. Another way to
say this isU (Z) is finite for Z = 0. At Z = 0, the Z-transform would be infinite if
the coefficientai_1, u_», etc., were not zero.

For a causal function, each term ih(Z) will be smaller if Z is taken to be
inside the circlgZ| < 1 rather than on the rifZ| = 1. Thus, convergence dt=0
and on the circléZ| = 1 implies convergence everywhere inside the unit circle. S
boundedness combined with causality means convergence in the unit circle.

Convergence aZ = 0 but not on the circléZ| = 1 would refer to a causal
function with infinite energy, a case of no practical interest. What function cor
verges on the circle, & = oo, but not atZ = 0? What function converges at all



three placesZ = 0,Z = oo, and|Z| =17

3.6. MINIMUM-PHASE FILTERS

Let by denote a filter. Themy is its inverse filter if the convolution od; with by
is an impulse function. In terms @&-transforms, an inverse is simply defined by
A(Z) = 1/B(Z). Whether the filterA(Z) is causal depends on whether it is finite
everywhere inside the unit circle, or really on whettgZ) vanishesanywhere
inside the circle. For exampl&(Z) = 1— 2Z vanishes aZ = 1/2. ThereA(Z) =
1/B(Z) must be infinite, that is to say, the seridéZ) must be nonconvergent at
Z =1/2. Thus, as we have just seem,is noncausal. A most interesting case,
called ‘minimum phase" occurs when both a filteB(Z) and its inverse are causal.
In summary,

causal: IB(Z)| < o0 for|Z] <1

causal inverse: 11/B(Z)] <o for|Z] <1

minimum phase: both above conditions

The reason the interesting words “minimum phase” are used is given in clipter



3.6.1. Mechanical interpretation

Because of the stringent conditions on minimum-phase wavelets, you might wonq
whether they can exist in nature. A simple mechanical example should convince y
that minimum-phase wavelets are plentiful: denote the stress (pressure) in a mate
by x;, and denote the strain (volume change)yy Physically, we can specify
either the stress or the strain, and nature gives us the other. So obviously the st
in a material may be expressed as a linear combination of present and past strz
Likewise, the strain may be deduced from present and past stresses. Mathematic
this means that the filter that relates stress to strain and vice versa has all poles
zeros outside the unit circle. Of the minimum-phase filters that model the physic
world, many conserve energy too. Such filters are calletbédances” and are
described further in FGDP and IEI, especially IEI.

3.6.2. Laurent expansion

Given an unknown filteiB(Z), to understand its inverse, we need to fadigiz)
into two parts: B(Z) = Bout(Z)Bin(Z), where Boyt contains all the roots outside
the unit circle andB;j, contains all the roots inside. Then the inverseBgf; is



expressed as a Taylor series about the origin, and the inveig of expressed as
a Taylor series about infinity. The final expression fpB{Z) is called a Laurent
expansiori for 1/B(Z), and it converges on a ring including the unit circle. Case:
with zeros exactly on the unit circle present special problems. For example, t
differentiation filter (1— Z) is the inverse of integration, but the converse is not true
because of the additive constant of integration.

EXERCISES:

1 Find the filter that is inverse to (25Z +2Z?). You may just drop higher-order
powers ofZ, but an exact expression for the coefficients of any powet f
preferable. (Partial fractions is a useful, though not a necessary, techniqu
Sketch the impulse response.

2 Describe a general method for determinit@) andB(Z) from a Taylor series
of B(Z)/A(Z) = Co+C1Z+CpZ?%+---+Cy Z%°, whereB(Z) and A(Z) are
polynomials of unknown degree and m, respectively. Work out the case
C(z)=3-32-322- 375 27%—.... Do not try this problem unless
you are familiar with determinants.H(NT: identify coefficients ofB(Z) =
A(Z)C(2).)



3.7. INTRODUCTION TO ALL-PASS FILTERS

An “all-pass filter” is a filter whose spectral magnitude is unity. Given an input
X(Z) and an outpul'(Z), we know that the spectra of the two are the same, i.e
X(1/Z2)X(Z) =Y (1/Z)Y(Z). The existence of an infinitude of all-pass filters tells
us that an infinitude of wavelets can have the same spectrum. Wave propaga
without absorption is modeled by all-pass filters. All-pass filters yield a wavefort
distortion that can be corrected by methods discussed in chispter

The simplest example of an all-pass filter is the delay opetatere @ itself.
Its phase as a function aefis simply .

A less trivial example of phase distortion can be constructed from a single ro
Z,, whereZz, is an arbitrary complex number. The ratio of any complex number t
its complex conjugate, sax (iy)/(x —iy), is of unit magnitude, because, taking
x+iy = p€?¢ andx —iy = pe~'?, the ratio is€??|. Thus, given a minimum-phase
filter B(w), we can take its conjugate and make an all-pass fl{&f) from the ratio
P(Z) = B(w)/B(w). A simple case is

Z

Bw) = - (3.45)



__ 1
(») 77 (3.46)
The all-pass filteB/B is not causal because of the presence/d in B. We can
repair that by multiplying by another all-pass operator, namély,The resulting
causal all-pass filter is

B z-1
P(2) 220/2) BB((lz/)Z) = — Zé (3.47)

Equation 8.47) can be raised to higher powers to achieve a stronger frequenc
dispersion effect. Examples of time-domain responses of various all-pass filters
shown in Figure3.13

The denominator of equatioB.@7) tells us that we have a pole . Let this
location beZ; = €“0/p. The numerator vanishes at

1 .
Z = Zyp = =— = pew (3.48)
Z
In conclusion, the pole is outside the unit circle, and the zero is inside. They fa
one another across the circle at the phase angle
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The all-pass filter .47) outputs acomplex-valued signal however. To see
real outputs, we must handle the negative frequencies in the same way as the |
itive ones. The filter§.47) should be multiplied by another like itself but witsy
replaced by-wo; i.e., with Z, replaced byZ, . The result of this procedure is shown
in Figure3.14

Amp(omega), —Im(omega0)
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7

Figure 3.14: All-pass filter with a complex pole-zero pair. The pole and zero are
equal logarithmic distances from the unit circl zp-allpass[NR]



A general form for an all-pass filter B(Z) = ZNA(1/Z)/A(Z), where A(Z)
is an arbitrary minimum-phase filter. That this form is valid can be verified b
checking thatP(1/Z)P(Z) = 1.
EXERCISES:
1 \Verify that P(1/Z)P(Z) = 1 for the general form of an all-pass filt®(Z) =
ZNA(1/Z2)/ A(Z).
2 Given an all-pass filter

d+ez+ fz?
1+bZ+cz2
with poles atZp, =2 andZ, = 3, what areb, ¢, d, e, and f ?

P(z) =

3.7.1. Notch filter

A “notch filter” rejects a narrow frequency band and leaves the rest of the spectrt
little changed. The most common example is 60-Hz noise from power lines. A
other is low-frequency ground roll. Such filters can easily be made using a slig



variation on the all-pass filter. In the all-pass filter, the pole and zero have eqt
(logarithmic) relative distances from the unit circle. All we need to do is put th
zero closer to the circle. Indeed, there is no reason why we should not put the z
right on the circle: then the frequency at which the zero is located is exactly ca
celed from the spectrum of input data. Narrow-band filters and sharp cutoff filte
should be used with caution. An ever-present penalty for using such filters is tt
they do not decay rapidly in time. Although this may not present problems in son
applications, it will certainly do so in others. Obviously, if the data-collection dura
tion is shorter than or comparable to the impulse response of the narrow-band fil
then the transient effects of starting up the experiment will not have time to die ot
Likewise, the notch should not be too narrow in a 60-Hz rejection filter. Even
bandpass filter (an example of which, a Butterworth filter, is implemented in cha
ter 10) has a certain decay rate in the time domain which may be too slow for sor
experiments. In radar and in reflection seismology, the importance of a signal
not related to its strength. Late arriving echoes may be very weak, but they cont
information not found in earlier echoes. If too sharp a frequency characteristic
used, then filter resonance from early strong arrivals may not have decayed eno
by the time the weak late echoes arrive.



A curious thing about narrow-band reject filters is that when we look at the
impulse responses, we always see the frequency being rejected! For example, |
at Figure3.15 The filter consists of a large spike (which contains all frequencies
and then a sinusoidal tail of polarity opposite to that of the frequency being rejecte

The vertical axis in the complex frequency plane in FigBirEsis not exactly
Swp. Instead it is something like the logarithm ®f&yg. The logarithm is not pre-
cisely appropriate either because zeros may be exactly on the unit circle. | col
not devise an ideal theory for scalifigo, so after some experimentation, | chose
Swo = —(14 y2)/(1— y?), wherey is the vertical position in a window of vertical
range O< y < 1. Because of the minus sign, the outside of the unit circle is abov
the Rwg axis, and the inside of the unit circle is below it.

EXERCISES:

1 Find athree-term real feedback filter to reject 59-61 Hz on data that is sampl
at 500 points/s. (Try for about 50% rejection at 59 and 61.) Where are tt
poles? What is the decay time of the filter?



Figure 3.15: Top: a zero on the real frequency axis and a pole just above it give
notch filter; i.e., the zeroed frequency is rejected while other frequencies are lit

changed. Bottom: the notch has been broadened by moving the pole further ax
from the zero. (This notch is at 60 Hz, assumikg= .002 s.) [NR]



3.8. PRECISION EXHAUSTION

As we reach the end of this chapter on poles and feedback filtering, we might
inclined to conclude that all is well if poles are outside the unit circle and that the
may even come close to the circle. Further, if we accept anticausal filtering, po
can be inside the unit circle as well.

Reality is more difficult. Big trouble can arise from just a modest clusterin
of poles at a moderate distance from the unit circle. This is shown in FiRjate
where the result is completely wrong. The spectrum should look like the spectrt
in Figure3.8 multiplied by itself about six or seven times, once for each pole. Th
effect of such repetitive multiplication is to make the small spectral values becor
very small. When | added the last pole to FigGr&6 however, the spectrum sud-
denly became rough. The time response now looks almost divergent. Moving po
slightly creates very different plots. | once had a computer that crashed whenev
included one too many poles.

To understand this, notice that the peak spectral values in Figjlifecome
from the minimumvalues of the denominator. The denominator will not go to &
properly small value if theprecision of its terms is not adequate to allow them
to extinguish one another. Repetitive multiplication has caused the dynamic rar
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Figure 3.16: A pathological failure when poles cluster too much. This situatio
requires more than single-word precisi INR]



(the range between the largest and smallest amplitudes as a function of frequel
of single-precision arithmetic, about.0

When single-word precision becomes a noticeable problem, the obvious p:
is to choose double precision. But considering that most geophysical data ha
precision of less than one part in a hundred, and only rarely do we see precisior
one part in a thousand, we can conclude that the failure of single-word precisi
arithmetic, about one part in 16, is more a sign of conceptual failure than of
numerical precision inadequacy.

If an application arises for which you really need an operator that raises
polynomial to a high degree, you may be able to accomplish your goal by a
plying the operator in stages. Say, for example, you need the all-pass filter (.2
2)100/(1—.22)190, You should be able to apply this filter in a hundred stages o
(.2— Z)/(1—.2Z), or maybe in ten stages of 22)10/(1—.22)10.

Other ways around this precision problem are suggested by reflection-coeffici
modeling in a layered earth, described in FGDP.



3.9. MY FAVORITE WAVELET

I will describe my favorite wavelet for seismic modeling, shown in Figaré?.

Of course the ideal wavelet is an impulse, but the wavelet | describe is intendec
mimic real life. | use some zeros at high frequency to force continuity in the tim
domain and a zero at the origin to suppress zero frequency. | like to simulate |
suppression of low-frequency ground roll, so | put another zero not at the origin, k
at a low frequency. Theory demands a conjugate pair for this zero; effectively, the
there are three roots that suppress low frequencies. | use some poles to skew
passband toward low frequencies. These poles also remove some of the oscilla
caused by the three zeros. (Each zero is like a derivative and causes another
in the wavelet.) There is a trade-off between having a long low-frequency tail at
having a rapid spectral rise just above the ground roll. The trade-off is adjustable
repositioning the lower pole. The time-domain wavelet shows its high frequenci
first and its low frequencies only later. | like this wavelet better than the Ricke
wavelet (second derivative of a Gaussian). My wavelet does not introduce as mu
signal delay. It looks like an impulse response from the physical world.
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Figure 3.17: My favorite wavelet for seismic modelin zp-favoritg [NR]




3.10. IMPEDANCE FILTERS

Impedancefilters are a special class of minimum-phase filters that model energ
conserving devices and media. The real part of the Fourier transform of an imped:
filter is positive. Impedances play a basic role in mathematical physics. There :
simple ways of making complicated mechanical systems from simple ones, and c
responding mathematical rules allow construction of complicated impedances fr
simple ones. Also, impedances can be helpful in stabilizing numerical calculatior
Logically, a chapter on impedance filters belongs here, but | have little to add
what is already found in FGDP and IEI. FGDP describes the impedance concep
sampled time and its relation to special matrices calleplitz” matrices. IEIl de-
scribes impedances in general as well as their role in physical modeling and imag
with the wave equation.



Chapter 4

Univariate problems

This chapter looks at problems in which there is just one unknown. Thededfiate”
problems illustrate some of the pitfalls, alternatives, and opportunities in data an
ysis. Following our study of univariate problems we move on, in the next five chaj
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ters, to problems witlmultiple unknowns (which obscure the pitfalls, alternatives,
and opportunities).

4.1. INSIDE AN ABSTRACT VECTOR

In engineering, a vector has three scalar components which correspond to the tl
dimensions of the space in which we live. In least-squares data analysis, a vectc
a one-dimensional array that can contain many different things. Such an array is
“abstract vector.” For example, in earthquake studies, the vector might contain tr
time an earthquake began as well as its latitude, longitude, and depth. Alternat
the abstract vector might contain as many components as there are seismome
and each component might be the onset time of an earthquake. In signal analy
the vector might contain the values of a signal at successive instants in time or,
ternately, a collection of signals. These signals mightrbaltiplexed” (interlaced)

or “demultiplexed” (all of each signal preceding the next). In image analysis, tt
one-dimensional array might contain an image, which could itself be thought of
an array of signals. Vectors, including abstract vectors, are usually denoted by bc
face letters such gsands. Like physical vectors, abstract vectors aréhogonal



when their dot product vanishep:- s = 0. Orthogonal vectors are well known in
physical space; we will also encounter them in abstract vector space.

4.2. SEGREGATING P AND S CROSSTALK

Signals can be contaminated by other signals, and images can be contaminate
other images. This contamination is callextdsstalk" An everyday example in
seismology is the mixing gbressure wave andshear waves. When waves come
straight up, vertical detectors record their pressure-wave component, and horizo
detectors record their shear-wave component. Often, however, waves do not cc
exactly straight up. In these cases, the simple idealization is contaminated and tt
is crosstalk. Here we study a simplified form of this signal-corruption problem, ¢
given by the equations

V = p+as+n (4.1)
h = s+ap+n 4.2)

wherev andh represent vertical and horizontal observations of earth mgtiand
s represent theoretical pressure and shear wawvasdn’ represent noises, arnd



anda’ are the cross-coupling parameters. You can think, df, p, s, n andn’ as
collections of numbers that can be arranged into a signal or into an image. Ma
ematically, they ar@abstract vectors. In our notation, boldface represents the
vector as a whole, and italicrepresents any single component in it. (Traditionally,
a component is denoted lby.)

e Two univariate problems

Communication channels tend to mix information in the way equatiériy 4nd
(4.2) do. This is ‘trosstalk” Everything on the right sides of equations 1) and
(4.2) is unknown. This problem can be formulated in an elaborate way with est
mation theory. Here we will postpone the general theory and leap to guess that
pressure-wave fielg will be some linear combination of andh, and the shear-
wave componerg will be something similar:

p = v —ah (4.3)
s = h-2dadv (4.4)

We will understand the crosstalk question to ask us to find the constant value o
and ofa’. Although | will describe only the mathematics of findiageach figure



will show you the results of both estimations, by including one partfand one
part fora’. The results for ande’ differ, as you will see, because of differences in
p ands.

o The physics of crosstalk

Physically, the value af depends on the angle of incidence, which in turn depend
critically on the soil layer. The soil layer is generally ill defined, which is why it is
natural to takex as an unknown. In real life should be time-dependent, but we
will ignore this complication.

4.2.1. Failure of straightforward methods

The conventional answer to the crosstalk question is to chessehatp = v —ah
has minimum power. The idea is that since adding one sigialan independent
signalsis likely to increase the power @f, removing as much power as possible
may be a way to separate the independent components. The theory proceec
follows. Minimize the dot product

Energy = p-p = (v—ah)-(v—«h) (4.5)



by differentiating the energy with respectdo and set the derivative to zero. This
gives o
V-
a = hh (4.6)
Likewise, minimizing 6 s) yieldsa’ = (h-v)/(v- V).

In equation 4.5) the “fitting function ” is h, because various amountstotan
be subtracted to minimize the power in the residwat@¢h). Let us verify the
well-known fact that after the energy is minimized, ttesidual is orthogonal to
thefitting function . Take the dot product of the fitting functidnand the residual

(v—ah), and insert the optimum value affrom equation 4.6):
h-(v—ah) = h.-v—ah-h
=0
Results for bottp ands are shown in Figuré.l At first it is hard to believe the
result: the crosstalk iworseon the output than on the input. Our eyes are drawn tc
the weak signals in the open spaces, which are obviously unwanted new crosst

We do not immediately notice that the new crosstalk has a negative polarity. Ne
ative polarity results when we try to extinguish the strong positive polarity of th
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Figure 4.1: Left shows two panels, a “Pressure Wave” contaminated by crosst
from “Shear” and vice versa. Right shows a least-squares attempt to remc
the crosstalk. It is disappointing to see that the crosstalk has become wor

[ER]



main signal. Since the residual misfitdguared,our method tends to ignore small
residuals and focus attention on big ones: hence the wide-scale growth of sn
residuals.

The least-squares method is easy to oversimplify, and it is not unusual to ¢
it give disappointing results. Real-life data are generally more complicated th
artificial data like the data used in these examples. It is always a good idea
test programs on sudynthetic datasince the success or failure of a least-square:
method may not be apparent if the method is applied to real data without pri
testing.

e Failure of independence assumption

The example in Figurd.lillustrates gpitfall of classical inversion theory. Hau
not overlapped, the crosstalk would have been removed perfectly. We were n
interested in destroying with s, and vice versa. This result was just an accidenta
consequence of their overlap, which came to dominate the analysis because of
squaring in least squares. Our failure could be attributed to a tacit assumption t
sincep ands are somehow “independent,” they can be regardestth®gonal,i.e.,
thatp-s= 0. But the (potential) physical independencepaiinds does nothing



to make a short sample @f ands orthogonal. Even vectors containing random
numbers are unlikely to be orthogonal unless the vectors have an infinite numbe
components. Perhaps if the text were as long as the works of Shakespeare . . .

4.2.2. Solution by weighting functions

Examining Figure4.1, we realize that our goals were really centered in the quie
regions. We need to boost the importance of those quiet regions in the analy
What we need is seighting function. Denote the-th component of a vector with
the subscript, sayvi. When we minimize the sums of squaresvpf- «h;, the
weighting function for theé-th component is

1
wp = - 4.7
! viz + o2 (4.7)
and the minimization itself is

min [Z wi (vi — ahi)2:| (4.8)



To find o/, the weighting function would be = 1/(h? +¢2).

The detailed form of these weighting functions is not important here. The fori
| chose is somewhat arbitrary and may be far from optimal. The choice of tt
constants is discussed on pagg0. What is more important is the idea that in-
stead of minimizing the sum adrrors themselvesye are minimizing something
like the sum ofrelative errors. Weighting makes any region of the data plane a:
important as any other region, regardless of whether a letter (big signal) is pres
or absent (small signal). It is like saying a zero-valued signal is just as impc
tant as a signal with any other value. A zero-valued signal carries informatio

When signal strength varies over a large range, a honuniform weighting func-
tion should give better regressions. The task of weighting-function design may
require some experimentation and judgment.

® A nonlinear-estimation method

What | have described above represents my first iteration. It can be calieéa*
estimation method." Next we will try a honlinear-estimation method" and see



that it works better. If we think of minimizing thelative error in the residual, then
in linear estimation we used the wrong divisor—that is, we used the squared’datz
where we should have used the squared residuab)?. Using the wrong divisor

is roughly justified when the crosstadkis small because thes? and @ — orh)?

are about the same. Also, at the outset the residual was unknown, so we hac
apparent alternative to?, at least until we found. Having found the residual, we
can now use it in a second iteration. A second iteration causeshange a bit, so
we can try again. | found that, using the same data as in Figjirehe sequence
of iterations converged in about two iterations. Figdr2shows the results of the
various weighting methods. Mathematical equations summarizing the bottom r
of this figure are:

left : min Y~ (vi —ah;)? (4.9)
i
o . 1 _ 2
middle : rgolnzm (vi —aohi) (4.10)

. . . 1
right : liMnoo  min o e T (vi —anhi)? (4.11)
I — &n
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Figure 4.2: Comparison of weighting methods. Left shows crosstalk as bac
removed by uniformly weighted least squares. Middle shows crosstalk removed
deriving a weighting function from the inpdtata Right shows crosstalk removed

by deriving a weighting function from the fittingesidual Press button for movie
over iterations. [ER,M]



For the top row of the figure, these equations also applyvbandh should be
swapped.

e Clarity of nonlinear picture

You should not have any difficulty seeing on the figure that the uniform weigt
leaves the most crosstalk, the nonuniform weights of the linear-estimation mett
leave less crosstalk, and the nonlinear-estimation method leaves no visible cross
If you cannot see this, then | must blame the method of reproduction of the figure
because the result is clear on the originals, and even clearer on the video screen
which the figure is derived. On the video screen the first iteration is clearly inferic
to the result of a few more iterations, but on the printed page these different rest
are not so easy to distinguish.

e Nonuniqueness and instability

We cannot avoid defining?, because without it, any region of zero signal would get
an infinite weight. This is likely to lead to undesirable performance: in other word:
although with the data of Figuré.2 | found rapid convergence to a satisfactory
answer, there is no reason that this had to happen. The result could also have fe



to converge, or it could have converged to a nonunique answer. This unrelial
performance is why academic expositions rarely mention estimating weights frc
the data, and certainly do not promote the nonlinear-estimation procedure. We h
seen here how important these are, however.

| do not want to leave you with the misleading impression that convergen
in a simple problem always goes to the desired answer. With the program tl
made these figures, | could easily have converged to the wrong answer merely
choosing data that contained too much crosstalk. In that case both images wc
have converged te. Such instability is not surprising, because wheexceeds
unity, the meanings of andh are reversed.

e Estimating the noise variance

Choosingo? is a subjective matter; or at least how we choegecould be the
subject of a lengthy philosophical analysis. Perhaps that is why so much of t
literature ignores this question. Without any firm theoretical basis, | cladde be
approximately the noise level. | estimated this as follows.

The simplest method of choosieg is to find the average? in the plane and
then choose some arbitrary fraction of it, say 10% of the average. Although tt



method worked in Figuré.2, | prefer another. | chose? to be themedian value

of v2. (In other words, we conceptually prepare a list of the numbérshen we
sort the list from smallest to largest; and finally we choose the value in the midd!|
In reality, median calculation is quicker than sorting.)

Notice that Figuret.2 uses more initial crosstalk than Figufel. Without the
extra crosstalk | found that the first iteration worked so well, the second one was |
needed. Thus I could not illustrate the utility of nonlinear estimation without mor
crosstalk.

e Colored noise

I made the noise in Figur 2 and4.3from random numbers that | filtered spatially

to give a lateral coherence on a scale something like the size of a letter—whict
somewhat larger than a line (which makes up the letter) width. The noise looks li
paper mottling. The spectrablor (spatial coherence) of the noise does not affec
the results much, if at all. In other words, independent random numbers of the sa
amplitude yield results that are about the same. | chose this particular noise cc
to maximize the chance that noise can be recognized on a poor reproduction.

can see on Figuré.2 that the noise amplitude is roughly one-third of the signal



amplitude. This data thus has a significant amount of noise, but since the signe
bigger than the noise, we should really call this “good” data.

Next we will make the noise bigger than the signal and see that we can s
solve the problem. We will need more powerful techniques, however.

4.2.3. Noise as strong as signal

First we will make the problem tougher by boosting the noise level to the poi
where it is comparable to the signal. This is shown in Figuf2 Notice that the
attempt to remove crosstalk is only partly successful. Interestingly, unlike in Fi
ure4.1, the crosstalk retains its original polarity, because of the strong noise. Ima
ine that the noise dominated everything: then we would be minimizing somethinc
like (n, —anp) - (n, —anp). Assuming the noises were uncorrelated and sampl
sizes were infinite, then, - n, = 0, and the best would be zero. In real life, sam-
ples have finite size, so noises are unlikely to be more than roughly orthogonal,
the predicted in the presence of strong noise is a small number of random polarit
Rerunning the program that produced Figdaréwith different random noise seeds
produced results with significantly more and significantly less estimated crossta
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Figure 4.3: Left: data with crosstalk. Right: residuals after attempted crosste
removal using uniform weights uni-neqs [ER]



The results are dominated more by the noise than the difference bepnsrets.
More about random fluctuations with finite sample sizes will follow in chapter

4.2.4. Spectral weighting function

Since we humans can do a better job than the mathematical formulation leading
to Figure4.3, we naturally want to consider how to reformulate our mathematics t
make it work better. Apparently, our eyes sense the difference betwespdtial
spectraof the signals and the noise. Visually, we can suppress the noise becaus
its noticeably lower frequency. This suggests filtering the data to suppress the no

On the filtered data with the noise suppressed, we can estimate the cross
parametet:. Of course, filtering the noise will filter the signal too, but we need no
display the filtered data, only use it to estimateT hat estimated is applied to the
raw (unfiltered) data and presented as “the answer.”

Of course, we may as well display both filtered and unfiltered data and lak
them accordingly. We might prefer unfiltered noisy images or we might prefer fi
tered images with less noise. Seismograms present a similar problem. Some pe
think they prefer to look at a best image of the earth’s true velocity, impedance,



whatever, while others prefer to look at a filtered version of the same, especially
the filter is known and the image is clearer.

Here | chose a simple filter to suppress the low-frequency noise. It may be 1
from optimal. (What actually is optimal is a question addressed in chapéerds.)
For simplicity, | chose to apply theaplacian operatora% + 33—; to the images to
roughen them, i.e., to make them less predictable. The result is shown in Eigure
The bottom rows are the roughened images. On the left is the input data. Althou
the crosstalk is visible on both the raw images and the filtered images, it see
more clearly visible on the filtered images. “Visibility” is not the sole criterion here
because the human eye can be an effective filter device too. There can be no d
that the crosstalk has larger amplitude (above the background noise) on the filte
images. This larger amplitude is what is important in the dot-product definition
a. So the bottom panels of filtered data are used to compused the top panels
are computed from thai. Finally, notice that the unfiltered data looks somewhai
worseafter crosstalk removal. This is because the combinationasfdh contains
noise from each.



Figure 4.4: Estimation on spatially filtered signals. Top: unfiltered signal wit
crosstalk. Bottom: filtered signal with crosstalk. Left: input data. Center: residu

using uniform weights. Right: residual using inverse-signal weigh| uni-rufn]
[ER]



4.2.5. Flame out

The simple crosstalk problem illustrates many of the features of general modeli
and inversion (finding models that fit data). We have learned the importance
weighting functions—not just their amplitudes, but also their spectral amplitude
Certainly we have known for centuries, from the time3&Huss(see Strang, 1986),
that the “proper” weighting function is the “inversevariance matrix" of the noise

(a generalized relative error, that is, involving the relative amplitudes and relati
spectra), formally defined in chaptét. | do not know that anyone disagrees with
Gauss's conclusion, but in real life, it is often ignored. It is hard to find the covar
ance matrix: we set out to measure a mgealar («), and Gauss tells us we need
to figure out amatrix first! It is not surprising that our illustrious statisticians and
geophysical theoreticians often leave this stone unturned. As we have seen, dif
ent weighting functions can yield widely different answers. Any inverse theory thi
does not tell us how to choose weighting functions is incomplete.
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4.4. HOW TO DIVIDE NOISY SIGNALS

Another univariate statistical problem arises in Fourier analysis, where we seel
“best answer” at each frequency, then combine all the frequencies to get a best
nal. Thus emerges a wide family of interesting and useful applications. Howev
Fourier analysis first requires us to introduce complex numbers into statistical e:
mation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. In chapdewe encountered the
polynomial-division feedback operatiof(Z) = Y(Z)/F(2Z). This division is chal-
lenging whenF has observational error. By switching from tBedomain to the
w-domain we avoid needing to know i is minimum phase. The-domain has
pitfalls too, however. We may find for some realthat F(Z(w)) vanishes, so we
cannot divide by thaF. Failure erupts if zero division occurs. More insidious are
the poor results we obtain when zero division is avoided by a near miss.



4.4.1. Dividing by zero smoothly

Think of any real numbers, y, and f and any program containing=y/f. How
can we change the program so that it never divides by zero? A popular answer i
changex = y/f to x = yf/(f2+¢?), wheree is any tiny value. Whenf | >> |¢|,
thenx is approximatelyy/f as expected. But when the divisérvanishes, the
result is safely zero instead of infinity. The transition is smooth, but some criteric
is needed to choose the value:ofThis method may not be the only way or the best
way to cope wittzero division, but it is a good way, and it permeates the subject o
signal analysis.

To apply this method in the Fourier domain, supp¥sé&’, andF are complex
numbers. What do we do then with=Y/F? We multiply the top and bottom by
the complex conjugate, and again ade? to the denominator. Thus,

X(w) = _F@)¥e) (4.12)
F(w)F(w) + €2
Now the denominator must always be a positive number greater than zero, so d
sion is always safe.
In preparing figures with equatiord.(L2), | learned that it is helpful to recast



the equatlon in a scaled form. First repladewhich has physical units ¢F|2 by
2= AoF, wherel is a dimensionless parameter afﬁils the average value &tF.
Then | rescaled equatiod (L2 to

X@) = —— YO oo, (4.13)

F(w)F(w) + )\aé

The result is that the scale &f is independent of the scale &f and the scale of
A. This facilitates plottingX over a range of those parameters. | found the 2s ir
the expression by experimentation. Of course, if the plotting software you are usi
adjusts a scale factor to fill a defined area, then the scaling may be unimport:
Equation ¢.13 ranges continuously frommverse filtering with X = Y/F to filter-
ing with X = FY, which is called tnatched filtering.” Notice that for any complex
numberF, the phase of AF equals the phase &, so all these filters have the same
phase.

The filter F is called the “matched filter." If nature creatécy random bursts
of energy intoF, then buildingX from Y and F by choosings = oo in equa-
tion (4.13 amounts toX = YF which crosscorrelates F with the randomly placed
copies ofF that are inY.




4.4.2. Damped solution

Equation ¢.12) is the solution to an optimization problem that arises in many appli
cations. Now that we know the solution, let us formally define the problem. Firs
we will solve a simpler problem with real values: we will choose to minimize the
guadratic function ok:

Q) = (fx—y)?+e2x? (4.14)

The second term is called @dmping factor" because it prevenisfrom going to
+oowhenf — 0. Setd Q/dx = 0, which gives

0 = f(fx—y)+e’x (4.15)

This yields the earlier answer= fy/(f?+€?).
With Fourier transforms, the signal is a complex number at each frequency
. So we generalize equatiof.(4) to

QX,X) = (FX=Y)FX=Y)+e2XX = (XF=Y)FX-Y)+e>XX

(4.16)
To minimize Q we could use a real-values approach, where we exptessi+iv
in terms of two real values andv and then sef Q/du =0 andoQ/dv = 0. The



approach we will take, however, is to use complex values, where &xetX =0
andoQ/aX = 0. Let us examin@Q/ad X:

3Q(X, X)
aX
The derivatived Q/9 X is the complex conjugate 6fQ/a X. Soif either is zero, the
other is too. Thus we do not need to specify bath/0X = 0 andaQ/9X = 0.

| usually setaQ/ai equal to zero. Solving equatiod.(7) for X gives equa-
tion (4.12).

= F(FX-Y)4+e’X = 0 (4.17)

4.4.3. Example of deconvolution with a known wavelet

The top trace of Figurd.5 shows a marine reflection seismic trace from northerr
Scandinavia. Its most pronounced feature is a series of multiple reflections from
ocean bottom seen at .6 second intervals. These reflections share a similar w.
shape that alternates polarity. The alternation of polarity (which will be more
apparent after deconvolution) results from a negatdfiection coefficientat the

ocean surface (where the acoustic pressure vanishes). The spectrum of the top
has acomb pattern that results from the periodicity of the multiples. In Figlite
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Figure 4.5: The signals on the top correspond to the spectra on the bottom. The
signal is a marine seismogram 4 seconds long. A wavelet windowed between 0
and 1 s was used to deconvolve the signal with various valugs @dapted from

Bill Harlan, by personal communication|uni-dekor| [ER]



| let the input trace bé&¥ and chose the filteF by extracting (windowing) from

Y the water-bottom reflection, as shown in the second trace. The spectrum of
windowed trace is like that of the input trace except that the comb modulation
absent (see chapt@érfor the reason for the appearance of the comb). The trace |
beled “matched” in Figuré.5is the input after matched filtering, namefyF. The
trace labeled “damped” shows the result of a valug ef .03, my best choice. The
wavelets are now single pulses, alternating in polarity. The trace labeled “invers
is actually not the inverse, but the result of a too small damping facter.001.
The inverse trace is noisy at high frequencies. Notice how the spéemdividth
increases from the matched to the damped to the undamped. Increasing noise (
is associated with sharpening of the pulse (good).

Bill Harlan and | each experimented with varyiagvith frequency but did not
obtain results interesting enough to show.

Another example of deconvolution with a known wavelet which is more typica
and less successful is shown in Figdré. Here a filter designed in a window on
the water-bottom reflection of a single signal fails to succeed in compressing t
wavelets of multiple reflections on the same trace. It also fails to compress t
water-bottom reflection of a nearby trace. We need more sophisticated methods



finding the appropriate filter.

4.4.4. Deconvolution with an unknown filter

Equation .12 solvesY = XF for X, giving the solution for what is called “the
deconvolution problem with a known wavelet" We can also us&¥ = X F when
the filter F is unknown, but the inpuX and outputy are given. Here stabilization
might not be needed but would be necessary if the input and output did not fill t
frequency band. Taking derivatives as above, but with respektitestead ofX,
gives again equationrt(12 with X andF interchanged:

X() Y (@)

Flo) = X@IX@) + 2 (4.18)

4.4.5. Explicit model for noise

In all the signal analysis above there was no explicit modeh@ise but implicitly
the idea of noise was there. Now we will recognize it and solve explicitly for it
This leads to what is calledihear-estimation theory." Instead of simply = F X,
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we add noiseéN () into the defining equation:
Y(w) = F(@)X(w)+ N(w) (4.19)

To proceed we need to define theafiance" (described more fully in chapterl)
as

oF = =3 Ke)Xe) (4.20)
=1

and likewise the noise variano(ﬁ.

The general linear-estimation method minimizes something that looks like
sum ofrelative errors:

Q(X,N) = X—ZX + —2N (4.21)
ox ON

Notice that the variances put both terms of the sum into the same physical unit:
have not derived equatiod.Q1) but stated it as reasonable: from it we will derive
reasonable answers which we have already seen. The rationale for the minimiza
of (4.27) is that we want the noise to be small, but because we must guard agai
zero division inX = Y/F, we ask forX to be small too. Actually, by introducing



equation ¢.19, we have abandoned the modek= Y/F and replaced it with the
model X = (Y — N)/F. Thus, instead of thinking of falsifying to avoid dividing
by zero inX = Y/F, we now think of findingN so the numerator inY(— N)/ X
vanishes wherever the denominator does.
By introducing .19 into (4.21) we can eliminate eitheX or X. Eliminating
N, we have _
XX FX-Y)FX-Y
QX) = — + ( )(2 ) (4.22)
ox ON
Minimizing Q(X) by setting its derivative by to zero gives

X  F(FX-Y)

0 = 5+ ——-- 4.23
o2 o (4.23)
FY
X = —— (4.24)
FF+ 2%
X

Equation ¢.24) is the same as equation.(2), except that it gives us a numerical
interpretation of the value efin equation 4.12).



We can find an explicit equation for the noise in terms of the data and filter k
substituting equatior4(24) into equation4.19 and solving forN.

4.4.6. A self-fulfilling prophecy?

Equation ¢.24) and its surrounding theory are easily misunderstood and misuse
| would like to show you gitfall. Equation ¢.24) expresses the answer to the
deconvolution problem, but does so in terms of the unknowhsndo2. Given
an initial estimate ob,%,/of(, we see that equationt 24 gives usX and ¢@.19
gives N, so that we can computfﬁ andcr)z(. Presumably these computed values
are better than our initial guesses. In statistics, the variances in equatidhgre
called “priors," and it makes sense to check them, and even more sense to cor
them. From the corrected values we should be able to iterate, further improving 1
corrections. Equatiord(24) applies for each of thmanyfrequencies, and there is
only asingleunknown, the ratiof,% /o->2<. Hence it seems as if we have plenty of
information, and the bootstrapping procedure might work. A pessimist might ce
this bootstrapping a self-fulfilling prophecy, but we will see. What do you think?
Truth is stranger than fiction. | tried bootstrapping the variances. With my fir:



starting value for the ratio,%, /0>2<, iterating led to the ratio being infinite. Another

starting value led to the ratio being zero. All starting values led to zero or infinit)
Eventually | deduced that there must benatastablestarting value. Perhaps the

metastable value is the appropriate one, but | lack a rationale to assert it. It see
we cannot bootstrap the variances because the solutions produced do not ten
the correct variance, nor is the variance ratio correct. Philosophically, we can
thankful that these results failed to converge, since this outcome prevents us fr
placing a false confidence in the bootstrapping procedure.

The variance of the solution to a least-squares problem is not usable to oot
strap to a better solution.

I conclude thatlinear-estimation theory, while it appears to be a universal
guide to practice, is actually incomplete. Its incompleteness grows even more sig|
icant in later chapters, when we apply least squares to multivariate problems wh
the scalaw? becomes a matrix. We continue our search for “universal truth” by
studying more examples.



EXERCISES:

1 Using the chain rule for differentiation, verify tha€@Q/du =0 andoQ/dv =0
is equivalent tdd Q/9x, wherex = u-+iw.

2 Write code to verify the instability in estimating the variance ratio.

4.5. NONSTATIONARITY

Frequencies decrease with time; velocities increase with depth. Reverberation p
ods change with offset; dips change with location. Still, we often find it conveniel
to presume that the relevant statistical aspects of data remain constant over a I
domain. In mathematical statistics this is called a “stationarity" assumption. T
assume stationarity is to enjoy a simplicity in analysis that has limited applicabili
in the real world. To avoid seduction by tetationarity assumption we will solve
here a problem in which stationarity is obviously an unacceptable presumption. \
will gain skill in and feel comfortable with the computer techniques of estimatiol
in moving windows. The first requirement is to learn reliable ways of limiting the
potentially destructive effects of the edges of windows.



The way to cope with spatial (or temporal) variation in unknown parameters
is to estimate them in moving windows. Formulating the estimation might

require special shrewdness so that window edges do not strongly affect the
result.

To illustrate computation technique in a nonstationary environment, | have ch
sen the problem oflip estimation. Before we take up this problem, however, we
will examine a generic program for moving a window around on a wall of data. Tt
window-moving operation is so cluttered that the first example of it simply count
the number of windows that hit each point of the wall. Inspecting subroutine
stat() twe first notice that the 1-axis is handled identically with the
2-axis. Ratfor makes this more obvious thaartran could.) Notice the bottom
of the loops where variablgsi,e2) which will be the ends of the windows are
jumped along in steps dft,j2) . Then notice the tops of the loops where pro-
cessing terminates when the ends of the windows pass the ends of the wall. A
at the tops of the loops, the window coukitk2) is incremented, and the starting
points of each window are defined as the window gats2) minus their widths

(wiw2) .



# slide a window around on a wall of data. Count times each data point used.
#

subroutine nonstat( ni,n2, wi,w2, j1,j2, count)

integer n1,n2 # size of data wall

integer wi,w2 # size of window

integer j1,j2 # increments for jumping along the wall
integer s1,s2, el,e2 # starting and ending points of window on wall
integer k1,k2 # output math size of array of windows
integer i1,i2

real count( ni,n2)

call null( count, n1*n2)
k2=0; e2=w2; while( e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; el=w1l; while( el<=nl) { k1=k1+1; sl=el-wl+l
do il= s1, el {
do i2= s2, e2 {
count(il,i2) = count(il,i2) + 1.

el=el+jl
e2=e2+j2
return; end

-

Back



A sample result is shown in Figure7. Since window widths do not match
window jumps, the count is not a constant function of space. We see ridges wh
the rectangles overlapped a little. Likewise, since the windows were not fitted
the wall, some data values near the end of each axis failed to be used in any v
dow. Next we address the problem of splicing together data processing outp

T E=
Figure 4.7:  Sample output of ?@\@1@\%@@-\& TS
nonstat)  with n1=100, w1=20, 2 —lt -\_L-EL L
j1=15, n2=50, w2=20, j2=8. = IS 1515 TS
luni-nonstal R | AL

N
Axis—1
Axis—2

derived in each window. This could be done with rectangle weights derived fro
count 1IN subroutinenonstat()  but it is not much more difficult to patch together
triangle weighting functions as shown in subroutiestat2()  |/prog:nonstat?

nonstat? Triangles allow for a more gradual transition from one window to an:



# slide a window around on a wall of data. Triangle weighting.

subroutlne nonstat2( n1,n2, wlw2, j1,j2, data, output, weight)
integer ni,n2, wiw2, j1,2, sl,s2, ele2, k1,Kk2, i1,i2
real data(n1,n2), output(nl n2), nght(nl n2), trianglel, tr|ang|e2 shape
temporary real window(w1,w2), winout(wl1,w2)
call null( weight, n1*n2)
call null( output, n1*n2)
k2=0; e2=w2; while( e2<=n2) { k2=k2+1; s2=e2-w2+1
k1=0; el=w1l; while( el<=nl) { k1=k1+1; sl=el-wil+l

do il= 1, wl {

do i2= 1, w2 { window(il1,i2) = data(sl+il-1,s2+i2-1)

}

do il= 1, wl { # Trivial data processing
do i2= 1, w2 { winout(i1,i2) = window(i1,i2)

do il= s1, el { trianglel= amax1(0., 1. - abs(il-.5*(el+sl1)) / (.5*wl))
do i2= s2, e2 { triangle2= amax1(0., 1. - abs(i2-.5*(e2+s2)) / (.5*w2))
shape = trianglel * triangle2
output(i1,i2) = output(i1,i2) + shape * winout(il-s1+1,i2-s2+1)
weight(i1,i2) = weight(i1,i2) + shape

B
el=el+jl }
e2=e2+j2 }
do il= 1, nl1

{
do i2= 1, n2 { if( weight(i1,i2) > 0. )
output(i1,i2) = output(i1,i2) / weight(i1,i2)

1
return; end

Back
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Figure 4.8: Sample output @bnstat2()  with same parameters as Figdré. Left
isweight(n1,n2)  and rightisoutput(n1,n2)  for constant data. The flattness of the

output means that in practice we may allow window overlap greater or less than
triangle half width. [ER]



other. Innonstat2() , data is first pulled from the wall to the window. Next should
be the application-specific operation on the data that processes the data winc
into an output window. (This output is often a residual image of a least squar
procedure). To avoid getting into many application-specific details, here we simg
copy the input data window to the output window. Next we devise some triangul
weighting functions. These are used to weight the output window as it is copit
onto the wall of accumulating weighted outputs. Simultaneously, at each point
the wall, the sum of all applied weights is accumulated. Finally, the effect of weigl
shape and window overlap is compensated for by dividing the value at each pc
on the wall of outputs by the sum of weights at that point. Figlieappliesnon-
stat2()  to constant data. As expected, the output is also constant, except at ed
where it is zero because no windows overlap the input data. The flatthess of
output means that in practice we may allow window overlap greater or less than
triangle half width. Notice that five ridges in Figude7 correspond to five valleys
in Figure4.8.

In a typical application, there is one more complication. The filter outputs i
each window are shorter than the input data because the filters themselves may
run over the edges else there would be truncation transients. Thus some of



values of the output in each window are undefined. The application-specific filt
program may leave these values undefined or it may set them to zero. If they co
out zeros, it is safe to add them in to the wall of outputs, but care must be taken t
the window weight that is normally accumulated on the wall of weights is omittec
There is one final complication for those of you who plan to be really meticulou
The triangles designed imnstat2() aper to zero just beyond the
ends of the window oflata They should taper to zero just beyond the ends of th
window of outputs

4.6. DIP PICKING WITHOUT DIP SCANNING

“Picking” is the process of identifying dipping seismic events. Here we will dc
something like picking, but in a continuum; i.e., dips will be picked continuousl
and set on a uniform mesh. Customarily, dip picking is done by scanning tw
dimensional data along various dips. We will see that our method, based on
“plane-wave destructor operator,” does not have its resolution limited by the spa
extent of a dip scan.



4.6.1. The plane-wave destructor

A plane wave in a wave field(t, x) = u(t — px) with stepoutp can be extinguished
with a partial differential operator, which we write as a maixwhere

ad d
0 ~ ut,x)= (& + pi ﬁ) u(t,x) (4.25)
0 A V= A u (4.26)

The parametep is called the “wavenumber" orSnell parameter," and |p| can
take on any value less thani, wherev is the medium velocity. The angle of
propagation of the wave is gin= pv.

We need a method of discretization that allows the mesklégdt to overlay
exactlydu/dx. To this end | chose to represent thderivative by

d_u .1 u(t + At,x) —u(t, x) +} u(t + At, X+ Ax) —u(t,x + Ax)
a2 At 2 At

(4.27)
and thex-derivative by an analogous expression witand x interchanged. Now
the difference operatd + p;d; is a two-dimensional filter that fits on ax22 dif-



ferencing star. As a matrix operation, this two-dimensional convolution is denott
A. (More details about finite differencing can be found in IEI.)

The progranwavekilll()  applies the operatasy + pdt, which can be spe-
cialized to the operato®, 5, 8x + P . | carefully arranged the side
boundaries so that the filter never runs off the sides of the data. Thus the outpu
shorter than the input by one point on both thexis and thec-axis. The reason for
using these side boundaries is that large datasets can be chopped into indeper
sections without the boundaries themselves affecting the result. By chopping a la
dataset into sections, we can handle curved evergieaswise linear

When only one wave is present and the data is adequately sampled, then finc
the best value op is a single-parameter, linear least-squares problemx betan
abstract vector whose components are valuedugbx taken on a mesh int (x).
Likewise, lett containdu/at. Since we wanx+ pt &~ 0, we minimize the quadratic
function of p,

Q(p) = (x+pt)-(x+ pt) (4.28)
by setting to zero the derivative. We get

x
—

p = - (4.29)

—
—



# v = (aa Dx + pp Dt) uu
#

subroutine wavekilll( aa, pp, nl,n2,uu, w )

integer i1,i2, ni,n

real aa, pp, s11, s12, s21, s22, uu(ni,n2), w( nl-1, n2-1)

sll = -aa-pp; s12 = aa-pp

s21 = -aa+pp; s22 = aatpp

call null( w,(n1-1)*(n2-1))

do il= 1, n1-1 { # vv is one point shorter than uu on both axes.

do i2= 1, n2-1 {

w(il,i2) = wv(il,i2) +

uu(il  ,12) * s11 + wu(il ,i2+1) * s12 +
uu(il+1,i2) * s21 + uu(il+1,i2+1) * s22

return; end

Back



Since data will not always fit the model very well, it may be helpful to have som
way to measure how good the fit is. | suggest

_ (x+pt)-(x+pt)

c? = 1 (4.30)
XX
which, on insertingp = —(x-t)/(t - t), leads tcC, where
X-t
= — (4.31)
JOCGX)(t-t)

is known as the Hormalized correlation.” The program for this calculation is
straightforward. | named the prograsack() to denotepickingon a contimum.
ipuck

Inally and parenthetically, an undesirable feature of the plane-wave destruc
method is that the residualhas no particular relation to the dataunlike in time-
series analysis—see chapfer Another disadvantage, well known to people who
routinely work with finite-difference solutions to partial differential equations, is
that for short wavelengths a difference operator is not the same as a differen
operator; thereby the numerical valuepis biased.



# measure coherency and dip, and compute residual
#

subroutine puck ( nl, n2, uu, coh, pp, res )

integer i1, 12, nl, n2

real uu(nl,n2), res(nl,n2), xx, xt, t, coh, pp

temporary real dx(nl,n2-1), dt(nl-1,n2-1)

call wavekilll( 1., 0., ni1,n2 , uu, dx)

call wavekilll( 0., 1., ni1,n2 , uu, dt)

xx = 1.e-30; tt = 1.e-30; xt = 0.

do il= 1, n1-1 {

do i2= 1, n2-1 {
xt = xt + dt(i1,i2) * dx(i1,i2)
tt = tt + dt(i1,i2) * dt(i1,i2)
xx = xx + dx(i1,i2) * dx(i1,i2)

coh = sqr%%(xt/tt)*(xt/xx))
= - Xxt/tt

pp
call wavekilll( 1., pp, ni,n2 , uu, res)
return; end

Back

res

(Dx + p Dt) uu



4.6.2. Moving windows for nonstationarity

Wavefronts generally curve. But a curved line viewed only over a small range
barely distinguishable from a straight line. A straight-line wavefront is much easi
to manage than a curved one. If we think of the slope of the line as a parame
estimated statistically, then it isreonstationaryariable—it varies from place to
place. So we can work with curved wavefronts by working in a small window the
is moved around. The main thing to beware of about small windows is that unle
we are very careful, their side boundaries may bias the result.

Thepuck() method was designed to be ignorant of side boundaries: it can |
applied in a small window and the window moved freely around the data. A streng
of thepuck() method is that the window can be smaller than a wavelength—it ce
be merely two traces wide. A sample based on synthetic data is shown in Figlires
through4.11 The synthetic data id.9 mimics a reflection seismic field profile, in-
cluding one trace that is slightly delayed as if recorded on a patch of unconsolida
soil. Notice a low level of noise in the synthetic data.

Figure 4.10 shows theresidual. The residual is small in the central region
of the data; it is large where there $patial aliasng; and it is large at the tran-
sient onset of the signal. The residual is rough because of the noise in the sig



Figure 4.9: Input synthetic datax
R




Figure 4.10: Residuals, i.e,

an evaluation of Uy + pUkx.

[ER]




because it is made from derivatives, and because the synthetic data was mad
nearest-neighbor interpolation. Notice that the residual is not particularly large f

the delayed trace.
Figure4.11shows the dips. The most significant feature of this figure is th
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sharp localization of the dips surrounding the delayed trace. Other methods ba
on wave or Fourier concepts might lead us to conclude that the aperture must
large to resolve a wide range of angles. Here we have a narrow aperture (two trac
but the dip can change rapidly and widely.

Subroutineslider() /prog:slider below shows the code that generated Fig-
ure4.9through4.11

A disadvantage of theuck() method is that the finite-difference operator is
susceptible to spatial aliasing as well as to distortions at spatial frequencies that
high but not yet aliased. This suggests a logical step—estimating missing interlac
traces—which we take up in chapter

EXERCISES:
1 Itis possible to reject two dips with the operator
(9x + P10t)(9x + P20t) (4.32)
This is equivalent to

92 92 92
—4+a——+b— ) u(t,x = t,X ~ 0 4.33
<ax2+ axat 8t2> (%) v(t:x) (4.33)



# slide a window around on a wall of data measuring coherency, dip, residual

subroutine slider( n1,n2, wilw2, k1,k2, data, coh, pp, res)

integer i1,i2, ni,n2, wiw2, ki1k2, sl,s2, el,e2
integer p1,p2 # number of subwindows is pl*p2
real data(n1,n2) # input

real res(nl,n2) # outputs. math size (n1-1,n2-1)
real pp(n1,n2), coh(nl,n2) # outputs defined at pp( 1..p1, 1..p2)

temporary real count( nl,n2)
temporary real window(wl,w2), tres(wl-1,w2-1)
call null( count, nl*n2)
call null( res, nl*n2)
p2=0; e2=w2; while( e2<=n2) { p2=p2+1; s2=e2-w2+1
pl=1; el=wl; while( el<=nl) { pl=pl+l; sl=el-wl+l
do il =1, wl {
do i2 =1, w2 { wir}l}dow(il,iz) = data(il+sl-1,i2+s2-1)

call null( tres, (wl-1)*(w2-1))
call puck ( wil, w2, window, coh(pl,p2), pp(pl,p2), tres)

do il= s1, el-1 {

do i2= s2, e2-1 {

res( il,i2) = res(il,i2) + tres( il-sl+1, i2-s2+1)
count(i1,i2) = count(il,i2) + 1.
1
el=el+kl
e2=e2+k2 }
do i2= 1, n2-1 {
do il= 1, n1-1 { if( count(i1,i2) > 0. )
res(i1,i2) = res(i1,i2) / count(il,i2)
B
return; end

Back



whereu is the input signal and is the output signal. Show how to solve for
andb by minimizing the energy in.

2 Givena andb from the previous exercise, what gpe and p2?






Chapter 5

Adjoint operators

A great many of the calculations we do in science and engineering are really mat
multiplication in disguise. The first goal of this chapter is to unmask the disguis
by showing many examples. Second, we will illuminate the meaning aidfant
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operator (matrix transpose) in these many examples.

Geophysical modeling calculations generally use linear operators that prec
data from models. Our usual task is to find the inverse of these calculations, i.
to find models (or make maps) from the data. Logically, the adjoint is the fir
step and a part of all subsequent steps in ithisrsion process. Surprisingly, in
practice the adjoint sometimes does a better job than the inverse! This is beca
the adjoint operator tolerates imperfections in the data and does not demand tha
data provide full information.

Using the methods of this chapter, you will find that once you grasp the rel
tionship between operators in general and their adjoints, you can have the adj
just as soon as you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, | will offer you the following
table ofoperators and theiradjoints:

matrix multiply conjugate-transpose matrix multiply
convolution crosscorrelation

stretching squeezing

zero padding truncation

causal integration anticausal integration



add functions do integrals

plane-wave superposition slant stack / beam forming
superposing on a curve summing along a curve
upward continuation downward continuation
diffraction modeling imaging by migration
hyperbola modeling CDP stacking

ray tracing tomography

The left column above is often callechddeling,” and the adjoint operators on
the right are often used in “daaocessing"

When the adjoint operator i®tan adequate approximation to the inverse, ther
you apply the techniques of fitting and optimization which require iterative use
the modeling operator and its adjoint.

The adjoint operator is sometimes called tack projection" operator be-
cause information propagated in one direction (earth to data) is projected backw
(data to earth model). With complex-valued operators the transpose and comy
conjugate go together and in Fourier analysis, taking the complex conjugate
expwt) reverses the sense of time. Still assuming poetic license, | will say th



adjoint operatorsindothe time and phase shifts of modeling operators. The invers
operator does this too, but it also divides out the color. For example, with line
interpolation high frequencies are smoothed out, so inverse interpolation must
store them. You can imagine the possibilities for noise amplification. That is wt
adjoints are safer than inverses. But nature determines in each application whe
the best operator to use, whether to stop after the adjoint, to go the whole way to
inverse, or to stop part-way.

We will see that computation of thadjoint is a straightforward adjunct to
the computation itself, and the computed adjoint should be, and generally can
exact (within machine precision). If the application’s operator is computed in &
approximate way, we will see that it is natural and best to compute the adjoi
with adjoint approximations. Much later in this chapter is a formal definition o
adjoint operator. Throughout the chapter we handle an adjoint operator as a ma
transpose, but we hardly ever write down any matrices or their transposes. Inste
we always prepare two subroutines, one that perfoymsAx and another that
performsX = A'y, so we need a test that the two subroutines really embody tt
essential aspects of matrix transposition. Although the test is an elegant and us
test and is itself a fundamental definition, curiously, that definition helps us not ol



bit in constructing adjoint operators, so | postpone the formal definition of adjoil
until after we have seen many examples.

5.1. FAMILIAR OPERATORS

The operatiory; = Zj bij Xj is multiplication of a matrix8 times a vectox. The
adjoint operation i; = ) ; bjj yi. The operation adjoint to multiplying by a matrix
is multiplying by the transposed matrix (unless the matrix has complex elements,
which case we need the complex-conjugated transpose). The follpstnglocode
does matrix multiplicatiory = Bx and multiplication by the transpose matix=
B'y:



if operator itself
then erase y

if adjoint
then erase x
doiy=1,ny{

doix =1, nx{
if operator itself
y(iy) = y(iy) + b(iy,ix) x x(ix)
if adjoint
x(ix) = x(ix) + b(iy,ix) x y(iy)
1

Notice that the “bottom line” in the program is thaaindy are simply interchanged.
The above example is a prototype of many to follow, so observe carefully the sin
larities and differences between the operation and its adjoint.

A formal program for matrix multiply and its adjoint is found below. The first
step is erasing the output. That may seem like too trivial a function to put in
separate library routine, but, at last count, 15 other routines in this book use 1



subroutine adjnull( adj, add, x, nx, v, ny )

integer ix, iy, adj, add, nx,
real X( 0, ¥( ny )
ift add == 0 )
if( adj == 0 )
do iy= 1, ny
y(y) = 0.
else
do ix= 1, nx
x(ix) = 0.
return; end
Back
# matrix multiply and its adjoint
#
subroutine matmult( adj, bb, nx,x, ny,y)
integer ix, iy, adj, nx, ny
real bb(ny,nx), x(nx), y(ny)
call adjnull( adj, O, X,nX, y,ny)
do ix=1, nx {
do iy= 1, ny {
if( adj == 0 ) ] ] o .
y(iy) = y(y) + bb(iy,ix) * x(ix)
else
x(ix) = x(ix) + bb(iy,ix) * y(iy)
return; end

Back



output-erasing subroutingijnull()

/prog:matmult for matrix multiply and its adjoint exhibits a style that we will use
repeatedly.[ matmuli

5.1.1. Transient convolution

When the matrix has a special form, such as

Y1
Y2
Y3
Ya
Y5
Y6
L Y7

- by
b
b3
0
0
0

0

0
b1
by
b3
0
0
0

0
0
b1
(073
b3
0
0

0
0
0
b1
by

bs
0

0
0
0
0
b1
b
b3

X1
X2
X3
Xq
X5

below. |adjnull] The subroutinenatmult()

(5.1)

then the matrix multiplication and transpose multiplication still fit easily in the sam
computational framework. The operatiBx convolvesh; with x;, whereas the op-
erationB’y crosscorrelates by with y;. | will leave it to you to verify the pseudocode



doix=1, nx{
doib=1,nb{
iy=ib+ix—1
if operator itself (convolution)
y(iy) = y(iy) + b(ib) x x(ix)
if adjoint (correlation)
x(ix) = x(ix) + b(ib) x y(iy)
1

Again, notice that the “bottom line” in the program is thxa&indy are simply inter-
changed.



Equation 6.1) could be rewritten as

M y1 7] Fx1 0 07
Y2 X2 X1 O
Y3 X3 X2 X1 b1
Ya = X4 X3 X2 b (5.2)
Y5 Xs X4 X3 b3
Y6 0 X5 X4
L y7 L 0O 0 x5

which we abbreviate by = Xb. So we can choose betwegs- Xb andy = Bx. In
one case the outpuytis dual to the filtelb, and in the other case the outpus dual
to the inputx. In applications, sometimes we will solve forand sometimes fox;
so sometimes we will use equatidh?) and sometimesh(1).

The prograntontran() can be used with either equatich 1)
or equation %.2), because the calling program can swapstheandbb variables.
The namecontran()  denotes convolution with “transpose” and with “transient”

end effects.[contrar



# Convolve and correlate (adjoint convolve).

#
subroutine contran( adj, add, nx, xx, nb, bb, yy)
integer ix, ib, ny, adj, add, nx, nb
real xx(nx) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx+nb-1) # filtered signal (or second input signal)
ny =nx +nb -1 # length of filtered signal
call adjnull( adj, add, bb, nb, yy, ny)
do ib= 1, nb {
do ix= 1, nx {
if( adj == 0 )
yy( ib+ix-1) = yy( ib+ix-1) + xx( ix) * bb(ib)
else
bb( ib) = bb( ib) + xx( ix) * yy( ib+ix-1)
return; end

Back



5.1.2. Zero padding is the transpose of truncation.

Surrounding a dataset by zer@e(o padding) is adjoint to throwing away the ex-
tended datat{uncation). Let us see why this is so. Set a signal in a vegtand
then make a longer vectgiby adding some zeros at the endkofThis zero padding
can be regarded as the matrix multiplication

y = |:(|):|x (5.3)

The matrix is simply an identity matrixabove a zero matri@. To find the transpose
to zero padding, we now transpose the matrix and do another matrix multiply:

x = [1 0]y (5.4)

So the transpose operation to zero padding data is sitnptgatingthe data back
to its original length.

5.1.3. Product of operators

We will look into details of Fourier transformation elsewhere. Here we use it &
an example of any operator containing complex numbers. For now, we can think



Fourier transform as a square maffixWe denote the complex-conjugate transpose
(or adjoint) matrix with a prime, i.e.F’. The adjoint arises naturally whenever we
consider energy. The statement that Fourier transforms conserve engsgyis'x
wherey = Fx. Substituting gives’ F = | which shows that the inverse matrix to
Fourier transform happens to be the complex conjugate of the transpBse of

With Fourier transformszero padding andtruncation are particularly preva-
lent. Most programs transform a dataset of length"of¢hereas dataset lengths are
often of lengthm x 100. The practical approach is therefore to pad given data wit
zeros. Padding followed by Fourier transformati®rtan be expressed in matrix
algebra as

0

According to matrix algebra, the transpose of a productAday= C, is the product
C’ =B’A’ inreverse order. So the adjoint program is given by

Program = [ O |F (5.6)
Thus the adjoint prograitmuncatesthe dataafter the inverse Fourier transform.

Program = F[ ! } (5.5)



# signal advance: y(iy) = x(iy+jump)
#

subroutine advance( adj, add, jump, nx, XX, ny, yy)

integer ix, iy, adj, add, jump, nx, ny
real xx(nx), yy(ny)
call adJnuII( adj, add, XX,NX, yy,ny)
do iy= 1, ny_ {

iX =iy + jump

if( ix >= 1)

if( ix <= nx )
if(t adj == 0 )

VWIW = yy( iy) + xx( ix)
xx( ix) = xx( ix) + yy( iy)

return; end

Back



5.1.4. Convolution end effects

In practice, filtering generally consists of three parts:ddnvolution, (2) shifting

to some preferred time alignment, and {8)ncating so the output has the same
length as the input. An adjoint program for this task, is easily built from an ea
lier program. We first make a simple time-shift programance() .
Although the code is bulky for such a trivial program, it is easy to read, works fc
any size of array, and works whether the shift is positive or negative. Since filteril
ordinarily delays, thedvance() routine generally compensates.

Mergingadvance() Wwith the earlier programontran() ~ according to the trans-
pose rule AB) = B’A’, we getcontrunc() . For a symmetrical filter, a
lag parameter half of the filter length would be specified. The output of a minimun
phase filter is defined to be at the beginning of the fittay, , so thenag=1 . The
need for an adjoint filtering program will be apparent later, when we design filte
for prediction and interpolation. The program variablie happens to be useful

when there are many signals. Our first real usedafwill be found in the subrou-
tinestackl() |/prog:stack

Another goal of convolution programs is that zero data not be assumed beyc
the interval for which the data is given. This can be important in filter design ar



# Convolve, shift, and truncate output.

#

subroutine contrunc( conj, add, lag, np,pp, nfff, ng,qq)

integer ns, conj, add, lag, np, nf, ng

real pp(np) # input data

real ff(nf) # filter (output at ff(lag))
real qq(nq) # filtered data

temporary real ss( np+nf-1)
ns =np +nf -1

if( conj == 0 ) {
call contran( 0, 0, np,pp, nfff, ss)
call advance( 0, add, lag-1, ns,ss, ng,qq)
else { call advance( 1, 0, lag-1, ns,ss, ng,qq)
call contran( 1, add, np,pp, nfff, ss)
return; end

Back



# Convolve and correlate with no assumptions off end of data.
#

subroutine convin( adj, add, nx, xx, nb, bb, yy)
integer ib, iy,ny, adj, add, nx, nb

real XX(NX) # input signal
real bb(nb) # filter (or output crosscorrelation)
real yy(nx-nb+1) # filtered signal (or second input signal)
ny =nx-nb+1 # length of filtered signal
ift ny < 1) call erexit(convin() filter output negative length.”)
call adjnull( adj, add, bb, nb, yy, ny)
if( adj == 0 )
do iy= 1, ny {
do ib= 1, nb {
i,}y( iy) = yy( iy) + bb(ib) * xx( iy-ib+nb)
else
do ib= 1, nb {
do iy= 1, ny {
?}b( ib) = bb( ib) + yy(y) * xx( iy-ib+nb)
return; end

Back
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spectral estimation, when we do not want thencation at the end of the data to
have an effect. Thus the output data is shorter than the input signal. To meet 1
goal, | prepared subroutin@nvin() . By now you are probably tired of
looking at so many variations on convolution; but convolution is the computation
equivalent of ordinary differential equations, its applications are vast, and end
fects are important. Thend effect of the convolution programs are summarized
in Figure5.1

5.1.5. Kirchhoff modeling and migration

Components of a vector can be summed into a scalar. The adjoint is taking |
scalar and distributing it out to a vector (also callegt&ttering” or “spraying”).
Alternately, values to be summed can come from a trajectory in a plane, such a
hyperbolic trajectory.

When reflectors in the earth are dipping, or broken into point scatterers, tim
to-depth conversion is not simply a stretching of the time axis. Modeling is dor
in a variety of ways, one of which is to model each point in the depth){plane
by a hyperbola in the dat (t)-plane. The adjoint operation consumes much com



puter power in the petroleum-prospecting industry and is called “migration." Mar
migration methods exist, most of which are taken up in IEI, but that book does n
describe the adjoint property | discuss below.

Hyperbola superposition is the adjoint to hyperbola recognition by summir
along hyperbolas. The summing is calle€lirthhoff migration ” or “imaging,”
and the spraying is called “Kirchhoff modeling.” The name comes from Kirchhoff”
diffraction integral.

In the pseudocode below, the parameterefers to the separation of a point on
a hyperbola from its top at . Ignoring “if index off data” tests, | show Kirchhoff
modeling and migration in the pseudocode following:



doiz=1,nz

do ix = 1,nx
doih =-25, 25
it = sqrt( izxiz + ih«ih )/velocity
ig=ix+ih

if not adjoint
zz(iz,ix) = zz(iz,ix) + tt(it,ig) # imaging
if adjoint
tt(it,ig) = tt(it,ig) + zz(iz,ix) # modeling
We can speed up the program by movingithdoop to the inside of the square root
and interpolation overheads.

5.1.6. Migration defined

“Migration” is a word in widespread use in reflection seismology to define an
data-processing program that converts a data plane to an image. IEl offers sev
descriptive definitions of migration. Here | offer you a mathematical definition o



a migration operator: given angliffraction ) modeling operatorB, its adjointB’
defines a migration operator. This raises the interesting question, what is the inve
to B, and how does it differ from the adjoiBt?

An adjoint operator is not the same as an inverse operator. Most people thi
of migration as thdanverseof modeling, but mathematically it is thadjoint of
modeling. In many wave-propagation problerBs;! andB’ are nearly the same.
A formula for B—1 (from (5.14) is B~1 = (B’'B)~!B’. So the difference between
B’ andB~! is in the factorB’B. Theoreticians that work in the continuum find
something likeB'B in the form of a weighting function in the physical domain or
a weighting function in the spectral domain or both. Since it is merely a weightir
function, it is not very exciting to practitioners who are accustomed to weightin
functions in both domains for other purposes, principally for enhancing data displz
Indeed, it could be a pitfall to introduce the weighting function of inversion, becau:
it could interfere with the data display. The opportunity that | see for inversion lie
in practice wherd'B is quite far from an identity matrix for another reason—that
data is not a continuum and has aliasing, truncation, and noise.

A curious aspect of migration arises from the reflectomplitude versus off-
set (AVO) along the hyperbola. The effect of changing AVO is to change the di



filtering. Notice that effort expended to get the correct AVO in the modeling oper:
tor affects the migration operator (the adjoint) without necessarily making it clos
to the inverse. It is gitfall to imagine that carefully constructing the correct ampli-
tude versus offset in a diffraction operator will make the corresponding migratic
operator more effective. The question of whether an inverse operator is better tl
an adjoint has no simple answer; its answer depends on circumstances. So
phrase “true amplitude migration” has questionable meaning.

You might look at the Kirchhoff migration code above and ask, what is th
modelling matrix that is transposed? We don't see it. We started by defining “adjoi
operator” as the transpose of a matrix, but now we seem to be defining it by a cert
programming style. The abstract vector for Kirchhoff migration is packed with dat
values from a two-dimensiondl, &)-plane. The abstract matrix is hard to visualize.
How can we know whether we have defined the adjoint operator correctly? T
answer is given next by the dot-product test.



5.2. ADJOINT DEFINED: DOT-PRODUCT TEST

There is a huge gap between the conception of an idea and putting it into practi
During development, things fail far more often than not. Often, when somethir
fails, many tests are needed to track down the cause of failure. Maybe the ca
cannot even be found. More insidiously, failure may be below the threshold
detection and poor performance suffered for years. | findlititgoroduct testto be

an extremely valuable checkpoint.

Conceptually, the idea of matrix transposition is simgly= a;;. In practice,
however, we often encounter matrices far too large to fit in the memory of ar
computer. Sometimes it is also not obvious how to formulate the process at he
as a matrix multiplication. What we find in practice is that an application and it
adjoint amounts to two subroutines. The first subroutine amounts to the mat
multiplication Ax. The adjoint subroutine comput@sy, whereA’ is the transpose
matrix. In a later chapter we will be solving huge sets of simultaneous equatiol
Then both subroutines are required. We are doomed from the start if the practitiol
provides an inconsistent pair of subroutines. The dot product test is a simple test
verifying that the two subroutines are adjoint to each other.

The associative property of linear algebra says that we do not need parent



ses in a vector-matrix-vector product likgAx because we get the same result no
matter where we put the parentheses. They serve only to determine the sequenc
computation. Thus,

y'(Ax) (Y'A)X (6.7)
y(Ax) = (Aly)x (5.8)

(In general, the matrix is not square.) For the dot-product test, load the vector:
andy with random numbers. Compute the vedies Ax using your program foA,
and comput& = A’y using your program foA’. Inserting these into equatioB.g)
gives you two scalars that should be equal.

Y(A) = y§ = &x = (Ay)x (5.9)

The left and right sides of this equation will be computationally equal only if the
program doingA’ is indeed adjoint to the program doig (unless the random
numbers do something miraculous).

| tested 6.9) on many operators and was surprised and delighted to find that it
often satisfied to an accuracy near the computing precision. More amazing is tha
some computers, equatiob.9) was sometimes satisfied down to and includimg



least significant bitl do not doubt that larger rounding errors could occur, but so fat
every time | encountered a relative discrepancy of°16r more, | was later able to
uncover a conceptual or programming error. Naturally, when | do dot-product tes
| scale the implied matrix to a small dimension in order to speed things along, a
to be sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. St
errors in the definition of the original operator should be identically matched k
truncation errors in the adjoint. If your code passes tle-product test, then you
really have coded the adjoint operator. In that case, you can take advantage of
standard methods of mathematics to obtain inverse operators.

We can speak of a continuous functidiit) or a discrete ond;. For continu-
ous functions we use integration, and for discrete ones we use summation. In fori
mathematics the dot-product tetfineshe adjoint operator, except that the sum-
mation in the dot product may need to be changed to an integral. The input or 1
output or both can be given either on a continuum or in a discrete domain. So
dot-product tesy’y = X’x could have an integration on one side of the equal sigt
and a summation on the other. Linear-operator theory is rich with concepts, bt
will not develop it here. | assume that you studied it before you came to read tt



book, and that it is my job to show you how to use it.

5.2.1. What is an adjoint operator?

In mathematics the wordatjoint” has three meanings. One of them, the so-callec
Hilbert adjoint, is the one generally found in Physics and Engineering and it is tl
one used in this book. In Linear Algebra is a different matrix, callechttjagate
matrix. It is a matrix whose elements are signed cofactors (minor determinant
For invertible matrices, this matrix is the determinant times the inverse matrix.
is computable without ever using division, so potentially the adjugate can be use
in applications where an inverse matrix cannot. Unfortunately, the adjugate mat
is sometimes called the adjoint matrix particularly in the older literature. Becau:
of the confusion of multiple meanings of the word adjoint, in the first printing o
this book | avoided the use of the word, substituting the definition, “conjugate tran
pose”. Unfortunately this was often abbreviated to “conjugate” which caused ev
more confusion.



EXERCISES:

1 Suppose a linear operatarhas its input in the discrete domain and its output
in the continuum. How does the operator resemble a matrix? Describe t
operatorA’ which has its output in the discrete domain and its input in the con
tinuum. To which do you apply the words “scales and adds some function:
and to which do you apply the words “does a bunch of integrals™? What a
the integrands?

2 Examine the end effects in the programstran() andconvin() . Interpret
differences in the adjoints.

3 An operator is self-adjoint” if it equals its adjoint. Only square matrices can

beself-adjoint. Prove by a numerical test that subroutigy() |/prog:leak

is self-adjoint.

4 Prove by a numerical test that the subroutiiaegle() /prog:triangle, which
convolves with ariangle and then folds boundary values back inwardse#-
adjoint.



5.3. NORMAL MOVEOUT AND OTHER MAP-
PINGS

Many times we simply deform or stretch a wave field or a map. A curious mappir
| once made was a transformation of world topography (including ocean deptl
Great circles play an important role in global surface-wave propagation becaus
waves travel on the great circles. In my transformed map, the great circle frc
Stanford University to the east is plotted as an equator on a Mercator projecti
North at Stanford is plotted vertically as usual. Figarashows it.

Deformations can either stretch or shrink or both, and different practical pro
lems arise in each of these cases.

5.3.1. Nearest-neighbor interpolation

Deformations begin from the task of selecting a valale from an arrayvec(ix),

ix=1,nx . The points of the array are at locations x0+dx*(ix-1) . Given the
locationx of the desired value we backsolve fer. In Fortran, conversion of a
real value to an integer is done by truncating the fractional part of the real valt
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Figure 5.2: The world as Gerhardus Mercator might have drawn it if he had lived
Stanford University. Press button for movie (and be patie| conj-greaf[NR,M]



# Nearest neighbor interpolation, essentially: val = vec( 1.5 + (t-t0)/dt)
#

subroutine spotO( adj, add, ntt0,dt, t, val, vec )
integer it, ad), add, nt

real t0,dt, t, val, vec( nt)
call adjnull( adj, add, val, 1, vec, nt)

it = 1.5 + (t-t0) / dt
iftl 0 < it && it <= nt)

ift adj == 0 ) # add value onto vector
vec( it) = vec( it) + val
else # take value from vector
val = val + vec( it)
return; end

Back



To get rounding up as well as down, we add a half before conversion to an integ
namelyix=int(1.5+(x-x0)/dx) . This gives the nearest neighbor. The adjoint to
extracting a value from a vector is putting it back. A convenient subroutine fc
nearest-neighbor interpolationssoto() .

diagonal shifted up or down. Now examine subroutpeo() l and
think about its matrix equivalent. Since its input is a single value and its output
a vector, that means its matrix is a column vector so the adjoint operator is a r
vector. The vector is all zeros except for somewhere where there is a “1".

Recall subroutinedvance() |/prog:advance Forjump==0 its matrix equiv-
alent is an identity matrix. For other values jofp, the identii matrix has its

5.3.2. A family of nearest-neighbor interpolations

Let an integek range along a survey line, and let data valygbe packed into a

vectorx. (Each data poinkk could also be a seismogram.) We plan to resampls
the data more densely, say from 4 to 6 points. For illustration, | follow a crud
nearest-neighbor interpolationscheme by sprinkling ones along the diagonal of &



rectangular matrix that is

y = BX (5.10)
where
yi 1000
Y2 01 00 X1
Y3 _ 0 1 00 X2
vl = o010l x (5.11)
Y5 0 0 01 X4
V6 0001

The interpolated data is simply= (x1,X2,X2,X3,Xs,X4). The matrix multiplica-
tion (5.11) would not be done in practice. Instead there would be a loop runnin
over the space of the outputghat picked up values from the input.

® Looping over input space

The obvious way to program a deformation is to take each point fronining
space and find where it goes on the output space. Naturally, many points could I
in the same place, and then only the last would be seen. Alternately, we could f
erase the output space, then add in points, and finally divide by the number of poi



that ended up in each place. The biggest aggravation is that some places could
up with no points. This happens where the transformasimetches. There we
need to decide whether to interpolate the missing points, or simply low-pass fill
the output.

e Looping over output space

The alternate method that is usually preferable to looping over input space is that
program have a loop over the space ofdligouts and that each output find its input.
The matrix multiply of £.11) can be interpreted this way. Where the transformatior
shrinks is a small problem. In that area many points in the input space are ignor:
where perhaps they should somehow be averaged with their neighbors. This is
a serious problem unless we are contemplating iterative transformations back
forth between the spaces.

We will now address interesting questions about the reversibility of these d
formation transforms.



5.3.3. Formal inversion

We have thought of equatiof.(L0) as a formula for finding from x. Now consider
the opposite problem, finding from y. Begin by multiplying equationX.11) by
thetranspose matrix to define a new quantity.

Y1
%1 10000 07/ v
%21 |o11000]|]|ys
%5 | = |ooo1o00|| v (5.12)
% 00001 1]]/ys
Y6

Obviously, X is not the same as, but at least these two vectors have the sam
dimensionality. This turns out to be the first step in the process of findframy.
Formally, the problem is

y = Bx (5.13)
And the formal solution to the problem is

x = (B'B)"!By (5.14)



Formally, we verify this solution by substituting.(3 into (5.14).
x = (BBIBBxXx = Ix = x (5.15)

In applications, the possible nonexistance of an inverse for the ma&tB) (s al-
ways a topic for discussion. For now we simply examine this matrix for the inte
polation problem. We see that it is diagonal:

1000

1000007|0100 1000

gg - |01 1000|0100 _ |0200

= |looo1o00f|l0010| ~ |0010

000011/]|0001 000 2
0001

(5.16)

S0,X1 = X1; butX> = 2x2. To recover the original data, we need to dividby the
diagonal matrix8’ B. Thus, matrix inversion is easy here.

Equation 6.14 has an illustrious reputation, which arises in the context o
“least squares.”Least squaresis a general method for solving sets of equations
that have more equations than unknowns.



Recoveringx from y using equation¥.14) presumes the existence of the in-
verse ofB’B. As you might expect, this matrix is nonsingular whBrstretches
the data, because then a few data values are distributed among a greater numb
locations. Where the transformatisqueezethe dataB’ B must become singular,
since returning uniquely to the uncompressed condition is impossible.

We can now understand why an adjoint operator is often an approximate i
verse. This equivalency happens in proportion to the nearness of the BaBrix
to an identity matrix. The interpolation example we have just examined is one
which B’ B differs from an identity matrix merely by a scaling.

5.3.4. Nearest-neighbor NMO

Normal-moveout correction NMO) is a geometrical correction of reflection data
that stretches the time axis so that data recorded at nonzero sepagatf@mot and
receiver, after stretching, appears to begt 0. See Figuré.3. NMO correction

is roughly like time-to-depth conversion with the equaticht? = z2 + x2. After
the data alg is stretched front to z, it should look like stretched data from any
otherx (assuming plane horizontal reflectors, etc.). In pracdégnot used; rather,
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Figure 5.3: A sound emitter
at locations on the earth’s sur-
facez = 0, and rays from a hori-
zontal reflector at depthreflect-
ing back to surface locations.
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traveltime depth 7 is used, where = z/v; sot? = t2+x2/v2.

To show how surfaces deform under moveout correction, | took a square of t¢
and deformed it according to the NMO correction equation and its inverse. This
shown in Figurés.4. The figure assumes a velocity of unity, so the asymptotes of t
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Figure 5.4: Roughly, NMO takes each panel to the one on its ri{conj-frazef
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hyperbolas lie at 45 The main thing to notice is thidMO stretches information
at wide offsets and early time, whereas modeling, its inverse, squeezes it. M



precisely, starting from the center panel, adjoint NMO created the left panel, a
NMO created the right panel. Notice that adjoint NMO throws away data at la
time, whereas NMO itself throws away data at early time. Otherwise, adjoint NM
in this example is the same as inverse NMO.

Normal moveout is a linear operation. This means that data can be decon
posed into any two parts, early and late, high frequency and low, smooth and rou
steep and shallow dip, etc.; and whether the two parts are NMO’ed either separa
or together, the result is the same, i(a+ b) = Na+ Nb.

Figure5.5shows a marine dataset before and after NMO correction at the wat
velocity. You can notice that the wave packet reflected from the ocean bottom is
proximately a constant width on the raw data. After NMO, however, this wavefori
broadens considerably—a phenomenon known as “NMO stretch."

The NMO transformatioiN is representable as a square matrix. The matrix
is a (r,t)-plane containing all zeros except an interpolation operator centered alo
the hyperbola. The dots in the matrix below are zeros. The input signalput
into the vectox. (This x; should not be confused with thg denoting distance in
the hyperbold? = t2+x3/v2.) The output vectoy—i.e., the NMO’ed signal—is
simply (X, X6, X6, X7, X7, X8, X8, X9, X10, 0). In real life, the subscript would go up to
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about one thousand instead of merely to ten.

B )l 7] .. . . .1 . oo T o x 7
Y2 S . . . X2
Y3 R . . . X3
Ya R Xa
Ys Y . . X5

y = Nx = Y6 - e e 1. . X6
Y7 e e e 1. . X7
Ys e e e e . 1. X8
Yo e e e . . o1 X9
L Yo | L - - - - . . . . . .| L X10 |
(5.17)

You can think of the matrix as having a horizontadxis and a verticat-axis. The
1's in the matrix are arranged on the hyperbtia= t2 + x3/v2. The transpose
matrix defining som& from y gives pseudodat& from the zero-offset (or stack)



modely, namely,

1

(5.18)

Y1
Y2
Y3
Ya
V]
Y6
y7
Y8
Yo
Y10 _

A program fornearest-neighbor normal moveoutas defined by equations.(7)
and 6.18 isnmo1() . Because of the limited alphabet of programming languages,

used the keystroketo denoter.



subroutine nmol( adj, add, slow, X, t0, dt, nzz, tt)
integer it, iz, adj, add, n

real xs, t, z slow(n), x, tO, dt, zz(n), tt(n), wt
call adJnuII( adj, add, zz,n, tt,n)
doiz=1, n{ z= tO + dt*(iz-1)

Xs = X * slow(iz)
t:sqt(z*z+xs*xs)+le20

wt = z/t * (1. /sqrt(t)) # weighting function
it:1+ S5+ (t-t0)/ dt
if( it <= n)

if( adj ==

0)
ttit) = tt(it) + zz(iz) * wt
) zz(iz) = zz(iz) + tt(it) * wt

return; end

Back



5.3.5. Stack

Typically, many receivers record every shot. Each seismogram can be transforn
by NMO and the results all added. This is callesfdtking” or “NMO stacking.”
The adjoint to this operation is to begin from a model that is identical to the nee
offset trace and spray this trace to all offsets. There is no “official” definition o
which operator of an operator pair is the operator itself and which is the adjoint. (
the one hand, | like to think of the modeling operation itseltlesoperator. On
the other hand, the industry machinery keeps churning away at many processes
have well-known names, so | often think of one of thentresoperator. Industrial
data-processing operators are typicaltijoints to modeling operators.
Figure5.6illustrates the operator pair, consisting of spraying out a zero-offse
trace (the model) to all offsets and the adjoint of the spraying, whisliisking.
The moveout and stack operations are in subroutiag1() . Let S
denote NMO, and let the stack be defined by invokitagk1()  with theconj=0 ar-
gument. Ther8 is the modeling operation defined by invokistgck1()  with the
conj=1 argument. Figur&.6 illustrates both. Notice the roughness on the wave
forms caused by different numbers of points landing in one place. Notice also t
increase oRAVO as the waveform gets compressed into a smaller space. Finally, r



subroutine stack1( adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)

integer ix, adj, add, N
real X, slow(nt), t0,dt, x0,dx, stack(nt), gather(nt,nx)
call adjnull( adj, add, stack,nt, gather,nt*nx)

do ix= 1, nx
X = X0 + dx * (ix-1)
call nmol( adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))

return; end

Back



Model

Figure 5.6: Top is a model trace

m. Center shows the sprayifigdats

to synthetic tracessm. Bottom

is the stack of the synthetic data,

SSm. [ER]
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tice that the stack is a little rough, but the energy is all in the desired time window

We notice a contradiction of aspirations. On the one hand, an operator f
smooth outputs if it “loops over output space” and finds its input where-ever it ma
On the other hand, it is nice to have modeling and processing be exact adjoints
each other. Unfortunately, we cannot have both. If you loop over the output space
an operator, then the adjoint operator has a loop over input space and a conseq
roughness of its output.

Unfortunately, the adjoint operatb¥ defined by the subroutineno1() |/prog:nmo:
is not a good operator for seismogram modeling—notice the roughness of the s
thetic seismograms in Figufe6. This roughness isot an inevitable consequence
of nearest-neighbor interpolation. Itis a consequence of defining the NMO progr:
as a loop over the output space Instead, we can define inverse NMO as a loop
overits output space, which is natbutt. This is done inmo1() |/prog:imo1].

imol imospraﬁ




subroutine imol1( adj, add, xs, t0, dt, nt, zz, tt )

integer adj, add, nt, it, iz
real t0, dt, zz(nt), tt(nt), t, xs, zsquared
call adjnull( ad], add, zz,nt, tt,nt)
do it= 1, nt { t = t0 + dt*(it-1)
zsquared = t *t - xs * xs

if ( zsquared >= 0) { iz =15+ (sqrt( zsquared) - t0) /dt
if (iz>0){if( adj =
ttit) = tt(it) + zz(iz)
else

}

zz(iz) = zz(iz) + tt(it)

return; end
Back

# inverse moveout and spray into a gather.
#

subroutine imospray( adj, add, slow, x0,dx, t0,dt, nx,nt, stack, gather)

integer ix, adj, dd, nx,nt
real xs, slow, x0,dx, t0,dt, stack(nt), gather( nt,nx)
call adjnull( adj, add, stack,nt, gather, nt*nx)

do ix= 1, nx {
xs = (x0 + dx * (ix-1)) * slow
call imol( adj, 1, xs, tO, dt, nt, stack, gather(1,ix))

return; end

Back



5.3.6. Pseudoinverse to nearest-neighbor NMO
Examine the matrix\’ N:

NN = | = - e (5.19)

— 1 —
Any mathematician will say that equatios.{9 is not invertible because the zeros
on the diagonal make it singular. But as a geophysicist, you know better. O



inverse, called agseudoinvers¢ is

(NN = (5.20)

. Wl .
. NI -
. Nl -

1
We could write code for inverse NMO, which is an easy task, or we could try t
write code for inverse NMO and stack, which has no clean solution known to m

Instead, we move to other topics.




5.3.7. Null space and inconsistency

The normal-moveout transformation is a textbook example of some of the patho
gies of simultaneous equation solving. Reexamine equalidn)( thinking of it as

a set of simultaneous equations fgrgiveny;. First, 6.17) shows that there may
exist a set ofy; for which no solutionx; is possible—any set containingg # 0,

for example. This is an example ipfconsistencyin simultaneous equations. Sec-
ond, there ar& vectors that satisfiix = 0, so any number of such vectors can be
added into any solution and it remains a solution. These solutions are called
“null space" Here these solutions are the arbitrary valuegi9fx,, X3, X4, andxs
that obviously leavey unaffected. Typical matrices disguise their inconsistencie
and null spaces better than does the NMO transformation. To make such a tre
formation, we could start from the NMO transformation and apply any coordina
transformation to the vectorsandy.

EXERCISES:

1 A succession of normal-moveout operators is calleastaded NMQ’ Con-
sider NMO from timet” to traveltime depttt’ by t"? = t'2 + x?/v3, fol-
lowed by another NMO transform which uses the transformation equatic



t’2 =12+ x2/v2. Show that the overall transformation is another NMO trans
formation. What is its velocity? Notice that cascaded NMO can be used
correct an NMO velocity. Thus it can be called residual velocity analysis c
residual normal moveout.

5.3.8. NMO with linear interpolation

NMO with linear interpolation implies that the matriXN is a two-band matrix.
Each row has exactly two elements that interpolate between two elements on
input. 1 will sketch the appearance of the matrix, using the lettemadb for the



elements. Each andb is different numerically, but on a given roa+b = 1.

My ] r. . . . a b . e
Y2 .. . . a b . . . . X2
Y3 .. .. .a b . . .. X3
Ya a B X4
Y5 a . X5
v - 2 b o (5.21)
Y7 a b . X7
Ys a b . X8
Yo P . . a b X9
L Y10 | L - - - . . . . . . a | [ X0 |

Here the matriXN’N is tridiagonal, but | am going to let you work out the details
by yourself. The original data can be recovered by solving the tridiagonal syste
This method can be used to program an invertible NMO or to program an invertik
trace interpolation. | do not want to clutter this book with the many details. Instea
| presentspotl() , a convenient subroutine for linear interpolation that can be use

in many applications/spot]]



# Nearest neighbor interpolation would do this: val = vec( 1.5 + (t-t0)/dt)
# This is the same but with _linear_ interpolation.
#

subroutine spotl( adj, add, ntt0,dt, t, val, vec )
integer it, itc, adj, add, nt
real tc, fraction, t0,dt, t, val, vec(nt)
call adjnull( adj, add, val, 1, vec,nt)
tc = (tt0) / dt
itc = tc
it =1 + itc; fraction = tc - itc
ifll <=it && it < nt
ift adj == 0) { # add value onto vector
vec(it ) = vec(it ) + (1.-fraction) * val
vec(it+l) = vec(it+1) +  fraction * val
else # take value from vector

val = val + (1.-fraction) * vec(it) + fraction * vec(it+1)
return; end

Back



5.4. DERIVATIVE AND INTEGRAL

Differentiation and integration are very basic operations. Their adjoints are be
understood when they are represented in the sampled-time domain, rather thar
usual time continuum.

5.4.1. Adjoint derivative

Given a sampled signal, its time derivative can be estimated by convolution with t
filter (1,—1)/At. This could be done with any convolution program. For example

if we choose to ignore end effects we might seleetin) | /prog:convir]. This
example arises so frequently that | display the matrix multiply below:

i 11 . il
Vo .o-1 1 . X2
V3 — .. -1 1 . 3 (5.22)
ya e XX“
v . ] 5



The filter impulse response is seen in any column in the middle of the matri
namely (1~1). In the transposed matrix the filter impulse response is time revers
to (—1,1). So, mathematically, we can say that the adjoint of the time derivati
operation is the negative time derivative. This corresponds also to the fact that
complex conjugate of-iw isiw. We can also speak of the adjoint of the bound-
ary conditions: we might say the adjoint of “no boundary condition” is “specifiec
value” boundary conditions.

Banded matrices like irb(21) and 6.22) arise commonly, and subroutines like
convin() are awkward and over-general because they sum with
do loop where a mere statement of the two terms is enough. This is illustrated
subroutineruffen1() . Notice the adjoint calculation resembles thatspati()
/prog:spot]. ruffenl

5.5. CAUSAL INTEGRATION RECURSION

Causal integration is defined as

y(t) = /t x(t) dt (5.23)



subroutine ruffen1( adj,

integer i,

real
call adjnull(
do i= 1, n-1 {

if( adj ==

else {

}
return; end

Back

n, Xx, yy )

n

xx(n), yy( n-1)
Xx,n, yy, n-1)
yy(@i) + xx(i+1) - xx(i)

= xx(i+1) + yy(i)
= xx(i ) - yy(@)



Sampling the time axis gives a matrix equation which we should call causal su

mation, but we often call it causal integration.

Yo
y1
Y2
Y3
Ya
Y5
Y6
y7
Y8
L Yo

RPRRPRRRPRRRPR

=

PRRPRRPRRREPRLRO

PRRPRRPRRPRRRRLOO

RPRRPRRRPRLRRPLROOO

PRRPRPRRPRLROOOO

PRPRPRPPRPOOOOO

PRPPRPPOOOOOO

PRPPRPOOOOOOO

PPRPOOOOOOOO

POOOOOO0OOOoOO

Xo
X1
X2
X3
X4
X5
X6
X7
Xg
X9

(5.24)

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integratiol
the simplest prototype of a recursive operator. The coding is trickier than operatt
we considered earlier. Notice when you compyehat it is the sum of 6 terms,
but that this sum is more quickly computedyas= ys + Xs5. Thus equation¥.24)



is more efficiently thought of as the recursion
o, = Y-1+X for increasing (5.25)

(which may also be regarded as a numerical representation of the differential eq
tiondy/dt = x.)

When it comes time to think about the adjoint, however, it is easier to thin
of equation $.24) than of 6.25. Let the matrix of equation5(24) be calledC.
Transposing to ge€’ and applying it toy gives us something back in the space of
X, namelyX = C’y. From it we see that the adjoint calculation, if done recursively
needs to be done backwards like

%1 = Ki+Via for decreasing (5.26)

We can sum up by saying that the adjoint of causal integration is anticausal integ
tion.

A subroutine to do these jobs dsusint() The code for anti-
causal integration is not obvious from the code for integration and the adjoint codi
tricks we learned earlier. To understand the adjoint, you need to inspect the deta
form of the expressiok = C'y and take care to get the ends corr



# causal integration (1's on diagonal)
#

subroutine causint( adj, add, n,xx,
integer i, n, adj, add real xx(n), yy(n )
temporary real tt( n)
call adJnuII( adj, add, Xx,n, yy.n
if( adj == O}
doi= 1, n . .
yy(@) = yy(@) + tt()
else {
do i= 1, n
xx(i) = xx(i) + tt(i)
return; end

Back

) tt(1) =
do i= 2, n

tt(i) =
do i=n, 2, -

xx(1)

tt(i-1) + xx(i)

tt(n) = yy(n)
1

t(i-1) =

() + yy(-1)
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Later we will consider equations to march wavefields up towards the eartt
surface, a layer at a time, an operator for each layer. Then the adjoint will start frc
the earth’s surface and march down, a layer at a time, into the earth.

EXERCISES:

1 Modify the calculation in Figuré.7to make a triangle waveform on the bottom
row.

5.5.1. Readers’ guide

Now we have completed our discussion of most of the essential common featu
of adjoint operators. You can skim forward to the particular operators of interest
you without fear of missing anything essential.

5.6. UNITARY OPERATORS

The nicest operators are unitary. Let us examine the difference between a unit
operator and a nonunitary one.



5.6.1. Meaning of B'B

A matrix operation likeB'B arises whenever we travel from one space to anothe
and back again. The inverse of this matrix arises when we ask to return from f
other space with no approximations. In geneBiB can be complicated beyond
comprehension, but we have seen some recurring features. In some cases this m
turned out to be a diagonal matrix which is a scaling function in the physical domai
With banded matrices, tH&B matrix is also a banded matrix, being tridiagonal for
B operators of bothH.22) and 6.21). The banded matrix for the derivative operator
(5.22 can be thought of as the frequency domain weighting fasforwe did not
examineB’B for the filter operator, but if you do, you will see that the rows (and the
columns) ofB'B are theautocorrelation of the filter. A filter in the time domain is
simply a weighting function in the frequency domain.

The tridiagonal banded matrix for linearly-interpolated NMO is somewhat mor
complicated to understand, but it somehow represents the smoothing inherent to
composite process of NMO followed by adjoint NMO, so although we may nc
fully understand it, we can think of it as some multiplication in the spectral domai
as well as some rescaling in the physical domain. SBi&eclusters on the main
diagonal, it never has a “time-shift” behavior.



5.6.2. Unitary and pseudounitary transformation

A so-calledunitary transformatiorlJ conserves energy. In other wordsy i Ux,
thenx’x = v'v, which required)’U = |. Imagine an application where the transfor-
mation seems as if it should not destroy information. Can we arrange it to conse
energy? The conventional inversion

y = BX (5.27)

x = (B'B)"'By (5.28)
can be verified by direct substitution. Seeking a more symmetrical transformati
betweery andx than the one above, we define

U = B®BB)? (5.29)

and the transformation pair
Ux (5.30)
U'v (5.31)

where we can easily verify thatx = v'v by direct substitution. In practice, it would
often be found that is a satisfactory substitute fgr and further that the unitary



property is often a significant advantage.

Is the operatotJ unitary? It would not be unitary for NMO, because equa-
tion (5.19 is not invertible. Remember that we ot (X2, X3, X4, andxs) in (5.17).
U is unitary, however, except for lost points, so we callgséudounitary." A trip
into and back from the space of a pseudounitary operator is like a pass throug
bandpass filter. Something is lost the first time, but no more is lost if we do it agal
Thus,x # U’'Ux, butU’Ux = U’'U(U’Ux) for anyx. Furthermore,{’U)? = U'U, but
U’'U # 1. In mathematics the operatdgsU andUU’ are called fdempotent' oper-
ators. Another example of an idempotent operator is that of subroaditiece()

/prog:advance

5.6.3. Pseudounitary NMO with linear interpolation

It is often desirable to work with transformations that are as nearly unitary as pc
sible, i.e., their transpose is their pseudoinverse. These transformations are p
dounitary. Let us make NMO withnear interpolation into a pseudounitary trans-
formation. We need to factor the tridiagonal matkiN = T into bidiagonal parts,

T = B’B. One such factorization is the well-knowdholesky decomposition



which is like spectral factorization. (We never really need to look at square roots
matrices). Then we will definpseudounitary NMO asU = NB~1. To confirm
the unitary property, we check thatU = B'~IN'NB~1 = B'-1B'BB~1 =I. An
all-pass filter is a ratio of two terms, both with the same color, the denominatc
minimum phase, and the numerator not. Analogouslyl ta NB~1, the numerator
time shifts, and the denominator corrects the numerator’s color.

EXERCISES:

1 Explain why normal moveout is not generally invertible where velocity de
pends on depth.

2 What adaptations should be made to equatiohd) to make it pseudounitary?

3 Extend subroutinevavekill1() /prog:wavekilll to include the adjoint con-
sidering the wavénputto be dual to its output (not considering thiéer to be

dual to the output).



5.7. VELOCITY SPECTRA

An important transformation in exploration geophysics is from data as a function

shot-receiver offset to data as a function of apparent velocity. To go from offset

velocity, the transformation sums along hyperbolas of many velocities. The adjol
is a superposition of hyperbolas of all the different velocities. Pseudocode for the
transformations is

dov
dot
dox

t=12+x2/v2

if hyperbola superposition
datag, x)= dataf, x) + vspacet, v)

else if velocity analysis
vspacet, v)=vspacet, v)+datag, x)



5.8. INTRODUCTION TO TOMOGRAPHY

Tomography is the reconstruction of a function from line integrals through the
function. Tomography has become a routine part of medicine, and an experimer
part of earth sciences. For illustration, a simple arrangement is well-to-well tomo
raphy. A sound source can be placed at any depth in one well and receivers pla
at any depth in another well. At the sender well, we have sender demthd at the
receiver well, we have receiver depths Our data is a tablé&(s,g) of traveltimes
fromstog. The idea is to try to map the area between the wells. We divide the ar
between wells into cells in( z)-space. The map could be one of material velocities
or one of absorptivity. The traveltime of a ray increases by addingltvenessesf
cells traversed by the ray. Our model is a tadgbe z) of slownesses in the plane be-
tween wells. (Alternately, the logarithm of the amplitude of the ray is a summatic
of absorptivities of the cells traversed.) The pseudocode is



dos =range of sender locations
do g = range of receiver locations

z=2(s) # depth of sender.
0 =06(s,9) # ray take-off angle.
do x = range from senders to receivers.
z=2z+ Axtand # ray tracing
if modeling
tsg = tsg+Sxz AX/CO¥
else tomography
Sxz = Sxzt+tsg AX/cosd

In the pseudocode above, we assumed that the rays were straight lines. The prol
remains one of linear operators even if the rays curve, making ray tracing mc
complicated. If the solutios(x, z) is used to modify the ray tracing then the problem
becomes nonlinear, requiring the complexities of nonlinear optimization theory.



5.8.1. Units

Notice that the physical units of an operator (such as the meters or feet implied
AX) are thesameas the physical units of the adjoint operator. The units of an invers
operator, however, aiaverseto the units of the original operator. Thus it is hard to
imagine that an adjoint operator could ever be a satisfactory approximation to t
inverse. We know, however, that adjoints often are a satisfactory approximation
an inverse, which means then that either (1) such operators do not have phys
units, or (2) a scaling factor in the final result is irrelevant. With the tomographi
operator, the adjoint is quite far from the inverse so practicioners typically wor
from the adjoint toward the inverse.

Some operators are arrays with different physical units for different array el
ments. For these operators the adjoint is unlikely to be a satisfactory approximat
to the inverse since changing the units changes the adjoint. A way to bring all co
ponents to the same units is to redefine each member of data space and model <
to be itself divided by its variance. Alternately, again we can abandon the idea
finding immediate utility in the adjoint of an operator and and we could progres
from the adjoint toward the inverse.



EXERCISES:

1 Show how to adapt tomography for “fat” rays of thickn@gspoints along the
z-axis.

5.9. STOLT MIGRATION

NMO is based on the quadratic equatigh? = z° + x? (as explained in IEI)Stolt
migration is based on the quadratic equati@f/v? = k2 + k2, which is the dis-
persion relation of the scalar wave equation. Stolt migration is NMO in the Fouri
domain (see IEI). Denote the Fourier transform operatdf bpd the Stolt operator
by S, where

S = FNF (5.32)

A property of matrix adjoints isSA\BC) = C’'B’A’. We know the transpose
of NMO, and we know that the adjoint of Fourier transformation is inverse Fourie
transformation. So

S = FNF (5.33)



We see then that the transpose to Stolt modeling is Stolt migration. (There are a1
more details with Stolt'dacobian)

5.10. References

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems
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Thorson, J.R., 1984, Velocity stack and slant stack inversion methods: Ph.D. the
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Chapter 6

Model fitting by least squares

The first level of computer use in science and engineeringndeling.” Beginning
from physical principles and design ideas, the computer mimics nature. After th
the worker looks at the result and thinks a while, then alters the modeling progre

317



and tries again. The next, deeper level of computer use is that the computer it:
examines the results of modeling and reruns the modeling job. This deeper leve
variously called fitting " or “inversion." The term ‘processing is also used, but it
is broader, including the use of adjoint operators (as discussed in cBaptEually
people are more effective than computers at fitting or inversion, but some kinds
fitting are more effectively done by machines. A very wide range of methods com
under the heading oféast square$ and these methods are the topic of this chapte!
and chapterg through??.

A part of basic education in mathematics is the fitting of scattered points c
a plane to a straight line. That is a simple example of inversion, a topic so gra
and broad that some people think of learning to do inversion as simply “learning
Although I will be drawing many examples from my area of expertise, namely, ear
soundings analysis, the methods presented here are much more widely applical

6.1. MULTIVARIATE LEAST SQUARES

As described at the beginning of chaptesignals and images will be specified here
by numbers packed into abstract vectors. We consider first a hypothetical appli



tion with one data vectat and two fitting vector®; andb,. Each fitting vector is
also known as aréegressor" Our first task is to try to approximate the data vector
d by a scaled combination of the two regressor vectors. The scale fagtanslx,
should be chosen so that the model matches the data, i.e.,

d =~ bixg+boxo (6.1)

For example, if | print the character®™and “b” on top of each other, | get®,”
which looks something like an image of the lett®.™ This is analogous ta ~
b1+ by. More realisticallyd could contain a sawtooth function of time, dmgand
b2 could be sinusoids. Still more realistically,could be an observed 2-D wave
field, andb; andb, could be theoretical data in two parts, where the contribution o
each part is to be learned by fitting. (One part could be primary reflections and 1
other multiple reflections.)

Notice that we could take the partial derivative of the datébid)(with respect
to an unknown, sayi, and the result is the regresdar.

Thepartial derivative of all data with respect tanymodel parameter gives g
regressor. A regressoris a column in the partial-derivative matrix.




Equation 6.1) is often expressed in the more compact mathematical matrix ne
tation d ~ Bx, but in our derivation here we will keep track of each componen
explicitly and use mathematical matrix notation to summarize the final result. F
ting the datad to its two theoretical components can be expressed as minimizir
the length of the residual vectoywhere

r = d-— b1X1 — b2X2 (6.2)

So we construct a sum of squares (also calledumdratic form") of the compo-
nents of the residual vector by using a dot product:

Q(X1,%X2) = r-r (6.3)
= (d — b1X1 — b2X2) . (d — b1X1 — b2X2) (6.4)
The gradient 0fQ(x1,X2)/2 is defined by its two components:
a
G = —bi(d-bou-byg)—(d-bpu-bye)by  (65)
aQ

o —b2-(d—byx1 —bax) — (d —bixg —b2x2) - b2 (6.6)



Setting these derivatives to zero and using- p2) = (b2 - bp) etc., we get
(by-d) = (b1-b1)xg+ (b1-b2)x2 (6.7)
(b2-d) = (b2-bi)xa+(bz2-b2)x2 (6.8)

which two equations we can use to solve for the two unknoxyrendx,. Writing
this expression in matrix notation, we have

(by-d) _ (b1-b1) (b1-b2) X1
[(bz-d)} = [(bz-bl) (bz-bz)][xZ} (6-9)

It is customary to use matrix notation without dot products. For this we need sor
additional definitions. To clarify these definitions, | choose the number of comp:

nents in the vectors, by, andd to be three. Thus | can explicitly write a matiix
in full as

b1 b2
B = [b1 b = bo1  bp2 (6.10)

b1 ba2



Likewise, thetransposednatrix B’ is defined by
/ bi1 b1 b
B = 6.11
[ b1z bz bs2 } 6.11)

The matrix in equationd.9) contains dot products. Matrix multiplication is an
abstract way of representing the dot products:

b1 b
(b1-b1) (b1-b2) _ bi1 bo1 bz b b
|:(b2'bl) (b2-b2) B b1z bp2 bgz bi b§§ (6.12)
Thus, equationq.9) without dot products is
d b b
bi1 bry bas dl _ bi1 bp1 bag bll bl2 X1
b = o1 b2
bio by bs2 bio by bs2 X2
d3 bs1 b3
(6.13)

which has the matrix abbreviation
Bd = (B B)x (6.14)



Equation 6.14) is the classic result of least-squares fitting of data to a collectio
of regressors. Obviously, the same matrix form applies when there are more tt
two regressors and each vector has more than three components. Eqgaidtipn (

leads to an analytic solution farusing an inverse matrix. To solve formally for the

unknownx, we premultiply by the inverse matri8(B)~1:

x = (B'B)y!Bd (6.15)
Equation 6.15 is the central result déast-squaresanalysis. We see it every-
where.

Equation 6.12) is an example of what is called advariance matrix.” Such
matrices usually need to be inverted, and in equatbfy you already see an
example of the occurrence of an inverse covariance matrix. Any description of
application of least-squares fitting will generally include some discussion of t
covariance matrix—how it will be computed, assumed, or estimated, and how
inverse will be found or approximated. In chaptewe found the need to weight
residuals by the inverse of their scale. That was our first example of the occurrel
of an inverse covariance matrix—although in that case the matrix size was ol



1x1.

In our first manipulation of matrix algebra, we move around some parenthes
in (6.14):

Bd = B (Bx) (6.16)

Moving the parentheses implies a regrouping of terms or a reordering of a comj
tation. You can verify the validity of moving the parentheses by writid.§ in
full as the set of two equations it represents. Equatioh led to the “analytic”
solution 6.15. In a later section on conjugate gradients, we will see that equatic
(6.16 expresses better thad. (5 the philosophy of computation.

Notice how equationg.16) invites us to cancel the matr’ from each side.
We cannot do that of course, becaas not a number, nor is it a square matrix
with an inverse. If you really want to cancel the maix you may, but the equation
is then only an approximation that restates our original god)(

d =~ Bx (6.17)
A speedy problem solver might ignore the mathematics covering the previo

page, study his or her application until he or she is able to write the statement
wishes 6.17) = (6.1), premultiply byB’, replacex by =, getting 6.14), and take



(6.14) to a simultaneous equation-solving program toxget
The formal literature does not speak of “statement of wishes” bubgfression"
which is the same concept. In a regression, there is an abstract vector called
residualr = d — Bx whose components should all be small. Formally this is ofter
written as:
rrl(in [|d —Bx|| (6.18)

The notation above with two pairs of vertical lines looks like double absolute valu
but we can understand it as a reminder to square and sum all the components.
notation is more explicit about what is being minimized, but | often find mysel
sketching out applications in the form of a “statement of wishes,” which | call
“regression”

6.1.1. Inverse filter example

Let us take up a simple example tifne-series analysis Given the input, say
(---,0,0,2,1,0,0, ), to some filter, say = ( fo, f1), then the output is necessarily
c = (2fg, fo+2f1, f1). To design an inverse filter, we would wish to haveome



out as close as possible to (1,0,0). So the statement of wiSHe} is

1
0
0

| - |

2 0
1 2
0 1

fo
f

The method of solution is to premultiply by the matB% getting

2 10
0 21

IH

K

Thus,

- |

210
0 21

| = ]33

and theinverse filter comes out to be

i) -

1] 5 -2
21 =2 5

Il

2
0

J-[4]

(6.19)

(6.20)

(6.21)

(6.22)

Inserting this value offo, f1) backinto .19 yields the actual outpugf, + 2, — ),
which is not a bad approximation to (1,0, 0).



6.1.2. Normal equations

The basic least-squares equations are often calledntberial” equations. The
word “normal” means perpendicular. We can rewrite equatiohd to emphasize
the perpendicularity. Bring both terms to the left, and recall the definition of th
residualr from equation §.2):

B(d-Bx) = 0 (6.23)
Br = 0 (6.24)
Equation 6.24) says that theesidual vectorr is perpendicular to each row in the

B’ matrix. These rows are thiting function s. Therefore, the residual, after it has
been minimized, is perpendicular to the fitting functions.

6.1.3. Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly with Fouri
series. Let us extend the multivariable least-squares theory to the use of comp
valued unknowns. First recall how complex numbers were handled with single:
variable least squares, i.e., as in the discussion leading up to equa®onlse



prime, such ag’, to denote the complex conjugate of the transposed vectdow
write the positivequadratic form as

Q(,x) = [Bx—d)Bx—d) = (XB —d)Bx—d) (6.25)

In chapter4 (after equation4.16)), we minimized a quadratic forr@(X, X) by
setting to zero botlhiQ/9a X anddQ/a X. We noted that only one afQ/d X and
0Q/0 X is necessary because they are conjugates of each other. Now take the de
tive of Q with respect to the (possibly complex, row) vectarNotice thatd Q/ax’
is the complex conjugate transposedd,/ox. Thus, setting one to zero sets the
other also to zero. SettingQ/9x’ = 0 gives the normal equations:
9Q ,

= > = B'(Bx—d) (6.26)
The result is merely the complex form of our earlier res@liLf). Therefore, dif-
ferentiating by a complex vector is an abstract concept, but it gives the same se
equations as differentiating by each scalar component, and it saves much cluttel



6.1.4. Time domain versus frequency domain

Equation @?) is a frequency-domain quadratic form that we minimized by varyinc
a single parameter, a Fourier coefficient. Now we will look at the same problem
the time domain. The time domain offers new flexibility with boundary conditions
constraints, and weighting functions. The notation will be that a fiftdras input

Xt and outputy;. In Fourier space this i¥ = XF. There are two problems to look
at, unknown filter= and unknown inpuk.

o Unknown filter

Given inputs and outputs, the problem of finding an unknown filter appears to
overdetermined, so we writex Xf where the matrix is a matrix of downshifted
columns like 6.19. Thus the quadratic form to be minimized is a restatement c
equation 6.25 using filter definitions:

Q) = (Xf—y)(Xf—y) (6.27)

The solutionf is found just as we founds(26), and it is the set of simultaneous
equation® = X'(Xf —y).



e Unknown input: deconvolution with a known filter

For the unknown input problem we put the known filfein a matrix of downshifted
columnsF. Our statement of wishes is now to firdso thaty ~ Fx. We can expect
to have trouble finding unknown filter inpuks when we are dealing with certain
kinds of filters, such as bandpass filters. If the output is zero in a frequency bal
we will never be able to find the input in that band and will need to prexefiom
diverging there. We do this by the statement that we v@ish € x, wheree is a
parameter that is small and whose exact size will be chosen by experimentati
Putting both wishes into a single, partitioned matrix equation gives

o] = [a] - [8] - [A]x e

el
To minimize the residuals; andr, we can minimize the scalair =r/1r14r/or5.
This is
(Fx—y) (FX—y) + €2X'x
= (XF —y)(Fx—y)+e>X'x (6.29)

Q(X',x)



We have already solved this minimization in chapten the frequency domain
(beginning from equatior4(16).

Formally the solution is found just as with equatidgh2g), but this solution
looks unappealing in practice because there are so many unknowns and bec:
the problem can be solved much more quickly in the Fourier domain. To mot
vate ourselves to solve this problem in the time domain, we need either to find
approximate solution method that is much faster, or to discover that constraints
time-variable weighting functions are required in some applications.

EXERCISES:
1 Tryotherlagsin®.19 suchas (0,1,0and (0,0, 1) Which works best? Why?

2 Using matrix algebra, what value gfminimizes thequadratic form Q(x) =
(y — AXY My — AX) + (X — X0) My (X — X0)? In applicationsxg is called
the prior modelM yy its covariance matrix, andMp, the noisecovariance
matrix .

3 Let y(t) constitute a complex-valued function at successive integer values
t. Fit y(t) to a least-squares straight lip¢t) ~ o + Bt, wherea = o +iay



andg = B +ipt. Do it two ways: (a) assumer, at, Si, and g, are four
independent variables, and (b) asswme, 8, andg are independent variables.
(Leave the answer in terms sf = > " t".)

Ocean tides fit sinusoidal functions of known frequencies quite accurately. A
sociated with the tide is an earth tilt. A complex time series can be made fro
the north-south tilt plus/—1 times the east-west tilt. The observed complex
time series can be fitted to an analytical foﬁi\‘zl A eeit, Find the set of
equations which can be solved for thg that gives the best fit of the formula
to the data. Show that some elements of the normal equation matrix are su
that can be summed analytically.

The general solution to Laplace’s equation in cylindrical coordinatey or
a potential fieldP which vanishes at = oo is given by
0 eim9
Pr.o)=%)y_ An o
m=0

Find the potential field surrounding a square object at the origin which is
unit potential. Do this by findingN of the coefficientsAy by minimizing



the squared difference betweBir,0) and unity integrated around the square.
Give the answer in terms of an inverse matrix of integrals. Which coefficien
Am vanish exactly by symmetry?

6.2. ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the nun
ber of unknowns. There are three regimes for solution; which one is applicable «
pends on the number of unknowmsForn three or less, we use analytical methods.
We also sometimes use analytical methods on matrices of siz¢ il the matrix
contains many zeros. For< 500 we use exact numerical methods such as Gaus
reduction. A 1988 vintage workstation solves a 30000 system in a minute, but a
1000x 1000 system requires a week. At aroung 500, exact numerical methods
must be abandoned aitdrative methods must be used.

An example of a geophysical problem with> 1000 is a missing seismogram.
Deciding how to handle a missing seismogram may at first seem like a quest
of missingdata, not excess numbers afodelpoints. In fitting wave-field data to
a consistent model, however, the missing data is seen to be just more unknow



In real life we generally have not one missing seismogram, but many. Theory
2-D requires that seismograms be collected along an infinite line. Since any de
collection activity has a start and an end, however, practical analysis must cho
between falsely asserting zero data values where data was not collected, or img
itly determining values for unrecorded data at the ends of a survey.

A numerical technique known as thedhjugate-gradient method (CG) works
well for all values ofn and is our subject here. As with most simultaneous equatio
solvers, an exact answer (assuming exact arithmetic) is attained in a finite num
of steps. And ifn is too large to allown® computations, the CG method can be
interrupted at any stage, the partial result often proving useful. Whether or no
partial result actually is useful is the subject of much research; naturally, the rest
vary from one application to the next.

The simple form of the CG algorithm covered here is a sequence of steps. Ir
each step the minimum is found in the plane given by two vectors: the gradient
vector and the vector of the previous step.




6.2.1. Method of random directions and steepest descent

Let us minimize the sum of the squares of the components afetfidual vector
given by
residual = dataspace— transform modelspace (6.30)

R| = Y| - A [x} (6.31)

Fourier-transformed variables are often capitalized. Here we capitalize vectt
transformed by thé matrix. A matrix such a# is denoted byooldfaceprint.

A contour plot is based on an altitude function of space. The altitude is the d
productR- R. By finding the lowest altitude we are driving the residual ve®as
close as we can to zero. If the residual ved®reaches zero, then we have solved
the simultaneous equatiolys= AX. In a two-dimensional world the vectarhas
two components, X, X2). A contour is a curve of constami- R in (X1, X2)-space.
These contours have a statistical interpretation as contours of uncertairtyxs) (
given measurement errorsYh



Starting fromR =Y — Ax, let us see how a random search direction can b
used to try to reduce the residual. lgehbe an abstract vector with the same numbel
of components as the solutienand letg contain arbitrary or random numbers. Let
us add an unknown quantigyof vectorg to vectorx, thereby changing to x +«g.
The new residuaR+d R becomes

R+dR = Y-AX+«Q) (6.32)
= Y-Ax—aAg (6.33)
= R-aG (6.34)
We seek to minimize the dot product

(R+dR)-(R+dR) = (R—aG)-(R—aG) (6.35)

Setting to zero the derivative with respecttgives

R-G

ﬁ (6.36)

Geometrically and algebraically the new residRal= R— «aG is perpendicular to
the “fitting function” G. (We confirm this by substitution leading B - G =0.)



In practice, random directions are rarely used. It is more common to use t
gradient vector. Notice also that a vector of the sizexdb

g = AR (6.37)

Notice also that this vector can be found by taking the gradient of the size of tl
residuals:
9 9
— R-R = — (' —-XA) Y -Ax) = -AR 6.38
o~ o ) ) (6.38)

Descending by use of the gradient vector is called “the methsteepest descerit

6.2.2. Conditioning the gradient

Often people do calculations by the method of steepest descent without realizing
Often a result is improved in a single step, or with a small number of steps, ma
fewer than the number needed to achieve convergence. This is especially true v
images where the dimensionality is huge and where a simple improvement to
adjoint operator is sought. Three-dimensional migration is an example. In the
cases it may be worthwhile to make some ad hoc improvements to the gradient 1



acknowledge the gradient will be a perturbation to the imagad so should prob-
ably have an amplitude and spectrum like thakofA more formal mathematical
discussion of preconditioning is on pagé’.

6.2.3. Why steepest descent is so slow

Before we can understand why tbenjugate-gradient methodis so fast, we need
to see why thesteepest-descent methoid so slow. The process of selectiags
called ‘ine search” but for a linear problem like the one we have chosen here
we hardly recognize choosirgas searching a line. A more graphic understanding
of the whole process is possible in a two-dimensional space where the vector
unknownsx has just two components; and xp. Then the size of the residual
vectorR- R can be displayed with a contour plot in the planexaf k2). Visualize a
contour map of a mountainous terrain. The gradient is perpendicular to the contol
Contours and gradients ararved lines In the steepest-descent method we start at.
point and compute the gradient direction at that point. Then we begmight-line
descent in that direction. The gradient direction curves away from our direction
travel, but we continue on our straight line until we have stopped descending &



are about to ascend. There we stop, compute another gradient vector, turn in-
direction, and descend along a new straight line. The process repeats until we g
the bottom, or until we get tired.

What could be wrong with such a direct strategy? The difficulty is at the stoj
ping locations. These occur where the descent direction becparaBel to the
contour lines. (There the path becomes horizontal.) So after each stop, weurn ¢
from parallel to perpendicular to the local contour line for the next descent. What
the final goal is at a 45angle to our path? A 45turn cannot be made. Instead of
moving like a rain drop down the centerline of a rain gutter, we move along a fin
toothed zigzag path, crossing and recrossing the centerline. The gentler the slop
the rain gutter, the finer the teeth on the zigzag path.

6.2.4. Conjugate gradient

In the conjugate-gradient method not a line, but rather a plane, is searched. A
plane is made from an arbitrary linear combination of two vectors. One vect
will be chosen to be the gradient vector, say The other vector will be chosen
to be the previous descent step vector, sayx; — xj_1. Instead ofx g we need



a linear combination, sayg+ 8s. For minimizing quadratic functions the plane
search requires only the solution of a two-by-two set of linear equations émd

B. The equations will be specified here along with the program. ifBaguadratic
functions a plane search is considered intractable, whereas a line search proc
by bisection.)

6.2.5. Magic

Some properties of the conjugate-gradient approach are well known but hard
explain. D. G. Luenberger’s boolgtroduction to Linear and Nonlinear Program-
ming is a good place to look for formal explanations of this magic. (His book als
provides other forms of the conjugate-gradient algorithm.) Another helpful book
Strang’sintroduction to Applied Mathematic&nown properties follow:
1. The conjugate-gradient method gets the exact answer (assuming exact
arithmetic) inn descent steps (or less), wherés the number of unknowns.

2. Since it is helpful to use the previous step, you might wonder why not us
the previous two steps, since it is not hard to solve a three-by-three set



simultaneous linear equations. It turns out that the third direction does n
help: the distance moved in the extra direction is zero.

6.2.6. Conjugate-gradient theory for programmers

Define the solution, the solution step (from one iteration to the next), and the gra
ent by

X = AX (6.39)
§ = As (6.40)
G = Ay (6.41)

A linear combination in solution space, say g, corresponds t&+ G in the
conjugate space, becauSe- G = As+ Ag = A(s+g). According to equation
(6.31), the residual is

R = Y-Ax = Y-X (6.42)
The solutionx is obtained by a succession of stepssay



The last stage of each iteration is to update the solution and the residual:
solution update: X <X +s
residual update: R«<R-S

The gradientvectorg is a vector with the same number of components as th
solution vectoix. A vector with this number of components is
g = AR = gradient (6.44)
G = Ag = conjugate gradient (6.45)
The gradieng in the transformed space @, also known as thecbnjugate gradi-

ent”
The minimization 6.35 is now generalized to scan not only the line with
but simultaneously another line with The combination of the two lines is a plane:

Q,8) = (R—aG—-89 - (R—aG—-89 (6.46)
The minimum is found ad Q/d«x = 0 anddaQ/d8 = 0, namely,
0 = G:-(R—aG-89 (6.47)

0 = S.-(R-—aG-p9 (6.48)



The solution is
[a] _ 1 [ (S-9 —(S-G)][(G-R)

B (G-G)S-9—(G-92| —(G-§ (G-G) (S'R)
(6.49)

6.2.7. First conjugate-gradient program

The conjugate-gradient program can be divided into two parts: an inner part that
is used almost without change over a wide variety of applications, and an ou
part containing the initializations. Sin€®rtran does not recognize the difference
between upper- and lower-case letters, the conjugate veGtensd S in the pro-
gram are denoted hyy andss. The inner part of the conjugate-gradient task is in
subroutinecgstep() .

This program was used to produce about 50 figures in this book. The fil
example of its use is the solution of the<3} set of simultaneous equations below.
Observe that the “exact” solution is obtained in the last step. Since the data ¢
answers are integers, it is quick to check the result manually.

y transpose



# A step of conjugate-gradient descent.
#

subroutine cgstep( iter, n, x, g, s, m, I, gg, ss)
m

integer i, iter, n,
real x(n), rr(m) # solution, residual
real g(n), gg(m) # gradient, conjugate gradient
real s(n), ss(m) # step, conjugate step
real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta
if( iter == 0 ) {
doi= 1, n
s@i =0
do i= 1, m
ss(i) = 0.

if( dot(m,gg,09)==0 ) call erexit('cgstep: grad vanishes identically’)
alfa = dot(m,gg,im) / dot(m,gg.99)
0.

beta =
}

else { # search plane by solving 2-by-2
gdg = dot(m,gg,99) # G . (R - G*alfa - S*beta) = 0
sds = dot(m,ss,ss) # S . (R - G*alfa - S*beta) = 0

gds = dot(m,gg,ss)

determ = gdg * sds - gds * gds + (.00001 * (gdg * sds) + 1.e-15)
gdr = dot(m,gg,rr)

sdr = dot(m,ss,Ir)

alfa = ( sds * gdr - gds * sdr ) / determ

beta = (-gds * gdr + gdg * sdr ) / determ

doi=1, n # s = model step
s(i) = alfa * g(i) + beta * s(i)

doi=1, m # ss = conjugate
ss(i) = alfa * gg(i) + beta * ss(i)

do i= 1, n # update solution

x() = x@) + s()

, m
re(i) = rr(i) - ss(i)
return; end

do i= 1 # update residual

real function dot( n, x, y )






3.00 3.00 5.00 7.00 9.00

A transpose

1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

X 0.43457383 1.56124675 0.27362058 0.25752524

res 0.73055887 -0.55706739 -0.39193439 0.06291389 0.22804642
X 0.51313990 1.38677311 0.87905097 0.56870568

res 0.22103608 -0.28668615 -0.55250990 0.37106201 0.10523783
X 0.39144850 1.24044561 1.08974123 1.46199620

res 0.27836478 0.12766024 -0.20252618 0.18477297 -0.14541389
X 1.00001717 1.00006616 1.00001156 2.00000978

res -0.00009474 -0.00014952 -0.00022683 -0.00029133 -0.00036907



X 0.99999994 1.00000000 1.00000036 2.00000000
res -0.00000013 -0.00000003 0.00000007 0.00000018 -0.00000015

Initialization of theconjugate-gradient methodtypically varies from one ap-
plication to the next, as does the setting up of the transformation and its adjoi
The problem above was set up with themul() program given in chaptes. The
programcgmeth() below initializes a zero solution and the residual of a zero so
lution. Then it loops over iterations, invoking matrix multiply, conjugate
transpose multiply, and the conjugate-gradient stepper. In subraugtiveeh() |,
the variabledx is like g in equation 6.44), and the variabler is like G in equa-
tion (6.45).

6.2.8. Preconditioning

Like steepest descent, CG methods can be accelerated if a nonsingularvhatri
with known inverse can be found to approximate Then, instead of solving
Ax =~ y, we solveM ~1Ax ~ M1y = ¢, which should converge much faster since
M~1A ~ . This is called preconditioning.”

In my experience the matrid is rarely available, except in the crude approxi-



# setup of conjugate gradient descent, minimize SUM rr(i)**2

# nx
#rr()) = yy(i) - sum aaa(ij) * x(j)
# =1

subroutine cgmeth( nx,x, nr,yy,rr, aaa, niter)
integer i, iter, nx, nr, niter
real x(nx), yy(nr), rr(nr), aaa(nr,nx)
temporary real dx(nx), sx(nx), dr(nr), sr(nr)
do i= 1, nx

x(@i) = 0.
do i= 1, nr
(i) = yy()

do iter= 0, niter {
call matmult( 1, aaa, nx,dx, nr,rr)
call matmult( 0, aaa, nx,dx, nr,dr)
call cgstep( iter, nx, x,dx,sx, _
nr,rr,dr,sr)

return; end

Back

# dx= dx(aaa,rr)
# dr= dr(aaa,dx)

# X=X+S; rr=rr-ss



mation of scaling columns, so the unknowns have about equal magnitude. As w
signals and images, spectral balancing should be helpful.

EXERCISES:

1 Remove lines from the conjugate-gradient program to convert it to a progra
that solves simultaneous equations by the method of steepest descent.
iteration, how many dot products are saved, and how much is the memc
requirement reduced?

2 A precision problem can arise with the CG method when many iterations a
required. What happens is th& drifts away fromAr and X drifts away
from Ax. Revise the prograrymeth() to restore consistency every twentieth
iteration.

6.3. INVERSE NMO STACK

Starting from a hypothetical, ideal, zero-offset model, Fighu&shows synthetic
data and the result of adjoint modeling (back projection), which reconstructs



imperfect model. Inversion should enable us to reconstruct the original model. L

us see hovback projectioncan be upgraded towaris/ersion

Unfortunately, the adjoint operatb¥ defined by the subroutineno1() |/prog:nmo:
is not a good operator for seismogram modeling—notice the roughness of the s
thetic seismograms in Figute6. This roughness igotan inevitable consequence

of nearest-neighbor interpolation. It is a consequence of defining the NMO pr

ogrs

as a loop over the output spate Instead, we can define inverse NMO as a loop

overits output space, which is natbutt. This is done inmoz() and

imospray()  |/prog:imospra

If we plan an upgrade from back projection towards inversion, we must be

aware that the accuracy of the original modeling operator can become an i

5SUE

The new seismograms at the bottom of Figéireshow the first four iterations
of conjugate-gradient inversion. You see the original rectangle-shaped wavefo

returning as the iterations proceed. Notice also orsthek that the early and late

events have unequal amplitudes, but after iteration they are equal, as they be

Mathematically, we can denote the top trace as the mmod#he synthetic data si

g-
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# NMO stack by inverse of forward modeling
#

subroutine invstack( nt,model,nx,gather,rr,t0,x0,dt,dx,slow,niter)
integer it, ix, iter, nt, nx, niter
real t0,x0,dt,dx,slow, gather(nt,nx), rr(nt,nx), model(nt)

temporary real dmodel(nt), smodel(nt), dr(nt,nx), sr(nt,nx)

do it= 1, nt
model(it) = 0.0
do it= 1, nt
do ix= 1, nx
re(it,ix) = gather(it,ix)
do iter = 0O, niter {

call imospray( 1,0,slow,x0,dx,t0,dt,nx,nt,dmodel,rr) # nmo-stack
call imospray( 0,0,slow,x0,dx,t0,dt,nx,nt,dmodel,dr) # modeling
call cgstep(iter, nt, model, dmodel, smodel, _

nt*nx, rr, dr, sr)

}
return; end

Back



nals add = Mm, and the stack ad’d. The conjugate-gradient algorithm solves the
regressiom ~ Mx by variation ofx, and the figure showsconverging tan. Since
there are 256 unknowns im, it is gratifying to see good convergence occurring
after the first four iterations. The CG subroutine useidvisack() , which is just

like cgmeth() |/prog:cgmeth except that the matrix-multiplication operates-
mul() has been replaced yospray() Studying
the program, you can deduce that, except for a scale factor, the outpat-at
is identical to the stacki’d. All the signals in Figures.1are intrinsically the same
scale/invstacK

This simple inversion is inexpensive. Has anything been gained over conve
tional stack? First, though we used nearest-neighbor interpolation, we manage
preserve the spectrum of the input, apparently all the way to the Nyquist frequen
Second, we preserved the true amplitude scale without ever bothering to think ab
(1) dividing by the number of contributing traces, (2) the amplitude effect of NMC
stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex
wide offset. NMO soon fails, but wave-equation forward modeling offers inter
esting opportunities for inversion.



6.4. MARINE DEGHOSTING

The maringghostpresents a problem that is essentially insoluble; but because it
always with us, we need to understand how to do the best we can with it. Ever
anairgun could emit a perfect impulse, the impulse would reflect from the nearb
water surface, thereby giving a second pulse of opppsiirity . The energy going
down into the earth is therefore a doublet when we would prefer a single puls
Likewise, hydrophones see the upcoming wave once coming up, and an insta
later they see the wave with opposite polarity reflecting from the water surfac
Thus the combined system is effectively a second derivative waveleP(1) that

is convolved with signals of interest. Our problem is to remove this wavelet b
deconvolution It is an omnipresent problem and is cleanly exposed on marine da
where the water bottom is hard and deep.

Theoretically, a double integration of the second derivative gives the desir
pulse. A representation in the discrete time domain is the product-eZ(f with
1+2Z+32%+478+5Z%+..., whichis 1. Double integration amounts to spectral
division by —w?. Mathematically the problem is thatw? vanishes at» = 0. In
practice the problem is that dividing y? where it is small amplifies noises at
those low frequencies. (Inversion theorists are even more frustrated because |



are trying to create something like a velocity profile, roughly a step function, ar
they need to do something like a third integration.) Old nuts like this illustrate th
dichotomy between theory and practice.

Chapterd provides a theoretical solution to this problem in the Fourier domair
Here we will express the same concepts in the time domain. Define as follows:

Wt Given data.

by Known filter.

Xt Excitation (to be found).

Nt =Vt — Xexby Noise: data minus filtered excitation.

With Z-transforms the problem is given M(Z) = B(Z) X(Z)+ N(Z). Our primary
wish isN ~ 0. Our secondary wish is that not be infinity asX = Y/B threatens.
This second wish is expressedeaé ~ 0 and is called “stabilizing" ordamping.”
In the Fourier domain the wishes are
Y =~ BX (6.50)
0 ~ €X (6.51)



The formal expression of thegressionis

min (1IY - BXI| + €IX|1)

In the time domain the regression is much more explicit:

Yo
y1
Y2
Y3
Ya
Ys

Ye
0

[eNeoNoNoNoNe]

R

1 .
-2 1
1 -2 1
1 -2 1 —
1 -2 1
1 -2 1

Xo
X1
X2
X3

X5
X6

(6.52)

(6.53)



subroutine ident( adj, add, epsilon, n, pp qq )

integer i, adj, a dd, .
real EpSIlon pp(n), qq(n) # equivalence (pp,gq) OK
if( adj ==
i ad) if( ;d{d == 0) {do i=1n { qq(i) = ) epsilon * pp(i) } }

else { do i=1,n { qq(i) = qq(i) + epsilon * pp(i) } }
else { |f(} add == 0 ) {doi=l,n { pp() = epsilon * qq(i) } }

{ do i=1,n { pp(i) = pp(i) + epsilon * qq() } }

return; end

Back



where “” denotes a zero. Since it is common to addo an operator to stabilize it,
| prepared subroutinigent() ~ for this purpose. It is used so frequently that | coded
it in a special way to allow the input and output to overlie one anot

We can use any convolution routine we like, but for simplicity, | selected
trunc() SO the output would be the same length as the input. The two operatc
ident) andcontrunc()  could be built into a new operator. | found it easier to

simply cascade them in the deghosting subroutieost) below.|deghos|

6.4.1. Synthetics

| made some synthetic marine data and added 5% noise. This, along with an
tempted deconvolution, is shown in Figue. The plot in Figure6.2 is for the
value ofe that | subjectively regarded as best. The result is pleasing because
doublets tend to be converted to impulses. Unfortunately, the low-frequency no
in x; is significantly stronger than that i, as expected.
Taking e larger will decreasé| X|| but increase the explicit noiggY — B X||.

To decrease the explicit noise, | chose a tiny valueef.001. Figures.3shows the
result. The explicit noise; appears to vanish, but the low-frequency noise implicit



# deghost: min rrtop] = | y - bb (contrunc) xx |
#

|rrbot| | 0 - epsilon | XX |
subroutine deghost( eps, nb,bb, n, yy, XX, IT, niter)
integer iter, nb, niter
real bb(nb) yy(n), eps # inputs. typically bb=(1,-2,1)
real xx(n), rr(n+n) # outputs.

temporary real dx(n), sx(n), dr(n+n), sr(n+n)

call zero( n, xx)

call copy( n, yy, rr(1 )) # top half of residual

call zero( n , rr(1+n)) # bottom  of residual

do iter= 0, niter {
call contrunc(1,0,1,nb,bb, n,dx,n,rr); call ident(1,1,eps, n,dx,rr(1+n))
call contrunc(0,0,1,nb,bb, n,dx,n,dr); call ident(0,0,eps, n,dx,dr(1+n))
call cgstep( iter, n,xx,dx,sx, _

n+n,rr,dr,sr)

return; end

Back
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to the deconvolved output has grown unacceptably.

Finally, | chose a larger value ef= .5 to allow more noise in the expliait;,
hoping to get a lower noise implicit tg. Figure6.4 shows the result. Besides
the growth of the explicit noise (which is disturbingly correlated to the input), thi
deconvolved signal has the same unfortunate wavelet on it that we are trying
remove from the input.

Results of a field-data test shown in Figir® do not give reason for encour-
agement.

In conclusion, all data recording has an implicit filter, and this filter is arrange
to make the data look good. Application of a theoretical filter, such a5 may
achieve some theoretical goals, but it does not easily achieve practical goals.

EXERCISES:

1 The (1,-2,1) signature is an oversimplification. In routine operations the
hydrophones are at a depth of 7-10 meters and the airgun is at a depth of
6 meters. Assuming a sampling rate of .004 s (4 milliseconds) and a wa
velocity of 1500 m/s, what should the wavelet be?

2 Rerun the figures with the revised wavelet of the previous exercise.
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6.5. CG METHODOLOGY

The conjugate-gradient method is really a family of methods. Mathematically the
algorithms all converge to the answerrinor fewer) steps where there ameun-
knowns. But the various methods differ in numerical accuracy, treatment of u
derdetermined systems, accuracy in treating ill-conditioned systems, space reqt
ments, and numbers of dot products. | will call the method | use in this book t
“book3’ method. | chose it for its clarity and flexibility. | caution you, however,
that among the various CG algorithms, it may have the least desirable numeri
properties.

The “conjugate-gradient method was introduced byHestenesand Stiefel in
1952. A popular reference book, “Numerical Recipes,” cites an algorithm that
useful when the weighting function does not factor. (Weighting functions are n
easy to come up with in practice, and | have not found any examplasrdfc-
torable weighting functions yet.) A high-quality program with which my group
has had good experience is the Paige and Saunders LSQR program. A derive
of the LSQR program has been provided by Nolet. A disadvantage dfdblke3
method is that it uses more auxiliary memory vectors than other methods. Also, y
have to tell thbook3 program how many iterations to make.



There are a number @ionlinear optimization codes that reduce ©G in the

limit of a quadratic function.

According to Paige and Saunders, accuracy can be lost by explicit use of vect
of the form A’Ax, which is how thebook3 method operates. An algorithm with
better numerical properties, invented Bgstenesand Stiefel, can be derived by
algebraic rearrangement. This rearrangement (adapted from Paige and Saunde

Lin Zhang) for the problem\x ~ Y is

e Setx=0,R=Y,g=A’Y,s=gandy” =gl

e For each iteration, repeat the following:

S

=™ X @ O X R

As
y~/ISI?
X+ «S
R—aS
A'R
lgl?
vy~



vy =Y
S = g+8s

where ||v|| stands for the_, norm of vectorv. A program that implements this
algorithm in a manner consistent with a blendingg@feth() |/prog:cgmethand
cgstep() | /prog:cgstepis hestenes() . [hestenell have not used thelestenes
and Stiefel version of the CG method for the tutorial programs in this book becau
I wish to isolate features of geophysical analysis from features of solution by tl

CG method. The blending of geophysical features with solution details is worsen
by the combination oFortran and this improved version of tHeéG algorithm.

6.5.1. Programming languages and this book

A valuable goal is to isolate the CG solving program from all physical aspects of tl
linear operator. We wish to abstract the CG solver, to put it in a compiled subrouti
library where we can feed it inputs and get back the outputs, and never again
see the internals of how it works (like the fast Fourier transform). Unfortunatel
the primitive nature of th&ortran -Ratfor language does not appear to allow this



subroutine hestenes( nx,x, nryy,Ir, aaa, niter)

integer i, iter, nx, nr,

real alpha, beta, gamma, gammam
real dot

real x(nx), yy(nr), rr(nr), aaa(nr,nx)

temporary real g(nx), s(nx), ss(nr)
do I= 1, nx

(i) = yy()
call matmult( 1, aaa, nx,g, nryy)
do i= 1, nx
s@i) = g9()
gammam = dot(nx,g,9)
do iter= 0, niter {

call matmult( 0, aaa, nx,s, nr,ss)
alpha = gammam / dot(nr,ss,ss)

do i =1, nx
x(i) = x(i) + alpha*s(i)
doi=1,nr

rr()) = rr(i) - alpha*ss(i)
call matmult( 1, aaa, nx,g, nr,rr)
gamma = dot(nx,g,q)
beta = gamma / gammam
gammam = gamma
do i =1, nx
s(i) = g(i) + beta*s(i)

return; end

Back

niter



abstraction. The reason is that the CG program needs to call your linear oper:
routine and, to do this, it needs to know not only the name of your routine b
how to supply its arguments. (I recall from years ageogtran where subroutines
could have several entry points. This might help.) Thus, everywhere in this bo
where | solve a model-fitting problem, we must see some of the inner workings
CG. To keep this from becoming too objectionable, | found the nonstandard C
method we have been using and coupled it with Biirlan’s idea of isolating
its inner workings intacgstep() . Because of this we can see complete code fo
many examples, and the code is not awfully cluttered. Unfortunately, my CG is n
Hestenes’ CG.

In many of theFortran codes you see in this book it is assumed that the abstra
vector input and vector output correspond to physical one-dimensional arrays.
real life, these abstract vectors are often matrices, or matrices in special forms, s
as windows on a wall of data (nonpacked arrays), and they may contain comp
numbers. Examining equatios.63), we notice that the space of residuals for a
damped problem is composed of two parts, the residual of the original proble
and a parkx the size of the unknowns. These two parts are packed, somewt
uncomfortably, into the abstract residual vector.



A linear operator really consists of (at least) four subroutines, one for applyir
the operator, one for its adjoint, one for a dot product in the space of inputs, a
one for a dot product in the space of outputs. Modern programming theory uses
terms “data abstraction” anabject-oriented programming (OOP)” to describe
methods and languages that are well suited to the problems we are facing h
The linear-operator object is what the CG solver needs to be handed, along w
an instance of the input abstract vector and a pointer to space for the output vec
(The linear-operator object, after it is created, could also be handed to a univet
dot-product test routine. WitRortran | write a separate dot-product test program
for each operator.)

Another abstraction thaortran cannot cope with is this: the CG program
must allocate space for the gradient and past-steps vectors. But the detailed f
of these abstract vectors should not be known to the CG program. So the line
operator object requires four more routines (called “methods" in OOP) that the C
routine uses to allocate and free memory ¢teateand destroy objectgrom the
physical space of inputs and outputs). In this way OOP allows us to isolate conce|
so that each concept need only be expressed once. A single version of a concep
thus be reused without being replicated in a form blended with other concepts.



As | am going along generating examples for this book, and as the examp
get more complicated, | am wondering just where | will drop the idea of exhibitini
complete codes. Obviously, if | switched frdfortran to a more modern language,
such aC++, | could get further. The disadvantages of C++ are that | am not expel
enced in it, few of my readers will know it, and its looping statements are cluttere
and do not resemble mathematics. InsteagboiE1,n , C and C++ uséor( i=0;
i<=n; i++) . It would be fun to do the coding in a better way, but for now, | am
having more fun identifying new problems to solve.
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Chapter 7
Time-series analysis

In chapters we learned about many operators and how adjoints are a first apprc
imation to inverses. In chaptérwe learned how to make inverse operators from
adjoint operators by the least-squares (LS) method using conjugate gradients (C

373



The many applications of least squares to the convolution operator constitute
subject known astime-series analysis' In this chapter we examine applications
of time-series analysis to reflection seismograms. These applications further illur
nate the theory of least squares in the areaaifhting functions and stabilization.

In the simplest applications, solutions can be most easily found in the frequer
domain. When complications arise, it is better to use the time domain, direc
applying the convolution operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary i
the time domain, such as that between past and future, or requirements that a f
be nonzero in a stated time interval. Another factor that attracts us to the tir
domain rather than the Fourier domain is weighting functions. As we saw in tt
beginning of chaptef weighting functions are appropriate whenever a signal o
image amplitude varies from place to place. Most of the literaturéroe-series
analysisapplies to the limited case of uniform weighting functions. Such time serie
are said to be “stationary.” This means that their statistical properties do not char
in time. In real life, particularly in the analysis of echos, signals are never stationg
in time and space. Atationarity assumption is a reasonable starting assumptior
but we should know how to go beyond it so we can take advantage of the ma



opportunities that do arise. In order of increasing difficulty in the frequency doma
are the following complications:

1. Atime boundary such as between past and future.
2. More time boundaries such as delimiting a filter.
3. Nonstationary signal, i.e., time-variable weighting.

4. Time-axis stretching such as normal moveout.

We will not have difficulty with any of these complications here because w
will stay in the time domain and set up and solve optimization problems using t
conjugate-gradient method. Thus we will be able to cope with great complexity
problem formulation and get the right answer without approximations. By contra:
analytic or partly analytic methods can be more economical, but they generally so
somewhat different problems than those given to us by nature.



7.1. SHAPING FILTER

A shaping filter is a simple least-squares filter that converts one waveform to &
other. Shaping filters arise in a variety of contexts. In the simplest context, predi
ing one infinitely long time series from another, the shaping filter can be found
the Fourier domain.

7.1.1. Source waveform and multiple reflections

Figure7.1shows some reflection seismic data recorded at nearly vertical inciden
from anarctic ice sheet. Apparently the initial waveform is somewhat complex
but the water-bottom reflection does not complicate it further. You can confirm th
by noticing the water-bottormultiple reflection, i.e., the wave that bounces first
from the water bottom, then from the water surface, and then a second time fr
the water bottom. This multiple reflection is similar to but padarity opposite
to the shape of the primary water-bottom reflection. (The opposite polarity resu
from the reflection at the ocean surface, where the acoustic pressure, the sum o
downgoing wave plus the upgoing wave, vanishes.)

Other data in water of similar depth shows a different reflection behavior. T
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bottom gives back not a single reflection, but a train of reflections. Let this train
reflections from the ocedloor be denoted by (Z). Instead of looking like- F (Z),

the firstmultiple reflection can look like—F(Z)2. The ray sketch in Figur&.2
shows a simple multiple reflection. There is only one water-bottom path, but the
are two paths to a slightly deeper layer. | will call the first arrival the soft-mud arrive
and the second one tmeudstonearrival. If these two arrivals happen to have the
same strength, an expression F(Z) is 1+ Z. The expression for the first multiple
is —F(Z)? = —(1+4 Z)? = —1+2Z — Z? where the Z represents the two paths in
Figure7.2. The waveform of the second water bottom multiple is-@)? in which

the mudstone would be three times as strong as the soft mud. hthtlveave train
the mudstone ig times as strong as the soft mud. Figur8is a textbook quality
example of this simple concept.

Figures7.3and7.lillustrate how arctic data typically contrasts with data from
temperate or tropic regions. The arctic water-bottom reflection is generally hal
indicating that the bottom is in a constant state of erosion from the scraping of t
ice floes and the carrying away of sediments by the bottom currents. In temper
and tropical climates, the bottom is often covered with soft sediments: the top la
is unconsolidated mud, and deeper layers are mud consolidated into mudstone.



Figure 7.2: Water bottom soft-
mud multiple (left) and similar
travel times to mudstone (center

and right). [NR]
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Now we devise a simple mathematical model for the multiple reflections i
Figures7.1land7.3. There are two unknown waveforms, the source wavefs{#)
and the ocean-floor reflectidi(Z). The water-bottom primary reflectidf(Z) is
the convolution of the source waveform with the water-bottom responge(sp—
S(Z)F(Z). The first multiple reflectiorM (Z) sees the same source waveform, the
ocean floor, a minus one for the free surface, and the ocean floor again. Thus
observation?(Z) andM(Z) as functions of the physical parameters are

P(Z2) = S(Z)F(2) (7.1)
M(Z) = —-S(Z)F(Z)? (7.2)
In Figure7.1it appears thaF (Z) is nearly an impulse, whereas Figutr&is domi-
nated by the nonimpulsive aspectofZ). Algebraically the solutions of equations
(7.)) and (7.2 are
F(Z) = —-M(2)/P(2) (7.3)
S(2) = -P@?/M(2) (7.4)
These solutions can be computed in the Fourier domain. The difficulty is th
the divisors in equationg (3) and (7.4) can be zero, or small. This difficulty can be



attacked by using a positive numbeto stabilize it. Equation ¢.3), for example,
could be written M

F(2) = - _M@2)P/2) (7.5)

P(Z2)P(1/Z)+¢€

We can easily understand what this meang #&snds to infinity, where, because
of the 1/Z, the matched filter has a noncausal response. Thus, althoughethe
stabilization seems nice, it apparently produces a nonphysical model.l&ge or
small, the time-domain response could turn out to be of much greater duration tf
is physically reasonable. This should not happen with perfect data, but in real li
data always has a limited spectral band of good quality.

Functions that are rough in the frequency domain will be long in the time dc
main. This suggests making a short function in the time domain by local smoothi
in the frequency domain. Let the notatien--- > denote smoothing by local aver-
aging. Thus we can specify filters whose time duration is not unreasonably long
revising equation{.5) to

FZ) = - <M(2)P(1/2) > (7.6)
<P(2)P(1/2)+€ >

where it remains to specify the method and amount of smoothing.




These time-duration difficulties do not arise in a time-domain formulation. Firs
express{.3) and (7.4) as

P(2)F(Z) ~ —M(2) (7.7)
M(2)S(Z) ~ —P(Z)? (7.8)

To imagine these in the time domain, refer back to equa?@h (Think of Pf~ m
wheref is a column vector containing the unknown sea-floor filbetis a column
vector containing the portion of a seismogram in Figlielabeled “multiple,” and
P is a matrix of down-shifted columns, each column being the same as the sig
labeled “primary” in FigureZ.1 The time-domain solutions are calleshaping fil-
ters.” For a simple filter of two coefficientsfp and f1, we solved a similar problem,
equation 6.19, theoretically. With longer filters we use numerical methods.

In the time domain it is easy and natural to limit the duration and location c

the nonzero coefficients ik (Z) and S(Z). The required program for this task is
shaper() , which operates likegmeth() |/prog:cgmethandinvstack() /prog:invstack
except that the operator needed hereigran()  |/prog:contrar [shapef

The goal of finding the filterd=(Z) and S(Z) is to best model the multiple
reflections so that they can be subtracted from the data, enabling us to see v




# shaping filter

# minimize SUM rr(i)**2 by finding ff and rr where
#

# rr = yy - xx (convolve) ff

#

subroutine shaper( nf,ff, nx,xx, ny, yy, rr, niter)

integer i, iter, nf, nx, ny, niter

real ff(nf), xx(nx), yy(ny), rr(ny)

temporary real df(nf), dr(ny), sf(nf), sr(ny)

if( ny != n;<+nf-1) call erexit(data length error’)
n

do i= 1,
ff@i) = 0.
do i= 1, ny )
) =y
do iter= 0, niter {
call contran( 1, 0, nx,xx, nfdf, rr) # df=xx*rr
call contran( 0, 0, nx,xx, nfdf, dr) # dr=xx*df

call cgstep( iter, nfff,df,sf, ny,rdrsr) # rr=rr-dr; ff=ff+df

return; end

Back



primary reflections have been hidden by the multiples. An important practical aspe
is merging the analysis of many seismograms (see exercises).

Typical data includes not only that shown in Figuresand?7.3, but also wider
source-receiver separation, as well as many other nearby shots and their receil
Corrections need to be made for hyperbolic traveltime resulting from lateral sepa
tion between shot and receiver. Diffractions are a result of lateral imperfections
the generally flat sea floor. The spatial aspects of this topic are considered at g
length in IEI. We will investigate them here in only a limited way.

7.1.2. Shaping a ghost to a spike

An exasperating problem in seismology is tlghtst' problem, in which a wave-

form is replicated a moment after it occurs because of a strong nearby reflection.
marine seismology the nearby reflector is the sea surface. Because the sea su
is near both thairgun and thehydrophones, it creates two ghosts. Upgoing and
downgoing waves at the sea surface have opposite polarity because their press
combine to zero at the surface. Thus waves seen in the hydrophone encountel
ghost operatog; = (1,0,0, --,—1) twice, once for the surface near the source anc



once for the surface near the hydrophone. The number of zeros is typically sm
depending on the depth of the device. The sound receivers can be kept away fi
surface-water wave noise by positioning them deeper, but that extends the ghost
lay; and as we will see, this particular ghost is very hard to eliminate by processir
For simplicity, let us analyze just one of the two ghosts. Take it t6 () = 1— Z2.
Theoretically, the inverse is of infinite duration, namely, (1,0,1,0,1,0,1,0)1,

Since an infinitely long operator is not satisfactory, | used the prograpar()
above to solve a least-squares problem for an antighost operator of finite durati
Since we know that the leastiuaresmethod abhors large errors and thus tends t
equalize them, we should be able to guess the result.

Thefilter (.9, .0, .8,.0,.7,.0,.6,.0,.5,.0, .4,.0,.3,.0,.2,.0,.1), when convolved w
(1,0,—1), produces the desirespike (impulse) along with equal squared errors of
.01 at each output time. Thus, the least-squares filter has the same problem a:
analytical one—it is very long. This disappointment can be described in the Four
domain by the many zeros in the spectrum of (D). Since we cannot divide by
zero, we should not try to divide by-1Z", which has zeros uniformly distributed
on the unit circle. The method of least squares prevents disaster, but it cannot |
form miracles.



| consider ghosts to be a problem in search of a different solution. Ghosts a
arise when seismograms are recorded in a shallow borehole. As mentioned,
total problem generally includes many waveforms propagating in more than o
direction; thus it is not as one-dimensional as it may appear in Figugend?7.1,
in which | did not display the wide-offset signals.

EXERCISES:

1 Whatinputs to subroutirghaper() |/prog:shapemive the filter (.9,0,.8,-.1)

mentioned above?

2 Figure 7.1 shows many seismograms that resemble each other but differ
the x location of the receiver. Sketch the overdetermined simultaneous eqt
tions that can be used to find the best-fitting source func86n), where
Mx(Z)S(Z) ~ Py(Z)? for variousx.

3 Continue solving the previous problem by definingoatranx()  subroutine
that includes several signals going through the same filter. In order to su

stitute yourcontranx()  into shaper() |/prog:shaperto replacecontran()

/prog:contrary you will need to be sure that the output andfitter are adjoint



(not the output and thimput). Suggestion: defineal xx(nt,nx) , etc.

7.2. SYNTHETIC DATA FROM FILTERED NOISE

A basic way to describe the random character of signals is to model them by putt
random numbers into a filter. Practical work often consists of the reverse: deduc
the filter and deconvolving it to see the input.

7.2.1. Gaussian signals versus sparse signals

Most theoretical work is based on random numbers from a Gaussian probabil
function. The basic theoretical model is thataerytime point aGaussianrandom
number is produced. In real life we do observe such signals, but we also obse
signals with less frequent noise bursts. Such signals, cafipdrse signas” or
“bursty signals,” can be modeled in many ways, two of which are (1) that man)
points can have zero value (or a value that is smaller than expected from a Gaussi
and (2) that the Gaussian probability function describes the many smaller values,
some larger values also occur from time to time.



It turns out that the Gaussian probability function generates more cryptic sign:
than any other probability function. It also turns out that theory is best developed 1
the Gaussian case. Thus, Gaussian theory, which is the most pessimistic, tends
applied to both Gaussian and sparser data. Sparse signals derive from diverse r
els, and usually there is not enough information to establish a convincing mod
In practical work, “non&aussiari generally means “sparser than Gaussian.” Fig-
ure7.4illustrates random signals from a Gaussian probability function and a spar:
signal made by cubing the random numbers that emerge from a Gaussian rand
number generator.

7.2.2. Random numbers into a filter

Figure7.5showsrandom numbers fed througkeaky integration and the resulting
spectral amplitude. The output spectral amplitude of an integrator shouds be

but the decay constant in the leaky integrator gives instead the amplitdde (
€2)~1/2, Since the random numbers are sparse, you can see damped expon
in the data itself. This enables us to confirm the direction of the time axis. If th
random numbers had been Gaussian, the spectrum would be the same, but we w
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be able neither to see the damped exponents nor detect the direction of time.

7.2.3. Random numbers into the seismic spectral band

Figure7.6 shows synthetic data designed to look like real seismic noise. Here sol
Gaussian random numbers were passed into a filter to simulate the seismic p
band. Two five-term Butterworth filters (see chapitéy were used, a highcut at .4
of the Nyquist and a lowcut at .1 of the Nyquist.

7.3. THE ERROR FILTER FAMILY

A simple regression for prediction filter (fq, f2) is

X2 X1 Xo
X3 ~ X2 X1 f1 (7.9)
X4 X3 X2 f2 '

X5 X4 X3
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Notice that each row in this equation says tkafits a linear combination of at
earlier times; hence the description bfas a “prediction” filter. The error in the
prediction is simply the left side minus the right side. Rearranging the terms, we ¢

0 X2 X1 Xo

0 X3 X2 X1 1

~ —f 7.10
0 i Xa Xo _fl (7.10)
0 X5 X4 X3 2

We have already written programs for regressions liké) ( Regressions like7( 10),
however, often arise directly in practice. They are easier to solve directly than
transforming them to resembl@&.g).

Multiple reflections are predictable. It is the unpredictable part of a signal, the
prediction residual, that contains the primary information. The output of the filte
(1,— f1,— f2) is the unpredictable part of the input. This filter is a simple example ¢
a “prediction-error" (PE) filter. It is one member of a family of filters called “error
filters.”

The error-filter family are filters with one coefficient constrained to be unity an
various other coefficients constrained to be zero. Otherwise, the filter coefficiel
are chosen to have minimum power output. Names for various error filters follow



(1,a1,82,a3, - -,an) prediction-error (PE) filter
(1,0,0@a3,84,--,an) gapped PE filter with a gap of 2
(am,---,a2,a1,1,a1,82,a83, --,an) interpolation-error (IE) filter
(a-m,---,a-4,a-3,0,0,1,0,0a3,a4, - -,an) a gapped IE filter

A program for computing all the error filters will be presented after we examin
a collection of examples.

7.3.1. Prediction-error filters on synthetic data

The idea of using gapin a prediction filter is to relax the goal of converting realistic
signals into perfect impulses. Figure7 shows synthetic data, sparse noise into ¢
leaky integrator, and deconvolutions with prediction-error filters. Theoretically, tr
filters should turn out to be 4 (.92)92°. Varying degrees of success are achievec
by the filters obtained on the different traces, but overall, the results are good.
To see what happens when an unrealidéconvolutiongoal is set for predic-
tion error, we can try to compress a wavelet that is resistant to compression—
example, the impulse response of a Butterworth bandpass filter. The perfect filte
compress any wavelet is its inverse. But a wide region of the spectrurB aiter-
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worth filter is nearly zero, so any presumed inverse must require nearly dividing |
that range of zeros. Compressing a Butterworth filter is so difficult that | omitted tt
random numbers used in Figure/ and applied prediction error to the Butterworth

response itself, in Figuré.8. Thus, we have seen that gapped PE filters sometime
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are able to compress a wavelet, and sometimes are not. In real life, resonances



in the earth’s shallow layers; and as we will see, the resonant filters can be shorte
by PE filters.

7.3.2. PE filters on field data

Figure7.9is a nice illustration of the utility oprediction-error filter s. The input

is quasi-sinusoidal, which indicates theiE filtering should be successful. Indeed,

some events are uncovered that probably would not have been identified on

input. In this figure, a separate problem is solved for each trace, and the result
filter is shown on the right.

7.3.3. Prediction-error filter output is white.

The most important property offgediction-error filter is that its output tends to a
white spectrum. No matter what the input to this filter, its output tends to whitene
as the number of the coefficients— oo tends to infinity. Thus, th&E filter
adapts itself to the input by absorbing all dslor. If the input is already white, the
a; coefficients vanish. The PE filter is frustrated because with a white input it c
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predict nothing, so the output is the same as the input. Thus, if we were to casc
one PE filter after another, we would find that only the first filter does anything.
the input is a sinusoid, it is exactly predictable by a three-term recurrence relatic
and all the color is absorbed by a three-term PE filter (see exercises). The po
of a PE filter is that a short filter can often extinguish, and thereby represent t
information in, a long filter.

That the output spectrum of a PE filterugite is very useful. Imagine the
reverberation of theoil layer, highly variable from place to place, as the resonanc
between the surface and deeper consolidated rocks varies rapidly with surface
cation as a result of geologically recent fluvial activity. The spectoédr of this
erratic variation on surface-recorded seismograms is compensated for by a PE fi
Of course, we do not want PE-filtered seismograms to be white, but once they
have the same spectrum, it is easy to postfilter them to any desired spectrum.

Because the PE filter has an output spectrum that is white, the filter itself h
a spectrum that is inverse to the input. Indeed, an effective mechanism of spec
estimation, developed by JohnBurg and described ifGDP, is to compute a PE
filter and look at the inverse of its spectrum.

Another interesting property of the PE filter is that itrsnimum phase



The best proofs of this property are found in FGDP. These proofs assume unifo
weighting functions.

7.3.4. Proof that PE filter output is white

1 The basic idea of least-squares fitting is that the residual is orthogonal to the fitti
functions. Applied to the PE filter, this idea means that the output of a PE filter
orthogonal to lagged inputs. The orthogonality applies only for lags in the pa
because prediction knows only the past while it aims to the future. What we wa
to show is different, namely, that the output is uncorrelated slf (as opposed
to the input) for lags ibothdirections; hence the output spectrumvisite.

We are given a signak and filter it by

Xt = yt_zaryt—r (7.11)

>0

1] would like to thank John PBurg for this proof.




We founda, by setting to zera(}" x?)/da;:
Y Xy = 0 forr >0 (7.12)
t

We interpret this to mean that the residual is orthogonal to the fitting function, or tl
present PE filter output is orthogonal to its past inputs, or one side of the crosscol
lation vanishes. Taking an unlimited number of time lags and filter coefficients, tt
crosscorrelation vanishes not only for- 0 but for larger values, say+ s where

7 > 0ands > 0. In other words, the future PE filter outputs are orthogonal to prese
and past inputs:

prrsyt,, = 0 fort > 0ands > 0 (7.13)
t

Recall that ifr -u =0 andr -v = 0, thenr - (a;u £+ apv) = 0 for anya; anday. So
for anya, we have

D xus(itay ) = 0 fort >0ands >0 (7.14)
t



and for any linear combination we have

D Xeis(t—Y aryk.) = 0 forr >0ands> 0 (7.15)
t

>0

Therefore, substituting fronv(11), we get
th+sxt = 0 fors>0 (7.16)
t

which is anautocorrelation function and must be symmetric. Thus,
ZXt+th = 0 fors#0 (7.17)
t

Since the autocorrelation of the prediction-error output is an impulse, its spectrt
is white. This has many interesting philosophical implications, as we will see nex

7.3.5. Nonwhiteness of gapped PE-filter output

When a PE filter is constrained so that a few near-zero-lag coefficients are zero,
output no longer tends to lvehite as the number of coefficients in the filter tends to



infinity. If fy, the filter coefficient oZ = €“At, vanishes, thef (w) lacks the slow
variation inw that this term provides. It lacks just the kind of spectral variation tha
could boost weak near-Nyquist noises up to the strength of the main passband. V
such variation made absent by the constraint, the growth of Nyquist-region enel
is no longer a necessary byproduct of PE filtering.

Figure7.10illustrates aPE filter with a longgap. (The gap was chosen to be
a little less than the water depth.) This example nicely shows the suppressior
some multiple reflections, but unfortunately | do not see that any primary refle
tions have been uncovered. Because the prediction gap is so long, the filter cat
no visible change to the overall spectrum. Notice how much more the spectrum v
broadened by the filter with a shorter gap in Figire. The theoretical associa-
tion of prediction gap width with spectral broadening is examined next. Anothe
interesting feature of Figuré.10, which we will investigate later, is a geometrical
effect. This shows up as poor multiple removal on and above the diagonal lines ¢
happens because of the nonzero separation of the sound source and receiver.
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7.3.6. Postcoloring versus prewhitening

The output of a PE filter, as we know,white (unless it is gapped), but people do
not like to look at white signals. Signals are normally sampled at adequate dens
which means that they are small anywhere near the Nyquist frequency. There
rarely energy above the half-Nyquist and generally little but marine noises above
quarter-Nyquist. To avoid boosting these noises, the ungapped PE filter is gener.
altered or accompanied by other filters. Three common approaches follow:

e Use a gapped filter.
e Deconvolve, then apply a filter with the desired spect®(m).

e Prefilter the input withS(w) 1, then deconvolve with an ungapped PE filter,
and finally postfilter withS(w).

The last process is calleghtewhitening” for some complicated reasons: the idea
seems to be that the prefilter removes known color so that the least-squares ¢
ficients are not “wasted” on predicting what is already known. Thus the prefilte
spectrumS(w) 1 is theoretically the inverse of the prior estimate of the input spec
trum. In real life, that is merely an average of estimates from other data. If tt
desired output spectrum does not happen t&fg, it does not matter, since any



final display filter can be used. Although this is a nice idea, | have no example
illustrate it.

There is also the question of what phase the postfilter should have. Here
some cautions against the obvious two choices:

e Zero phase a symmetrical filter has a noncausal response.

e Causal if a later step of processing is to make a coherency analysis ft
velocity versus time, then the effective time will be more like the signa
maximum than the first break.

Since the postfilter is broadband, its phase is not so important as that of the dec
volution operator, which tries to undo the phase of a causal and resonant earth.

7.4. BLIND DECONVOLUTION

Theprediction-error filter solves the blind-deconvolution” problem. So far little

has been said about the input data to the PE filter. A basic underlying model is t
the input data results from white noise into a filter, where the filter is some proce
in nature. Since the output of the PE filter is white, it has the same spectrum as



original white noise. The natural hypothesis is that the filter in nature is the inver
of our PE filter. Both filters are causal, and their amplitude spectra are mutua
inverse. Theoretically, if the model filter were minimum phase, then its invers
would be causal, and it would be our PE filter. But if the model filter were an al
pass filter, or had aall-pass filter as a factor, then its inverse would not be causal
so it could not be our PE filter.

The blind-deconvolution problem can be attacked without PE filters by goin
to the frequency domain. Figureéllshows sample spectra for the basic model.
We see that the spectra of the random noise are random-looking. In chapter
will study random noise more thoroughly; the basic fact important here is that tf
longer the random time signal is, the rougher is its spectrum. This applies to bc
the input and the output of the filter. Smoothing the very rough spectrum of tt
input makes it tend to a constant; hence the common oversimplification that t
spectrum of random noise is a constant. Since ¥fZ) = F(Z)X(Z) we have
Y ()| = |F(w)]|| X(w)|, the spectrum of the output of random noise into a filter is
like the spectrum of the filter, but the output spectrum is jagged because of the no
To estimate the spectrum of the filter in nature, we begin with data (like the output
Figure7.11) and smooth its spectrum, getting an approximation to that of the filte
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Forblind deconvolution we simply apply the inverse filter. The simplest way to get
such a filter is to inverse transform the smoothed amplitude spectrum of the date
a time function. This time-domain wavelet will be a symmetrical signal, but in rez
life the wavelet should be causal. Chapiérshows a Fourier method, called the
“Kolmogoroff method," for finding a causal wavelet of a given spectrum. Chapte
11 shows that the length of the Kolmogoroff wavelet depends on the amount
spectral smoothing, which in this chapter is like the ratio of the data length to tl
filter length.

In blind deconvolution, Fourier methods determine the spectrum of the un
known wavelet. They seem unable to determine the wavelet's phase by meas
ments, however—only to assert it by theory. We will see that this is a limitation c
the “stationarity” assumption, that signal strengths are uniform in time. Where sig
nal strengths are nonuniform, better results can be found with weighting functio
and time-domain methods. In Figurel4we will see that thall-pass filter again
becomes visible when we take the trouble to apply appropriate weights.



7.5. WEIGHTED ERROR FILTERS

What | have described above is “industrial standard” material. A great many cot
panies devote much human and computer energy to it. Now we will see what n
opportunities are promised by a formulation that includes weighting functions.

7.5.1. Automatic gain control

Echos get weaker with time, though the information content is unrelated to the s
nal strength. Echos also vary in strength as different materials are encounterec
the outgoing wave. Programs for echo analysis typically divide the data by a scali
factor that is a smoothed average of the signal strength. This practice is nearly
versal, although it is fraught with hazards. An examplawatiomatic gain control

(AGC) is to compute the divisor by forming the absolute value of the signal streng

and then smoothing with the progranangle() /prog:triangle or the program

leaky() |/prog:leaky. Pitfalls are the strange amplitude behavior surrounding th
water bottom, and the overall loss of information contained in amplitudes. Persc

ally, | have found that the gain functiad nearly always eliminates the need for
AGC on raw field data, but | have no doubt that AGC is occasionally needed. (



theoretical explanation fdf is given in IEI.)

7.5.2. Gain before or after convolution

It is a common but questionable practice to apfpyC to echo soundings before
filter analysis. A better practice is first to analyze according to the laws of physi
and only at the last stage to apply gain functions for purposes of statistical estimat
and final display. Here we will examine correct and approximate ways of setting |
deconvolution problems with gain functions. Then we will use CG to solve th
proper formulation.

Solving problems in the time domain offers an advantage over the frequen
domain because in the time domain it is easy to control the interval where the
lution should exist. Another advantage of the time domain arises when weighti
functions are appropriate. | have noticed that people sometimes use Fourier s
tions inappropriately, forcing themselves to use uniform weighting when anoth
weighting would work better. Since we look at echos, it is unavoidable that we a
ply gain functions. Weighting is always justified on the procastputs but it is an
approximation of unknown validity on the data thatnput to those processes. |



will clarify this approximation by an equation with two filter points and an output of
four time points. In real-life applications, the output is typically 1000-2000 point
and the filter 5-50 points. The valid formulation of a filtering problem is

0 w1 0 0 0 dl Xp O
0 ~ 0 w2 0 0 dz X2 X1 fl
0 - 0 0O w3 O dz | | x3 % fo
0 0 0 0 ws d4 0 X3
(7.18)

The weightsw; are any positive numbers we choose. Typically theare chosen
so that the residual components are about equal in magnitude.

If, instead, the weighting function is applied to timputs we have an approxi-
mation that is somewhat different:

0 w1dy wi1X1 0

0 -~ w2d2 wo2X2  wi1X1 fl

0 - w3d3 N w3X3  waXo [ fa ] (7.19)
0 w4y 0 w3X3

Comparing the weighted output-residual equatioii® to the weighted input-data



equation (.19, we note that their right-hand columns do not match. The right-han
column in (.18 is (0,w2X1, w3X2, waXz) but in (7.19 is (0,w1X1,w2X2, w3X3) .
The matrix in .19 is a simple convolution, so some fast solution methods ar

applicable.

7.5.3. Meet the Toeplitz matrix

The solution to any least-squares problem proceeds explicitly or implicitly by finc
ing the inverse to aovariance matrix. Recall the basic filtering equatio?),

y1
Y2
Y3
Ya
Y5
Y6
y7

X1

0

0

0
X1
X2
X3
X4

X5

|

f1
f (7.20)

f3



which we can abbreviate by= Xf. To gain some understanding of your cultural
heritage in time-series analysis, form tt@variance matrix X'X,

S S 2
X'X = S S S (7.21)
S S

where the elementg are lags of theautocorrelation of x;. This covariance ma-
trix is an example of doeplitz matrix. When an application is formulated in the
frequency domain, you may encounter a spectrum as a divisor. When the same
plication is formulated in the time domain, you will see an autocorrelation matri
that needs inversion.

The Toeplitz matrix is highly structured. Whereasrar n matrix could con-
tain n? different elements, the Toeplitz matrix contains onlglements that are
different from each other. When computers had limited memory, this memol
savings was important. Also, there are techniques for solving least-squares pr
lems with Toeplitz covariance matrices that are much faster than those for so
ing problems with arbitrary matrices. The effort for arbitrary matrices is propo
tional ton®, whereas for Toeplitz matrices it i®. These advantages of Toeplitz



matrices were once overwhelming, although now they are rarely significant. B
because old methods linger on, we need to decide if they are warranted. Re
that we wrote three convolution programasatran()  |/prog:contrar contrunc()

andconvin() . You can verify that a Toeplitz matrix
arises only in the first of these. The other two represent different ways of handli
boundaries. Le#V be a diagonal matrix of weighting functions. You can also verify
that the covariance matrR'WB is not Toeplitz. Thus, Toeplitz matrices only arise
with uniform weighting and transient boundary conditions. If the only tool you hav
is a hammer, then everything you see starts to look like a nail. In earlier days, &
by inertia even today, convolution applications tend to be formulated as uniform
weighted with transient boundaries. This ipitfall .

Toeplitz matrices are associated with elegant mathematics and rapid numerice
solutions. Applications that are solvable by standard methods have historically
been cast in Toeplitz form by imposing simplifying assumptions. This is risky.

The approximation {.19 becomes reasonable when the weights are slowl
variable, i.e., whenu; is a slowly variable function of. In practice, | think the



approximation is often justified for slot# gain but questionable for automatic gains
that are faster. Compared to Toeplitz methods of solving equatidd)( the CG
method of solving 7.18) is slower. Here we are going to see how to solve the
problem correctly. If you want to solve the correct problem rapidly, perhaps yc
can do so by solving the approximate problem first by a quasi-analytic method a
then doing a few steps of CG.

7.5.4. Setting up any weighted CG program

Equation .18 is of the form0 ~ W(d — Bf). This can be converted to a new prob-
lem without weights by defining a new data vedféd and a new operatWB sim-
ply by carryingW through the parentheses@o~ Wd — (WB)f. Convolution fol-
lowed by weighting is implemented in subroutinentrunc()

wcontrund



# filter and weight.
#

subroutine wcontrunc( adj, add, ww, lag, nx, xx, nfff, nnyy )
integer i, adj, add, lag, nx, nf, nn
real ww(nn), xx(nx), ff(nf), yy(nn)
temporary real ss(nn)
call adjnull( adj, add, ff,nf, yy,nn)
ift adj == 0) { call contrunc( 0,0, lag, nx,xx, nf,ff, nn,ss)

do i= 1, nn . . )

yy() = yy() + ss@i) * ww(i)

else { doi=1, nn

ss(i) = yy(i) * ww(i)
call contrunc( 1,1, lag, nx,Xxx, nf,ff, nn,ss)

return; end

Back



7.6. CALCULATING ERROR FILTERS

Theerror in prediction (or interpolation) is often more interesting than the predic
tion itself. When the predicted component is removed, leaving the unpredictab
the residual is the prediction error. Let us see how the prograper() can be
used to find an interpolation-error filter likd (>, f_1,1, f1, f2). The statement of
wishes is

0 X1
0 . X2 X1
0 X1 X3 X2 . .
0 X2 X4 X3 X1 . f_2
0 N X3 X5 X4 X2 X1 f_q
0 ~ X4 + X X5 X3 X2 f1 (7.22)
0 X5 . X6 X4 X3 fo
0 X6 . . X5 X4
0 X6 X5
L 0 i L - B X6 |




Taking the column vector of; to the other side of the equation gives the form
required by previous CG programs. After solving this system fap(f_1, f1, f2),
we insert the “1” to make théE filter (f_p, f_1,1, f1, f2), which, applied to the
datax;, gives the desired IE output.

Notice that the matrix in{.22) is almostconvolution. It would be convolution
if the central column were not absent. | propose that you not actually solve t
system {.22). Instead | will show you a more general solution that uses the conve
lution operator itself. That way you will not need to write programs for the man
“almost” convolution operators arising from the many PE and IE filters with thei
variousgaps andlags.

The conjugate-gradient program here is a combination of earlier CG progra
and the weighting methods we must introduce now:

e We need to constrain a filter coefficient to be unity, which we can do b
initializing it to unity and then allowing no changes to it.

e We may wish to constrain some other filter coefficients to be zero (gappin
by initializing them to zero and allowing no changes to them.

o We may want the output to occur someplace other than off-end predictio



Thus we will specify a time lag that denotes the predicted or interpolate
time point. The progransontrunc() is designed for this.

Incorporating all these features irgieaper() , we getiner() . For a filter of
the form (1,f4, fp,---, fn_1), we would specifyfag=1, gap1=1, gapn=1 . For a fil-
ter of the form (1,0f5,---, fn—1), we would specifyag=1, gap1=1, gapn=2 . For
a filter of the form (f_», f_1,1, f1, f2), we would specifynf=5, lag=3, gap1=3,
gapn=3.

This program uses the convolution prograsatrunc() , which is handy in
practice because its output has the same length as its input. This convenienc
partly offset by the small danger that significant output energy in the “start up” ar
“off end” zones could be truncated. Specifically, that energy would be in the tc
two and bottom two rows of equatioii.@?).

7.6.1. Stabilizing technique

Theory forstabilizing least squaresusing equations??) and (??), was described
earlier in this book. | installed this stabilization, along with the filter determina
tions discussed in this chapter, but as | expected, stabilization in this highly overc



# weighted interpolation-error filter
#

subroutine iner( nf,f, nryyy,rr, ww, niter, lag, gapl, gapn)
integer i, iter, nf,  nr, niter, lag, gapl, gapn
real f(nf), yy(nr), rr(nr) ww(nr)
temporary real df(nf), sf(nf), dr(nr), wr(nr), sr(nr)
if( lag < gapl || lag > gapn ) call erexit(input fails gapl<=lag<=gapn’)
do i= 1, nf

f(i) =
f(lag) = 1. # set output lag
call wcontrunc( 0,0, ww, lag, nryyy, nf, f, nr,wr)
call scaleit( -1., nrwr)  # negative
do iter= 0, niter {

call weontrunc( 1,0, ww, lag, nryy, nfdf, nrwr)  # df=yy*wr

do i= gapl gapn

df(i) = # constrained lags
call wcontrunc( OO ww, lag, nryy, nf.df, nrdr) # dr=yy*df
call cgstep( iter, nf, fdfsf, _
nr,wr,dr,sr ) # f=f+df

}
call contrunc( 0,0, lag, nryy, nff, nr,rr) # unweighted res
return; end

Back



termined application showed no advantages. Nevertheless, it is worth seeing f
stabilization is implemented, particularly since the changes to the program calli
iner) make for more informative plots.

The input data is modified by appending a zero-padded impulse at the dat
end. The output will contain the filter impulse response in that region. The spil
size is chosen to be compatible with the data size, for the convenience of the plott
programs. Thaveighting function in the appended region is scaled according tc
how much stabilization is desired. Figurel2shows the complete input and resid-
ual. It also illustrates the problem that output data flows beyond the length of t
input data because of the nonzero length of the filter. This extra output is undou
edly affected by the truncation of the data, and its energy should not be part of |
energy minimization. Therefore it is weighted by zero.

EXERCISES:

1 Given a sinusoidal functiors = cosgt + ¢), a three-term recurrence relation-
ship predicts¢; from the previous two points, namebg, = ajx;_1 + asX;—2.
Finda; anday in terms ofw At. HINT: See chapteB. (Notice that the coeffi-
cients depend om but not¢.)



Figure 7.12: Data from the North Sea (extracted from Yilmaz and Cumro datas
33) processed by prediction error. Rightmost box is weighted according to the
sired stabilization. Theruncation event is weighted by zerd tsa-wz33 [NR]



2 Figure7.9has a separate filter for each trace. Consider the problem of findir
a single filter for all the traces. What is the basic operator and its adjoin
Assemble these operators using subrouttmeunc()

3 Examine the filters on Figuré.12 Notice that, besides the pulse at the watel

depth, another weak pulse occurs at double that depth. Suggest a phys
mechanism. Suggest a mechanism relating to computational approximation

7.7. INTERPOLATION ERROR

Interpolation-error filters have the form&4_,---,a_2,a-1,1,a1,82,a3,---,an),

where thea; coefficients are adjusted to minimize the power in the filter output
IE filters have the strange characteristic that if the input spectruB{«3, then

the output spectrum will tend t8(w)~1. Thus these filters tend to turn poles into
zeros and vice versa. To see why IE filters invert the spectrum of the input, \
only need recall the basic premise of least-squares methods, that the residual
output) is orthogonal to the fitting function (the input at all lags except the zel
lag). Thus, the crosscorrelation of the input and the output is an impulse. Tt



can only happen if their spectra are inverses, which is a disaster for the ovel
appearance of a seismogram. Such drastic spectral change can be controlled
variety of ways, as is true with PE filters, but with IE filters there seems to be littl
experience to build on besides my own. Figuar&3illustrates an interpolation-error
result where gapping has been used to limit the color changes. | also chasgpthe
to condense the wavelet. You judge whether the result is successful. Notice &
a high-frequency arrival after the diagonal lines: this shows that the IE filters a
boosting very high frequencies despite the gapping.

7.7.1. Blind all-pass deconvolution

A well-established theoretical concept that leads to unwarranted pessimism is
idea thablind deconvolution cannot find arall-pass filter. If we carefully examine
the analysis leading to that conclusion, we will find lurking the assumption that tt
weighting function used in the least-squares estimation is uniform. And when tt
assumption is wrong, so is our conclusion, as Figufel shows. Recall that the
inverse to an all-pass filter is its time reverse. The reversed shape of the filter is s
on the inputs where there happen to be isolated spikes.



Figure 7.13: Data from the North Sea (extracted from Yilmaz and Cumro datas

33) processed by interpolation error. Inputs above outputs. Filters displayed on
ght.[tsa-wz3BINR



Figure 7.14: Four independent trials of deconvolution of sparse noise into an ¢

pass filter. Alternate lines are input and outp| tsa-dallpasgNR]



Let us see what theory predicts cannot be done, and then | will tell you how
did it. If you examine the unweighted least-squares error-filter programs, you w
notice that the first calculation is the convolution operator and then its transpo
This takes the autocorrelation of the input and uses it as a gradient search direct
Take a white input and pass it through a phase-shift filter; the output autocorrelati
is an impulse function. This function vanishes everywhere except for the impul
itself, which is constrained against rescaling. Thus the effective gradient is ze
The solution, an impulse filter, is already at hand, so a phase-shift filter seems |
findable.

On the other hand, if the signal strength of the input varies, we should be b:
ancing its expectation by weighting functions. This is what | did in Figufe!. |
chose a weighting function equal to the inverse of the absolute value of the outpu
the filter plus are. Since the weighting function depends on the output, the proce:
is iterative. The value of chosen was 20% of the maximum signal value.

Since the iteration is aonlinear procedure, it might not always work. A well-
established body of theory says it will not work wi@aussiansignals, and Fig-
ure7.15is consistent with that theory.

In Figure7.13 | used weighting functions roughly inverse to the envelope of th
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Figure 7.15: Failure of blind all-pass deconvolution for Gaussian signals. The t
signal is based on Gaussian random numbers. Lower signals are based on succe

integer powers of Gaussian signals. Filters (on the right) fail for the Gaussian ca
but improve as signals become spars tsa-dgausqNR]



signal, taking a floor for the envelope at 20% of the signal maximum. Since weigt
ing functions were used, the filters need not have turned out to be symmetrical ab
their centers, but the resulting asymmetry seems to be small.






Chapter 8

Missing-data restoration

A brief summary of chapterS and 6 is that “the answer” is the solution to an
inversion problem—a series of steps with mapitfall s. Practitioners often stop
after the first step, while academics quibble about the convergence, i.e., the

433



steps. Practitioners might stop after one step to save effort, to save risk, or bece
the next step is not obvious. Here we study a possible second step—replacing
zero-valued data presumed by any adjoint operator with more reasonable value:

A great many processes are limited by the requirement to apeaitlal aliasng—
that no wavelength should be shorter than twice the sampling interval on the d
wave field. This condition forces costly expenditures in 3-D reflection data acqt
sition and yields a mathematical dichotomy between data processing in explorat
seismology and data processing in earthquake seismology.

The simple statement of the spatial Nyquist requirement oversimplifies re
life. Recently, SSpitz (1991) showed astonishing results that seem to violate th
Nyquist requirement. In fact they force us to a deeper understanding of it. In tf
chapter we will discuss many new opportunities that promise much lower dat
acquisition costs and should also reduce the conceptual gap between explora
and earthquake seismology.



8.1. INTRODUCTION TO ALIASING

In its simplest form, the Nyquist condition says that we can have no frequenci
higher than two points per wavelength. In migration, this is a strong constraint
data collection. It seems there is no escape. Yet, in applications dealing witt
CMP gather (such as in Figute5 or 5.6), we see data with spatial frequencies
that exceed Nyquist and we are not bothered, because after NMO, these freqt
cies are OK. Nevertheless, such data is troubling because it breaks many of
conventional programs, such as downward continuation with finite differences
with Fourier transforms. (No one uses focusing $tacking.) Since NMO defies
the limitation imposed by the simple statement of the Nyquist condition, we revis
the condition to say that the real limitation is on the spectral bandwidth, not on tl
maximum frequency. Mr. Nyquist does not tell us where that bandwidth must |
located. Further, it seems that precious bandwidtbd not be contiguouhe sig-
nal’s spectral band can be split into pieces and those pieces positioned in differ
places. Fundamentally, the issue is whether the total bandwidth exceeds Nyqt
Noncontiguous Nyquist bands are depicted in Figlifle

Noncontiguous bandwidth arises naturally with two-dimensional data whe
there are several plane waves present. There the familiar spatial Nyquist limitat



usual

Figure 8.1: Hypothetical spa-
tial frequency bands. Top is typi-
cal. Middle for data skewed witlHlanted

7 =1 — px. Bottom depicts data
with wave arrivals from three di-

rections. [ER]
hope
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oversimplifies real life because the plane waves link time and space.

The spatial Nyquist frequency need not limit the analysis of seismic data| be-
cause the plane-wave model links space with time.

8.1.1. Relation of missing data to inversion

We takedata spaceto be a uniform mesh on which some values are given an
some are missing. We rarely have missing values on a time axis, but commo
have missing values on a space axis, i.e., missing signals. Missing signals (tra
happen occasionally for miscellaneous reasons, and they happen systematically
cause ofiliasing andtruncation. The aliasing arises for economic reasons—savin(
instrumentation by running receivers far apart. Truncation arises at the ends of
survey, which, like any human activity, must be finite. Beyond the survey lies mo
hypothetical data. The traces we will find for thessing dataare not as good as
real observations, but they are closer to reality than supposing unmeasured da
zero valued. Making an image with a single application of an adjoint modeling ope
ator amounts to assuming that data vanishes beyond its given locailmration



is an example of an economically important process that makes this assumpti
Dealing with missing data is a step beyond this.irlwersion, restoringmissing
data reduces the need for arbitrary model filtering.

8.1.2. My model of the world

In your ears now are sounds from various directions. From moment to mome
the directions change. Momentarily, a single direction (or two) dominates. Yol
ears sample only two points in x-space. Earthquake data is a little better. Exp
ration data is much better and sometimes seems to satisfy the Nyquist requirem
especially when we forget that the world is 3-D.

We often characterize data from any regiontokj-space as “good” or “noisy”
when we really mean it contains “few” or “many” plane-wave events in that regior
For noisy regions there is no escaping the simple form of the Nyquist limitatio
For good regions we may escape it. Real data typically contains both kinds of |
gions. Undersampled data with a broad distribution of plane waves is nearly hoj
less. Undersampled data with a sparse distribution of plane waves is prospect
Consider data containing a spherical wave. The angular bandwidth in a plane-w:



decomposition appears hugetil we restrict attention to a small regiasf the data.
(Actually a spherical wave contains very little information compared to an arbitrat
wave field.) It can be very helpful in reducing the local angular bandwidth if wi
can deal effectively with tiny pieces of data as we did in chaptdf we can deal
with tiny pieces of data, then we can adapt to rapid spatial and temporal variatio
This chapter will show such tiny windows of data. We will begin with missing-dat:
problems in one dimension. Because these are somewhat artificial, we will move
to two dimensions, where the problems are genuine.

8.2. MISSING DATA IN ONE DIMENSION

A method for restoringnissing datais to ensure that the restored data, after spec
ified filtering, has minimum energy. Specifying the filter chooses the interpolatic
philosophy. Generally the filter is a “roughening" filter. When a roughening filte
goes off the end of smooth data, it typically produces a big end transient. Minimi
ing energy implies a choice for unknown data values at the end, to minimize t
transient. We will examine five cases and then make some generalizations.



A method for restoring missing data is to ensure that the restored data, afte
specified filtering, has minimum energy.

Let m denote a missing value. The dataset on which the examples are ba
is (---,m,m,1,m,2,1,2m,m,---). Using subroutineniss1() values
were found to replace the missingvalues so that the power in the filtered data is
minimized. Figure3.2shows interpolation of the dataset with-Z as a roughening
filter. The interpolated data matches the given data where they overlap.

Figures8.2-8.6 illustrate that the rougher the filter, the smoother the interpo
lated data, and vice versa. Let us switch our attention from the residual spectr
to the residual itself. The residual for Figuse? is theslopeof the signal (because
the filter 1— Z is afirst derivativg, and the slope is constant (uniformly distributed)
along the straight lines where the least-squares procedure is choosing signal val
So these examples confirm the idea that#ast-squares methodbhors large val-
ues (because they are squared). Thus, least squares tend to distribute unifo
residuals in both time and frequency to the extentcihrestraints allow.

This idea helps us answer the question, what is the best filter to use? It suggc
choosing the filter to have an amplitude spectrum that is inverse to the spectrum




given ? ?

Figure 8.2: Top is given data.
Middle is given data with in-

® ®
terpolated values. Missing vahterp T T T
ues seem to be interpolated by ® °® ? ? ? T f ®e
straight lines. Bottom shows the

filter (1,—1), whose output has
minimum power. ﬁlterT

[ER] i



given

Figure 8.3;: Top is the same in-

put data as in Figur&.2. Mid-

dle is interpolated. Bottom showsterp
the filter (~1,2,—1). The miss-

ing data seems to be interpolated

by parabolas,) mis-mparab[ER
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given o Tof

Figure 8.4: Top is the
same input. Middle is interpo-

lated. Bottom shows the filter ¢
(1,—3,3,—1). The missing datd*"*“'P ’ T T * T T .

is very smooth. It shoots upward ® @ @ g
high off the right end of the ob-

servations, apparently to matﬁrfter
the data slope therel mis-mseis [ T
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Figure 8.5: The filter
(-1,-1,4,-1,-1) gives in-_.

: . ) . glven
terpolations with stiff lines:

T

They resemble the straight lines

of Figure 8.2, but they project
through a cluster of given valugaﬁter]p
instead of projecting to the g

Q?TTT
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nearest given value. Thus, this
interpolation tolerates noise in
the given data better than the iy o

terpolation shown in Figur8&.4.
[mis-msmd ER] ;
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Figure 8.6: Bottom shows the M

filter (1,1). The interpolation is
rough. Like the given data it-

self, the interpolation has mu?ﬂter}p
energy at the Nyquist frequency. @ . b * T

But unlike the given data, it
has little zero-frequency energy.

[ER] filter
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want for the interpolated data. A systematic approach is given in the next secti
but | will offer a simple subjective analysis here. Looking at the data, | see that
points are positive. It seems, therefore, that the data is rich in low frequencies; t
the filter should contain something like {1Z), which vanishes at zero frequency.
Likewise, the data seems to contain Nyquist frequency, so the filter should cont
(1+ Z). The result of using the filter @& Z)(1+ Z) = 1— Z? is shown in Figure.7.
This is my best subjective interpolation based on the idea that the missing d
should look like the given data. Theterpolation andextrapolations are so good
that you can hardly guess which data values are given and which are interpolate

8.2.1. Missing-data program

There are two ways to code the missing-data estimation, one conceptually sim
and the other leading to a concise program. Begin with a given fikkad create

a shifted-column matri¥, as in equatior??. The problem is that & Fd where

d is the data. The columns &fare of two types, those that multipigissingdata
values and those that multipknowndata values. Suppose we reorgarfzato
two collections of columnsE, for the missing data values, afg for the known



given ? ?

Figure 8.7: Top is the same as in
Figures8.2to 8.6. Middle is in-
terpolated. Bottom shows the:gﬁter ? ? ?
ter (1,0,~1), which comes fro T

the coefficients of (+ Z)(1+ Z2). E—‘ Pel? tle .
Both the given data and the inter-
polated data have significant en-
ergy at both zero and Nyquist fre- er

quencies. [mis-mbesf[ER] i




data values. Now, instead of9 Fd, we have O~ Fndm + Fxdkx or —Fgdy ~
Fmdm. Taking—Fxdyx =y, we have simply an overdetermined set of simultaneou

equations likey ~ Ax, which we solved witlegmeth()

The trouble with this approach is that it is awkward to program the partitionin
of the operator into the known and missing parts, particularly if the application «
the operator uses arcane techniques, such as those used by the fast Fourier tran:
operator or various numerical approximations to differential or partial differenti
operators that depend on regular data sampling. Even for the modest convolut
operator, we already have a library of convolution programs that handle a variety
end effects, and it would be much nicer to use the library as it is rather than recc
it for all possible geometrical arrangements of missing data values. Here | take |
main goal to be the clarity of the code, not the efficiency or accuracy of the solutic
(So, if your problem consumes too many resources, and if you have many m
known points than missing ones, maybe you should spked=,x and ignore what
| suggest below.)

How then can we mimic the erratically structurég operator using thé op-
erator? When we multiply any vector inf§ we must be sure that the vector has
zero-valued components to hit the columngrathat correspond to missing data.



When we look at the result of multiplying the adjokitinto any vector, we must be
sure to ignore the output at the rows corresponding to the missing data. As we v
see, both of these criteria can be met using a single loop.

The missing-data program begins by loading the negative-filtered known dz

into aresidual. Missing data should try to reduce this residual. The iteration
proceed as iregmeth() |/prog:cgmeth invstack() /prog:invstack, deghost()
Iprog:deghosj shaper() |/prog:shapef andiner) | /prog:inet. The new ingre-
dient in the missing-data subroutimes1() is the simpleconstraint
that the known data cannot be changed. Thus, after the gradient is computed,
components that correspond to known data values are set td miss1| That pre-
vents changes to the known data by motion any distance alorgyadéeent. Like-
wise, motion along previous steps cannot perturb the known data values. Hence,

CG method (finding the minimum power in the plane spanned by the gradient a
the previous step) leads to minimum power while respecting the constraints.

EXERCISES:

1 Figure8.2-8.6 seem to extrapolate to vanishing signals at the side boundarie
Why is that so, and what could be done to leave the sides unconstrained in t



# fill in missing data on 1l-axis by minimizing power out of a given filter.
#

subroutine miss1( na, a, np, p, copy, niter)
integer iter, ip, nr, na, np, niter
real p(np) # in: known data with zeros for missing values.
# out: known plus missing data.
real copy(np) # in: copy(ip) vanishes where p(ip) is a missing value.
real a(na) # in: roughening filter

temporary real dp(np),sp(np), r(np+na-1),dr(np+na-1),sr(np+na-1)
nr = np+na-1

call contran( 0, O, na,a, np, p, r) #r = a*p convolution
call scaleit ( -1, nr, r #r =
do iter= 0, niter { # nlter— number missing or less
call contran( 1, O, na,a, np,dp, 1) # dp(a,r) correlation
do ip= 1, np
if( copy(lp) 1= O) # missing data where copy(ip)==
0. # can't change known data
call contran( 0, O, naa np,dp, dr) # dr=a*dp convolution
i:all cgstep( iter, np,p,dp,sp, nr,r,dr,sr) # p=p+dp; r=r-dr
return; end

Back



way?

Compare Figur8.7to the interpolation values you expect for the filter (1:-G).

Indicate changes taiss1() for missing data in two dimensions.

Suppose the call imiss1() was changed frorontran() [ /prog:con
to convin() | /prog:convir|. Predict the changed appearance of Figuee

Suppose the call imiss1() was changed fromontran() to
convin() . What other changes need to be made?

Show that the interpolation curve in FiguBe3 is not parabolic as it appears,
but cubic. @INT: Show that ¥2)'V2u =0.)

Verify by a program example that the number of iterations required with simpl
constraints is the number of free parameters.



8.3. MISSING DATA AND UNKNOWN FILTER

Recall the missing-data figures beginning with Fig8ra There the filters were
taken as known, and the only unknowns were the missing data. Now, instead
having a predetermined filter, we will solve for the filter along with the missing
data. The principle we will use is that the output power is minimized while the filte
is constrained to have one nonzero coefficient (else all the coefficients would go
zero). We will look first at some results and then see how they were found.

In Figure8.8the filter is constrained to be of the form &},a,). The result is
pleasing in that the interpolated traces have the same general character as the ¢
values. The filter came out slightly different from the (30, that | suggested for
Figure8.7based on a subjective analysis. Curiously, constraining the filter to be
the form @_2,a_1,1) in Figure8.9yields the same interpolated missing data as ir
Figure8.8. | understand that the sum squared of the coefficient&(&)P(Z) is
the same as that &(1/Z)P(Z), but | do not see why that would imply the same
interpolated data.



given

Figure 8.8: Top is known data.
Middle includes the interpolated

values. Bottom is the filter withnter];.) % T T
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the leftmost point constrained to
be unity and other points cho-
sen to minimize output power.
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given

Figure 8.9: The filter here had its
rightmost point constrained to be

unity—i.e., this filtering amount'mterR X T T

TT?TQQ

to backward prediction. The in-
terpolated data seems to be iden-
tical, as with forward prediction.
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8.3.1. Obijections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave |
the original data. And, in regions where there is no observed data, the extrapola
data should drop away in a fashion consistent wittsisctrum determined from
the known region. We will see that a filter lika_(2,a_1, 1,a1,a2) fails to do the job.
We need to keep aendvalue constrained to “1,” not the middle value.

In chapter7 we learned about thiaterpolation-error filter (IE filter), a filter
constrained to be “+1” near the middle and consisting of other coefficients chos
to minimize the power out. The basic fact about the IE filter is that the spectru
out tends to the inverse of the spectrum in, so the spectrum of the IE filter tends
the inversesquaredof the spectrum in. The IE filter is thus not a good weighting
function for a minimization, compared to the prediction-error (PE) filter, whos
spectrum is inverse to the input. To confirm these concepts, | prepared synthi
data consisting of a fragment of a damped exponential, and off to one side of it
impulse function. Most of the energy is in the damped exponential. Figul@
shows that the spectrum and the extended data are about what we would exg
From the extrapolated data, it is impossible to see where the given data ends.
comparison, | prepared FiguBll It is the same as Figut@ 10 except that the



given

Figure 8.10: Top is synthetic
data with missing data repreaterp

; Bl

sented by zeros. Middle includes =
the interpolated values. Bottom
is the filter, a prediction-error fil-
ter which may look symmetriﬁlteri

but is not quite. | mis-exp [ER]



filter is constrained in the middle. Notice that the extended data woidsave the
spectrum of the given data—the wavelength is much shorter. The boundary betw
real data and extended data is not nearly as well hidden as in Fdiie

gven bl

Figure 8.11: Top is synthetic
data with missing data repre-

sented by zeros. Middle includ&st€TP ] ‘r ﬂth » TM o
the interpolated values. Bottom TR ﬂ P /G
is the filter, an interpolation-error

filter. [mis-centef [ER] filter
11

|

Next | will pursue some esoteric aspects of one-dimensional missing-data pre




lems. You might prefer to jump forward to secti@¥, where we tackle two-
dimensional analysis.

8.3.2. Packing both missing data and filter into a CG vector

Now let us examine the theory and coding behind the above examples. Def
a roughening filterA(Z) and a data signalP(Z) at some stage of interpolation.
The regression is & A(Z)P(Z) where the filterA(Z) has at least one coefficient
constrained to be nonzero and the data contains both known and missing vall
Think of perturbationsA A and AP. We neglect the nonlinear term AAP as
follows:

0 ~ (A+ AA(P + AP) (8.1)
0 ~ AP+ PAA+ AAP + AAAP (8.2)
“AP ~ PAA 4+ AAP (8.3)

To make a program such ass1() we need tgack both unknowns
into a single vectox() = (AP, AA) before calling the conjugate-gradient program.

Likewise, the resulting filter and data coming out must be unpacked. Also, tl



# MISSIF -- find MISSing Input data and Filter on 1-axis by min power out.
#

subroutine missif( na, lag, aa, np, pp, known, niter)

integer fiter, na, lag, np, niter, nx, ax, px, ip, nr
real pp(np) # input: known data with zeros for missing values.
# output: known plus missing data.
real known(np) # known(ip) vanishes where p(ip) is a missing value.
real aa(na) # input and output: roughening filter

temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1), gg(np+na-1) ss(np+na-1)
nr= np+na-1, nx= np+na; px=1; ax=1+np;
call copy( np, pp, X(px))

call copy( na, aa, x(ax))

if( aa(lag) == 0. ) call erexit(missif: a(lag)== 0.")
do iter= 0, niter {
call contran( 0, O, na,aa, np, pp, )
call scaleit ( -1., nr, )

call contran( 1, 0, na,aa, np, g(px), rr)
call contran( 1, 0, np,pp, na, g(ax), rr)
do ip= 1, np

|f( known(ip) !'= 0)

9( ip) =
g( lag+np) = 0.
call contran( 0, 0, na,aa, np, g(px), 9gg)
call contran( 0, 1, np,pp, na, g(ax), gg)
call cgstep( iter, nx, X, g, s, nr, rr, gg, ss)
call copy( np, X(px), pp)
call copy( na, x(ax), aa)

return; end

Back



gradient now has two contributions, one froMA P and one fronP A A, and these
must be combined. The progranissif) , which makes Figure8.8through8.11,
effectively combinesniss1() |/prog:missdandiner() . A new aspect
is that, to avoid accumulation of errors from the neglect ofrthalinear product
AAAP, the residual is recalculated inside the iteration loop instead of only once
the beginning.| missif]

There is a danger thatissif)  might converge very slowly or fail ifla() and
pp() are much out of scale with each other, so be sure you input them with abc

the same scale. | really should revise the code, perhaps to scale the “1” in the fi
to the data, perhaps to equal the square root of the sum of the data values.

8.3.3. Spectral preference and training data

| tried using themissif)  program tointerlace data—i.e., to put new data values
between each given value. This did not succeed. The interlaced missing val
began equaling zero and remained zero. Something is missing from the probl
formulation.

This paragraph describes only the false starts | made toward the solution.



seems that the filter should be something like<2,1), because that filter inter-
polates on straight lines and is not far from the feedback coefficients of a damf
sinusoid. (See equatiofi?).) So | thought about different ways to force the solution
to move in that direction. Traditiondihear inverse theory offers several sugges-
tions; | puzzled over these before | found the right one. First, | added the obvio
stab|I|zat|onsA§||p|| andx2 sllall, but they simply made the filter and the interpolated
data smaller. | thought about changing the identity matrixlito a diagonal matrix
[|Azp|| or || Aga]|. Using A4, | could penalize the filter at even-valued lags, hoping
that it Would become nonzero at odd lags, but that did not work. Then | thoug
of usmgk llp—Pll, A2 slla—all, A2 Zllp —pll, and A2 glla—all, which would allow
freedom of choice of thmean andvanance of the unknowns In that case, | must
supply the mean and variance, however, and doing that seems as hard as solvin
problem itself. Suddenly, | realized the answer. It is simpler than anything aboy
yet formally it seems more complicated, because a full inveosariance matrix
of the unknown filter is implicitly supplied.

| found a promising new approach in teabilized minimization

min (IIP Al + Aoll PoAll + 210l P Aol ) (8.4)



wherePg and Ag are like givenpriors. But they are not prior estimates Bfand A
because the phasesgf and Ag are irrelevant, washing out in the squaring. If we
specify large values fax, the overall problem becomes more linear,Pyoand Ag
give a way to imposaniquenessn anonlinear case where uniqueness is otherwise
unknown. Then, of course, thevalues can be reduced to see where the nonlines
part||P Al| is leading.

The next question is, what are the appropriate definition$foand Ag? Do
we need bothPy and Ay, or is one enough? We will come to understaidand Ag
better as we study more examples. Simple theory offers some indications, howe
It seems natural tha® should have the spectrum that we believe to be appropria
for P. We have little idea about what to expect farexcept that its spectrum should
be roughly inverse t®.

To begin with, | think of Py as a low-pass filter, indicating that data is normally
oversampled. Likewisefq should resemble a high-pass filter. When we turn tc
two-dimensional problems, | will guess first thaj is a low-pasdip filter, and Ag
a high-pass dip filter.

Returning to the one-dimensional signal-interlacing problem, | take= 0
and choosd? to be adifferentdataset, which | will call thetfaining data.” It is



a small, additional, theoretical dataset that has no missing values. Alternately,
training data could come from a large collection of observed data that is witho
missing parts. Here | simply chose the short signal (1,1) thabisnterlaced by
zeros. This gives the fine solution we see in Figlire

given Hyum given kuw
interp [ IHHI ] interp O it
filter filter h
l
| ]

Figure 8.12: Left shows that data will not interlace without training data. Righ

shows data being interlaced because of training d mis-priordata[ER]



To understand the coding implied by the optimizati@d), it is helpful to
write the linearized regression. The training sigRalenters as a matrix of shifted
columns of the training signal, sdy, and the high-pass filteAg also appears as
shifted columns in a matrix, sayl. The unknownsA and P appear both in the
matricesA andP and in vectora andp. Thelinearized regressionis

—Pa AP ap
Hp | ~ |HoO [ } (8.5)
—Ta o T |LAa

The top row restates equatiod.§). The middle row says th&@= H(p + Ap),
and the bottom row says th@t= T(a+ Aa). A program that does the job isis-
fip) |/prog:misfig. It closely resemblesissif() ‘/prog:missi. misfip‘The new
computations are the lines containing the training datgl omitted the extra clut-
ter of the high-pass filteth because | did not get an interesting example with it.)
Compared tonissif() , additional clutter arises from pointers needed
to partition the residual and the gradient abstract vectors into three parts, the us
one for||P A|| and the new one fait Py Al| (and potentiallyl| P Ag||).

You might wonder why we need another program when we could use the c




# MISFIP --- find MISsing peF and Input data on 1-axis using Prior data.
#

subroutine misfip( nt,tt, na,aa, np,pp,known, niter)
integer nt, na, ip,np, npa, nta, nx,nr, iter,niter, ax, px, qr, tr

real pp(np), known(np), aa(na) # same as in missif()

real tt(nt) # input: prior training data set.
temporary real x(np+na), g(np+na), s(np+na)
temporary real rr(np+na-1 +nat+nt-1), gg(np+na-1 +na+nt-1), ss(np+na-1 +na+nt-1)
npa= np+na-1; nta= nt+na-1 # lengths of outputs of filtering

nx = np+na; nr= npa+nta # length of unknowns and residuals
px=1; qr=1,; ax=1+np; tr=1+npa # pointers

call zero( na, aa); aa(l) = 1.

call copy( np, pp, x(px))
call copy( na, aa, x(ax))
do iter= 0, niter {
call contran( 0, O, na,aa, np, pp, rr(qr))
call contran( 0, 0, na,aa, nt, tt, rr(tr))  # extend rr with train
call scaleit( -1., nr, m
call contran( 1, 0, na,aa, np, g(px), rr(ar))
call contran( 1, 0, np,pp, na, g(ax), rr(qr))
call contran( 1, 1, nttt, na, g(ax), rr(
do ip= 1, np { if(known(ip) = 0) { g( Ip+(PX 1)) —(0 })})
ax-1
call contran( 0, 0, na,aa, np, g(px), gg(ar))
call contran( 0, 1, np,pp, na, g(ax), go(ar))
call contran( 0, O, nttt, na, g(ax), gg(tr))
call cgstep( iter, nx, x, g, s, nr, I, gg, Ss)
call copy( np, X(px), pp)
call copy( na, x(ax), aa)

return; end

Back



program and simply append the training data to the observed data. We will ¢
counter some applications where the old program will not be adequate. These
volve the boundaries of the data. (Recall that, in chaptevhen seismic events
changed their dip, we used a two-dimensional wave-killing operator and were ca
ful not to convolve the operator over the edges.) Imagine a dataset that changes\
time (or space). TheRy might not be training data, but data from a large interval,
while P is data in a tiny window that is moved around on the big interval. Thes
ideas will take definite form in two dimensions.

8.3.4. Summary of 1-D missing-data restoration

Now | will summarize our approach to 1-D missing-data restoration in words th:
will carry us towards 2-D missing data. First we noticed that, given a filter, minimiz
ing the output power will find missing input data regardless of the volume missir
or its geometrical complexity. Second, we experimented with various filters ar
saw that theprediction-error filter is an appropriate choice, because data exter
sions into regions without data tend to have the spectrum inverse to the PE fill
which (from chapter?) is inverse to the known data. Thus, the overall problem i



perceived as aonlinear one, involving the product of unknown filter coefficients

and unknown data. It is well known that nonlinear problems are susceptible to m
tiple solutions; hence the importance of the stabilization method described, whi
enables us to ensure a reasonable solution.

8.3.5. 2-D interpolation before aliasing

A traditional method of data interpolation on a regular mesh is a four-step proc
dure: (1) set zero values at the points to be interpolated; (2) Fourier transform;
set to zero the high frequencies; and (4) inverse transform. This is a fine metr
and is suitable for many applications in both one dimension and higher dimensio
Where the method falls down is where more is needed than simple interlacing—
example, when signal values are required beyond the ends of the data sample.
simple Fourier method of interlacing also loses its applicability when known da
is irregularly distributed. An example of an application in two dimensions of th
methodology of this section is given in the section on tomography beginning ¢
page504



8.4. 2-D INTERPOLATION BEYOND ALIASING

I have long marveled at the ability of humans to interpolate seismic data containi
mixtures of dips where spatial frequencies exceed the Nyquist limits. These lim
are hard limits on migration programs. Costly field-data-acquisition activities a
designed with these limits in mind. | feared this human skill of going beyond th
limit was deeply nonlinear and beyond reliable programming. Now, however,
have obtained results comparable in quality to those &8z, and | am doing so

in a way that seems reliable—using two-stage, linear least squares. First we \
look at some results and then examine the procedure. Before this program car
applied to field data for migration, remember that the data must be broken into me
overlapping tiles of about the size shown here and the results from each tile pie
together.

Figure8.13shows three plane waves recorded on five channels and the interj
lated data. Both the original data and the interpolated data can be described as
yondaliasing” because on the input data the signal shifts exceed the signal duratic
The calculation requires only a few seconds of a “two-stage least-squares” meth
where the first stage estimates an inveeariance matrix of the known data, and
the second uses it to estimate the missing traces. Actuahp grediction-error
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Figure 8.13: Leftis five signals, each showing three arrivals. Using the data sho

on the left (and no more), the signals have been interiolated. Three new tra

appear between each given trace as shown on the  mis-lace3 [ER]



filter is estimated, and the inverse covariance matrix, which amounts to the PE fil

times its adjoint, is not needed explicitly.
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Figure 8.14: Two plane waves and their interpolati{ mis-lace2 [ER]
Let us now examine a case with minimal complexity. Fig@ré4 shows two

plane waves recorded on three channels. That is the minimum number of chann



required to distinguish two superposing plane waves. Notice on the interpolat
data that the original traces are noise-free, but the new traces have acquired a
level of noise. This will be dealt with later.

Figure8.15shows the same calculation in the presence of noise on the origir
data. We see that the noisy data is interpolatable just as was the noise-free data
now we can notice the organization of the noise. It has the same slopes as the p
waves. This was also true on the earlier figures (Figut@and8.14), as is more
apparent if you look at the page from various grazing angles. To display the slor
more clearly, Figur&.15is redisplayed in a raster mode in Fig@&é&6

8.4.1. Interpolation with spatial predictors

A two-dimensional filter is a small plane of numbers that is convolved over a big
data plane of numbers. One-dimensional convolution can use the mathematic:
polynomial multiplication , such as¥(Z) = X(Z)F(Z), whereas two-dimensional
convolution can use something liREZ1, Z5) = X(Z1,Z2)F(Z1,Z3). Polynomial
mathematics is appealing, but unfortunately it implies transgelge conditions,
whereas here we need different edge conditions, such as those of the dip-rejec
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Figure 8.15: Interpolating noisy plane wave mis-lacenoisé[ER]



Figure 8.16: Interpolating noisy plane wave mis-lacera$[ER]




filters discussed in Chaptér which were based on simple partial differential equa-
tions. Here we will examinspatial prediction-error filters (2-D PE filters) and
see that they too can behave like dip filters.

The typesetting software | am using has no special provisions for two-dimensi
filters, so | will set them in a little table. Letting™denote a zero, we denote\ao-
dimensional filter that can be a dip-rejection filter as

a b c d e
1

where the coefficientsa(b, c,d,e) are to be estimated by least squares in order t
minimize the power out of the filter. (In the table, the time axis runs horizontally, e
on data displays.)

Fitting the filter to two neighboring traces that are identical but for a time shif
we see that the filtela(b, c,d, €) should turn out to be something like {,0,0,0,0)
or (0,0,—.5,—.5,0), depending on the dip (stepout) of the data. But if the twr
channels are not fully coherent, we expect to see something-il& @, 0, 0, 0) or
(0,0,—.4,—.4,0). For now we will presume that the channels are fully coherent.

(8.6)



8.4.2. Refining both t and x with a spatial predictor

Having determined a 2-D filter, say on the original daesh we can nowinterlace
botht andx and expect to use the identical filter. This is because slopes are p
served if we replaceAt, Ax) by (At/2,Ax/2). Everyone knows how to interpolate
data on the time mesh, so that leaves the job of interpolation on the space me
in (8.6) the known &,b,c,d,e) can multiply a known trace, and then the “1” can
multiply the interlaced and unknown trace. It is then easy to minimize the pow
out by definingthe missing trace to be the negative of that predicted by the filte
(a,b,c,d,e) on the known trace. (The spatial interpolation problem seems to t
solved regardless of the amount of the signal shift. A “spatial aliasing” issue do
not seem to arise.) It is nice to think of the unknowns being under the “1” and tt
knowns being under thea(b,c,d,e), but the CG method has no trouble working
backwards too.

After | became accustomed to using the CG method, | stopped thinking that t
unknown data is that which is predicted, and instead began to think that the unknc
data is that which minimizes the power out of the prediction filter. | ignored th
guestion of which data values are known and which are unknown. This thinkir
enables a reformulation of the problem, so that interpolation on the time axis is



unnecessary step. This is the way all my programs work. Think of the filter th
follows as applied on the original coarse-mesh data:
a - b . c .- d . e
(8.7)
1
The first stage is to use CG to find,b,c,d,e) in (8.7). For the second stage, we
assert that the same valuesl, c,d,e) found from §.7) can be used ing 6), and
we use CG a second time to find the missing data values. A wave field interpola
this way is shown in Figur&.17. Figures8.13to 8.16were made with filters that
had more rows thar8(7), for reasons we will discuss next.

8.4.3. The prediction form of a two-dip filter

Now we handle twalips simultaneously. The following filter destroys a wave that
is sloping down to the right:
-1 8.8)



) I
Figure 8.17: Two signals with one dif mis-lace1 [ER]



The next filter destroys a wave that is sloping less steeply down to the left:
-1

1 (8.9)
Convolving the above two filters together, we get
.1 . .
-1 . . -1 (8.10)
1

The 2-D filter .10 destroys waves of both slopes. Given appropriate interlacing
the filter 8.10 destroys the data in Figufel4both beforeandafter interpolation.
To find filters such as3(10), | adjust coefficients to minimize the power out of filters
like

y
d

v w z
a b e (8.11)

o X

A filter of this shape is suitable for figures likkel4and8.15
Let us examine the Fourier domain for this filter. The filt8rl(Q) was trans-
formed to the Fourier domain; it was multiplied by its conjugate; the square ro
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# CINJOF --- Convolution INternal with Jumps. Output and FILTER are adjoint.
subroutlne cinjof( adj, add, jump,  n1,n2,xx, nbl,nb2,bb, yy)

integer adj, add jump,  nln2, nbl,nb2 # jump subsamples data
real xx( n1,n2), bb( nbl,nb2), yy( n1,n2)
integer yl,y2, x1,x2, bl, b2, nyl, ny2
call adJnuII( adj, add, bb, nbl*nb2, yy, nil*n2)
nyl = nl - (nbl-1) * jump; if( nyl<l ) call erexit('cinjof: nyl<l’)
ny2 = n2 - (nb2-1); if( ny2<1 ') call erexit(cinjof: ny2<1’)
|f( adj == 0 )
do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)
do bl=1,nbl { do yl=1,nyl { x1 = vyl - (bl-nbl) * jump
BB yy(yly2) = yy(yly2) + bb(bl,b2) * xx(x1,x2)
else
do b2=1,nb2 { do y2=1,ny2 { X2 = - (b2-nb2)
do bl=1,nbl { do yl=1,nyl { x1 = vyl - (bl-nbl) * jump
B bb(b1,b2) = bb(bl,b2) + yy(yly2) * xx(x1,x2)
return; end

Back



was taken; and contours are plotted at near-zero magnitudes in EigireThe
slanting straight lines have slopes at the two dips that are destroyed by the filte
Noticing the broad lows where the null lines cross, we might expect to see enel
at this temporal and spatial frequency, but | have not noticed | cinjof

In practice, wavefronts haveurvature, so we will estimate the 2-D filters in
many small windows on a wall of data. Therefore, to eliminate edge effects,
designed the 2-D filter programs starting from the 1-D internal convolution progra

convin() . The subroutine for two-dimensional filteringdsjof()
. The adjoint operation included in this subroutine is exactly what w
need for estimating the filter.

A companion progranginloi()  , is essentially the same aisjof() , except
that in cinloi() the other adjoint is used (for unknown input instead of unknowr
filter), and there is no need to interlace the time axis. A new featusielaf) is
that it arranges for the output residuals to come out directly on top of their approp
ate location on the original data. In other words, the output of the filter is at the “1
Although the edge conditions in this routine are confusing, it should be obvious tf

xx(,) is aligned withyy() atbb(lagilag2) . [cinloi]



# CINLOI --- Convolution INternal with Lags. Output is adjoint to INPUT.
#
subroutine cinloi( adj, add, lagl,lag2,nbl,nb2,bb, nl1,n2, xx, yy)

integer adj, add lagl,lag2,nb1,nb2, nl, n2 # lag=1 causal
real bb(nb1, nb2) xx(n1,n2), yy(nl,n2)
integer y1,y2, x1,x2, bl,b2

call adjnull( adj, add, xx,n1*n2, yy,nl*n2 )

if( adj == 0 )

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do bl=1,nbl { do yl= 1+nbl-lagl, nl-lagl+l { x1= yl - bl + lagl
yy(y1.y2) = yy(yly2) + bb(b1,b2) * xx(x1,x2)
3

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do bl=1,nbl { do yl= 1+nbl-lagl, nl-lagl+l { x1= yl - bl + lagl
xxX(x1,x2) = xx(x1,x2) + bb(b1,b2) * yy(yl,y2)
BB
return; end

Back



# Find spatial prediction-error filter.
#

subroutine pe2( eps, al,a2,aa, nl,n2 ,pp, rr, niter, jump)
integer al,a2, ni,n2, niter, jump
integer i1, iter, midpt, r12, al2

real aa( al , a2), pp( N1, n2), r(nl,n2*2), eps
temporary real da( al, a2), dr( nl, n2 * 2)

temporary real sa( al, a2), sr( nl, n2 * 2)

rl2 = nl * n2

al2 = al * a2

call null( aa, al2); call null( rr, 2 * rl12)

call nuII( da, al2); call null( dr, 2 * r12)

midpt = (al+l) / 2

aa( midpt, 1 ) = 1.
call cinjof( O O jump, n1,n2,pp, al,a2aa, rr )
call ident ( O, O, eps, a12, aa, rr(1,n2+1) )
call scaleit ( -1, 2*r12, r

do iter= 0, niter {

call cinjof( 1, 0, jump, nl,n2,pp, al,a2,da, r )
call ident ( 1, 1, eps, al2, rr(1 n2+1) )
do i1= 1, al { da(i1, 1) =
call cinjof( 0, O, jump, nl,n2,pp, al,a2,da, dr

call ident ( O, O, eps, al2, da, dr(1,n2+1) )

call cgstep( iter, al2, aada,sa, _
2*r12, rr,dr,sr )

return; end

Back

0.}



8.4.4. The regression codes

The programs for the two-dimensional prediction-error filter and missing data r
semble those for one dimension. | simplified the code by not tryingattk the
unknowns and residuals tightly in tlabstract vectors. Because of this, it is nec-
essary to be sure those abstract vectors are initialized to zero. (Otherwise, the
of the abstract vector that are not initialized could contribute to the result wghen

step() |/prog:cgstepevaluates dot products on abstract vectors.) The ropéirie

finds the 2-D PE filte This routine is the two-dimensional equiv-

alent of finding the filterA(Z) so that O~ R(Z) = P(Z)A(Z). We coded the 1-D

problem ininer() Inpe2() , however, | did not bother with the weight-

ing functions. A further new feature @k2() is that | addedul capability (where

A is eps) by including the call tadent() , so that | could experiment

with various forms of filter stabilization. is addition did not seem to be helpful.
Given the 2-D PE filter, the missing data is found witlks2()

which is the 2-D equivalent aiiss1() |/prog:miss missa We will soon see that
stabilization is more critical imiss2() than inpe2() . Furthermoremiss2() must
be stabilized with aweighting function, hereww(,) , which is why | used the di-




# fill in missing data in 2-D by minimizing power out of a given filter.
#

subroutine miss2(  lagl,lag2, al,a2, aa, nl,n2, ww, pp, known, rr, niter)

integer i1,i2,iter, lagl,lag2, al,a2, ni,n2, niter, n12

real pp( nl, n2) # in: known data with zeros for missing values
# out: known plus missing data.

real known( n1, n2) # in: known(ip) vanishes where pp(ip) is missing

real ww( nl, n2) # in: weighting function on data pp

real aa( al, a2) # in: roughening filter

real rr( nl, n2*2 # out: residual

temporary real dp( nl, n2), dr( nl, n2*2)
temporary real sp( nl, n2), sr( nl, n2*2)

nl2 = nl * n2; call null( rr, n12*2)

call null( dp, n12); call null( dr, n12*2)
call cinloi( 0, 0, lagl,lag2,al,a2,aa, n1,n2, pp, rr )
call diag (O, O, ww, nl2, pp, m(1,n2+1))
call scaleit (-1., 2*n12, m

do iter= 0, niter {

call cinloi( 1, 0, lagl,lag2,al,a2,aa, n1,n2, dp, rr )

call diag ( 1, 1, ww, nl2, dp, rr(1,n2+1))
do il= 1, nl1

do i2= 1, n2 { if( known(il,i2) != 0.) dp(i1,i2) = 0.

call cinloi( 0, 0, lagl,lag2,al,a2,aa, n1,n2, dp, dr )
call diag ( O, O, ww, nl2, dp, dr(1,n2+1))
call cgstep( iter, nl2, pp,dp,sp, _

2*n12, rr,dr,sr )

return; end

Back



subroutine diag( adj, add, lambda,n, pp, qq)

integer i, adj, add # equivalence (pp,qq) OK
real Iambdam% pp(n), qq(n)
ift adj == 0 ) {
ift add == 0 ) { do i=1,n { qq(i) = lambda() * pp() } }
else { do i=1,n { qq(i) = qq(i) + lambda() * pp() } }
else { |f(} add == 0 ) { doi=l,n { pp@) = lambda(i) * qq() } }
{ do i=Ln { pp() = pp(i) + lambda() * qq() } }

return; end

Back



agonal matrix multiplietiag() rather than the identity matrix | used daghost()
/prog:deghogtandpe2() |/prog:peZ. Subroutinaliag() is used so frequently that
coded it in a special way to allow the input and output to overlie one another

8.4.5. Zapping the null space with envelope scaling

Here we will see how to remove the small noise we are seeing in the interpolat
outputs. The filter§.10 obviously destroys thimputin Figure8.14 On theoutput

interpolated data, the filter-output residuals (not shown) were all zeros despite
small noises. The filter totally extinguishes the small noise on the outputs becal
the noise has the same stepout (slope) as the signals. The noise is absent fron
original traces, which are interlaced. How can dipping noises exist on the inter
lated traces but be absent from the interlaced data? The reason is that one dip
interfere with another to cancel on the known, noise-free traces. The 8lted) (

destroys perfect output data as well as the noisy data in FRyare Thus, there is

more than one solution to the problem. This is the case in linear equation solvi
whenever there is a null space. Since we manufactured many more data points 1



we originally had, we should not be surprised by the appearancenoli apace
When only a singlelip is present, the null space should vanish because the dip va
ishes on the known traces, having no other dips to interfere with it there. Confir
this by looking back at Figur8.17, which contains no null-space noise. This is
good news, because in real life, in any small window of seismic data, a single-c
model is often a good model.

If we are to eliminate the null-space noises, we will need some criterion |
addition to stepout. One such criterioraisiplitude the noise events are the small
ones. Before using monlinear method, we should be sure, however, that we hav
exploited the full power of linear methods. Information in the data is carried by th
envelope functions, and these envelopes have not been included in the analysi
far. Theenvelope can be used to makeeighting functions. These weights are
not weights orresiduals as in the routinener() |/prog:iner. These are weights

on thesolution TheAl stabilization in routinge2() |/prog:pe2 applied uniform
weights using the subroutingent() |/prog:ident, as has been explained. Here

we simply apply variable weighta using the subroutingiag() |/prog:diag. The
weights themselves are the inverse of the envelope of input data (or the outpus




a previous iteration). Where the envelope is small lies a familiar problem, whict
approached in a familiar way—by adding a small constant. The result is shown
Figure8.19 The top row is the same as Figusel3 The middle row shows the
improvement that can be expected from weighting functions based on the inpt
So the middle row is the solution to a linear interpolation problem. Examining tt
envelope function on the middle left, we can see that it is a poor approximation
the envelope of theutputdata, but that is to be expected because it was estimate
by smoothing the absolute values of timput data (with zeros on the unknown
traces). The bottom row is a second stage of the process just described, where
new weighting function is based on the result in the middle row. Thus the botto
row is anonlinear operation on the data.

When interpolating data, the number of unknowns is large. Here each row
data is 75 points, and there are 20 rows of missing data. So, theoretically, 1-
iterations might be required. | was getting good results with 15 conjugate-gradie
iterations until | introduced weighting functions; then the required number of ite
ations jumped to about a hundred. The calculation takes seconds (unless the
computer starts to underflow; then it takes me 20 times longer.)

| believe the size of the dynamic range in the weighting function has a co
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Figure 8.19: Top left is input. Top right is the interpolation with uniform weights.
In the middle row are the envelope basedimput data and the corresponding in-
terpolated data. For the bottom row, the middle-row solution was used to desi

weights from which a near-perfect solution was deriv{mis-wlace3 [ER]



trolling influence on the number of iterations. Before | made Fighd&, | got
effectively the same result, and more quickly, using another method, which | abe
doned because its philosophical foundation was crude. | describe this other met
here only to keep alive the prospect of exploring the issue of the speed of conv
gence. First | moved thed6 iter " line above the already indented lines to allow
for the nonlinearity of the method. After running some iterations wits O to en-
sure the emergence of some big interpolated values, | turnédagivalues below a
threshold. In the problem at hand, convergence speed is notimportant economic
but is of interest because we have so little guidance as to how we can alter prob
formulation in general to increase the speed of convergence.

8.4.6. Narrow-band data

Spitz’s published procedure is to Fourier transform timedgx}, where, follow-
ing Canales, he computes prediction filters alonfpr eachw. Spitz offers the
insight that for a dipping event with stepopt= kyx/w, the prediction filter at trace
separationAx at frequencywg should be identical to the prediction filter at trace
separatiomrAx/2 at frequency @p. There is trouble unless botby and 2vp have



reasonable signal-to-noise ratio. So a spectral band of good-quality data is requil
It is not obvious that the same limitation applies to the interlacing procedure th
| have been promoting, but | am certainly suspicious, and the possibility desen
inspection. Figur&.20shows a narrow-banded signal that is properly interpolatec
giving an impressive result. It is doubtful that an observant human could have dc
as well. | found, however, that adding 10% noise caused the interpolation to fail.
On further study of Figur@.201 realized that it was not a stringent enough
test. The signals obviously contain zero frequency, so they are not narrow-banc
the sense of containing less than an octave. Much seismic data is narrow-band.
| have noticed that aspects of these programs are fragile. Allowing filters to |
larger than they need to be to fit the waves at hand (i.e., allowing excess chann
can cause failure. We could continue to study the limitations of these progran
Instead, | will embark on an approach similar to the Inlssif() /prog:missif
program. That program is fundamentatignlinear and so somewhat risky, but it
offers us the opportunity to drop the idea of interlacing the filter. Interlacing is prot
ably the origin of the requirement for good signal-to-noise ratio over a wide spect
band. Associated with interlacing is also a nagging doubt about plane waves that
imperfectly predictable from one channel to the next. When such data is interlac
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Figure 8.20: Narrow-banded signal (left) with interpolation (right).
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the PE filter really should change to account for the interlacing. Interlacing the F
filter is too simple a model. We can think of interlacing as merely the first guess
a nonlinear problem.

8.5. AFULLY TWO-DIMENSIONAL PE FILTER

The prediction-error filters we dealt with above are not genuinely two-dimension
because Fourier transform over time would leave independent, 1-D, spatial PE filt
for each temporal frequency. What is a trilyo-dimensional prediction-error
filter ' This is a question we should answer in our quest to understand reson
signals aligned along various dips. Fig@€ 1shows that an interpolation-error
filter is no substitute for a PE filter in one dimension. So we need to use special ¢
in properly defining a 2-D PE filter. Recall the basic proof in chaptgrage??)
that the output of a PE filter is white. The basic idea is that the output residu
is uncorrelated with the input fitting functions (delayed signals); hence, by line
combination, theutputis uncorrelated with thpast outputgbecause past outputs

1] am indebted to John P. Burg for some of these ideas.



are also linear combinations of past inputs). This is provenofee side of the
autocorrelation, and the last step in the proof is to note that what is true for one s
of the autocorrelation must be true for the other. Therefore, we need to extend
idea of “past” and “future” into the plane to divide the plane into two halves. Thu
| generally take a 2-D PE filter to be of the form

a a a a a

a a a
a a a
S (8.12)

Py

a
a
a
1

Py

a

a

a
a

where “” marks the location of a zero element aadnarks the location of an
element that is found by minimizing the output power. Notice that for eathere

is a point mirrored across the “1” at the origin, and the mirrored point is not in th
filter. Together, all thea locations and their mirrors cover the plane. Obviously
the plane can be bisected in other ways, but this way seems a natural one for
processes we have in mind. Ttieee-dimensional prediction-error filter which
embodies the same concept is shown in Figuge.
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Can “short” filters be used? Experience shows that a significant detriment
whitening with a PE filter is an underlying model that is not purely a polynomia
division because it has a convolutional (moving average) part. The convolutior
part is especially troublesome when it involves serious bandlimiting, as does con
lution with bionomial coefficients (for example, the Butterworth filter, discussed i
chapterl0). When bandlimiting occurs, it seems best to ugmpped PE filter. |
have some limited experience with 2-D PE filters that suggests using a gapped fc
like

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a (8.13)
a a a a a a a a a
1 a a a

With this kind of PE filter, the output traces are uncorrelated with each other, al
the output plane is correlated with itself only for a short distance (the length of tt
gap) on the time axis.



EXERCISES:
1 Recall Figuret.4. Explain how to do the job properly.

8.5.1. The hope method

We have examined the two-stage linear method of missing-data restoration, wh
calls for solving for a filter, interlacing it, and then solving for the missing data.
believe that method, with its interlacing, is unsuitable for data with a narrow spectt
signal-to-noise ratio, such as we often encounter in practice. It would indeed be n
to be able to work with such data.

Recall equation§.4):

rgip (IIPAJ| + Aol|PoAll 4+ A10lIP Aoll)

Now we hope to solve the trace-interlace problem directly from this optimizatiot
Without the training dat®y and the high-pass filtekg, however, the trace-interlace

problem is highlynonlinear, and, as in the case of the one-dimensional problem,
found | was unable to descend to a satisfactory solution. Therefore, we must th
about what the training data and prior filter might be. Our first guess might be tr



Pg is a low-pass dip filter andyg is a high-pass dip filter. Several representations
for low- and high-pass dip filters are described in IEI. | performed a few tests wit
them but was not satisfied with the results.

Another possibility is thaPy should be the solution as found by the interlacing
method. Time did not allow me to investigate this promising idea.

Still another possibility is that these problems are so easy to solve (requiri
workstation compute times of a few seconds only) that we should abandon tra
tional optimization methods and usinulated annealing(Rothman, 1985).

All the above ideas are hopeful. A goal of this study is to define and characteri
the kinds of problems that we think should be solvable. A simple example of
dataset that | believe should be amenable to interpolation, even with substan
noise, is shown in Figurg.22 | have not worked with this case yet.

To prepare the way, and to perform my preliminary (but unsatisfactory) tests
prepared subroutirtepe() , the two-dimensional counterpartrtssif()

andmisfip() ‘/prog:misfiq. ‘ hope{ | found the jump-and-interlace 2-D convolution

cinjof() /prog:cinjof| unsuitable here because it does not align its output consi
tently with the aligning convolutiosinloi() /prog:cinloil. So | wrote an aligning
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subroutine hope( gap, h1,h2,hh, t1,t2;tt, al,a2,aa, pl,p2, pp, known, niter)
pl2

integer
integer

real
temporary real
temporary real
temporary real

1,h2, h12 tl t2, t12 al,a2, a12 p1,p2,
gap, iter, niter, m|dpt nx,nr, px,ax, qrtr hr
hh(hl h2), tt(t1,t2), aa(al, a2) pp(pl*p2) known(pl*pZ) dot
x( pl*p2 +al*a2), rr( pl*p2 +pl*p2 +t1*t2)
g( pl*p2 +al*a2), gg( pl*p2 +pl*p2 +t1*t2)
s( pl*p2 +al*a2), ss( pl*p2 +pl*p2 +t1*t2)

pl2 = pl*p2; al2 = al*az; t12 = t1*t2; h12= h1*h2;

nx = pl2 + alz; px= 1; ax= 1+pl12

nr = pl2 + pl2 + t12; qr= 1; hr= 1+p12; tr= 1+pl2+pl2
call zero( al2, aa); midpt= a1/2 aa( midpt, 1 ) = sqrt( dot( pl2,pp,pp))
call zero( nx, x); call zero( nr, rr); call copy( pl2, pp, X(px))

call zero( nx, g); call zero( nr, gg); call copy( al2, aa, x(ax))

do iter= 0, niter {

call cinloi( 0, 0, midpt,1, al,a2,aa, pl,p2,pp, rr(qr))

call cinloi( 0, 0, midpt,1, h1,h2,hh, pl,p2,pp, rr(hr))

call cinloi( 0, 0, midpt,1, al,a2,aa, t1,t2,t, rr(tr))

call scaleit ( -1, nr, r
call cinloi( 1, 0, midpt,1, al,a2,aa, pl,p2,9(px), rr(qr))

call cinlof( 1, 0, midpt,1, p1,p2,pp, al,a2,g(ax), rr(qr))

call cinloi( 1, 1, midpt,1, h1,h2,hh, p1,p2,g9(px), rr(hr))

call cinlof( 1, 1, midpt,1, t1,t2,tt, al,a2,g(ax), rr(tr))

do i= 1, p12 { if( known(i) != 0.) g( i+ (px-1)) =

do i= 1, midpt+gap { g( 1+ (ax- 1))

call
call
call
call
call

call
call

return; end

Back

cinloi( 0, 0, midpt,1, al,a2,aa, pl,p2,9(px), gg(ar)
cinlof( 0, 1, midpt,1, pl,p2,pp, al,a2,g(ax), gg(ar))
cinloi( 0, 0, midpt,1, h1,h2,hh, pl1,p2,g(px), gg(hr))
cinlof( 0, 0, midpt,1, t1,t2,tt, al,a2,g(ax), gg(tr))
cgstep( iter, nx, X, g, S,

nr, 11,9g,ss )
copy( p12, x(px), pp)
copy( al2, x(ax), aa)

0.}



# CINLOF --- Convolution INternal with Lags. Output is adjoint to FILTER.
#
subroutine cinlof( adj, add, lagl,lag2, ni1,n2,xx, nbl,nb2, bb vy)

integer adj, add lagl,lag2, ni,n2, nbl nb

real xx(nl, n2) bb(nbl nb2), yy(n1,n2)
integer y1,y2, x1,x2, bl, b2

call adjnull( adj, add, bb,nb1*nb2, yy,n1*n2)
if( adj == 0 )

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do bl=1,nbl { do yl= 1+nbl-lagl, nl-lagl+l { x1= yl - bl + lagl
yy(y1.y2) = yy(yly2) + bb(b1,b2) * xx(x1,x2)
3

else
do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2
do bl=1,nbl { do yl= 1+nbl-lagl, nl-lagl+1l { x1= yl - bl + lagl
bb(b1,b2) = bb(bl,b2) + yy(yly2) * xx(x1,x2)
BB
return; end

Back



convolution identical witheinloi() ~ except that thdilter is the adjoint. It is called

cinlof() .

8.5.2. An alternative principle for 2-D interpolation

In principle, missing traces can be determined to simplifykj-space. Consider a
wave fieldP composed of several linear events inx)-space. Acontour plot of
energy in {,k)-space would show energy concentrations along lines of vapess
k/w, much like Figures.18 Let the energy density bé = P P. Along contours of
constante, we should also sep = dk/dw. Thegradient vector (0 E/dw, d E/9K)

is perpendicular to the contours. Thus the dot product of the veeot&) (vith the
gradient should vanish. | propose to solve tbgressionthat the dot product of the
vector @, k) with the gradient of the log energy be zero, or, formally,

N 0 D o
PP PP
The variables in the regression are the values of the missing traces. Obviou
the numerator and the denominator should be smoothed in small windows in 1

0 ~ o (8.14)




(w,Kk)-plane. This makes conceptual sense but does not fit well with the idea
small windows in {,x)-space. It should be good for some interesting discussion:
though. For example, in Figu&18 what will happen where event lines cross? Is
this formulation adequate there? Also, how should the Nyquist limitation on tot.
bandwidth be expressed?

8.6. TOMOGRAPHY AND OTHER APPLICA-
TIONS

Medical tomography avoids a problem that is unavoidable in earth-scienmuey-
raphy. In medicine it is not difficult to surround the target with senders and re
ceivers. In earth science it is nearly impossible. It is well known that our recol
structions tend to bimdeterminate along the dominant ray direction. Customarily,
the indeterminacy is resolved by minimizing power in a roughened image. Tl
roughening filter should be inverse in spectrum to the desired image spectrum. |
fortunately, that spectrum is unknown and arbitrary. Perhaps we can replace t
arbitrary image smoothing by something more reasonable in the space of the m



ing data.

Recall the well-to-well tomography problem in chapfer Given a sender at
depthzs in one well, a receiver at depity in the other well, and given traveltimes
tk(zs, 2g), the rays are predominantly horizontal. Theory says we need some re
around the vertical. Imagine the two vertical axes of the wells being supplement
by two horizontal axes, one connecting the tops of the wells and one connecting
bottoms, with missing data traveltimgg(xs, Xg). From any earth modely andty,
are predicted. But what principles can giveiggrom ty? Obviously something like
we used in Figure8.2-8.6. Data for the tomographic problem is two-dimensional,
however: let the source location be measured as the distance along the perimet
a box, where the two sides of the box are the two wells. Likewise, receivers m
be placed along the perimeter. Analogous torthépointandoffsetaxes of surface
seismology (see IEIl), we have midpoint and offset along the perimeter. Obvious
there are discontinuities at the corners of the box, and everything is not as regula
in medical imaging, where sources and receivers are on a circle and their positi
measured by angles. The box gives us a plane in which to lay out the data, not |
the recorded data, but all the data that we think is required to represent the ima
To fill in the missing data we can minimize the power out of some two-dimension.



filter, say, for example, the Laplacian filteg + 892. This would give us the two-
dimensional equivalent of Figur&s2-8.6.

Alas, this procedure cannot produce information where none was recorded. |
it should yield an image that is not overwhelmed by the obvious heterogeneity
the data-collection geometry.

The traditional approach offeophysical inverse theoryrequires the inverse
of the modelcovariance matrix. How is this to be found using our procedure?
How are we to cope with the absence of rays in certain directions? Notice tt
whatever theovariance matrix may be, the resolution is very different in different
parts of the model: it is better near the wells, best halfway down near a well, a
worst halfway between the wells, especially near the top and bottom. How can tl
information be quantified in the model’s inversavariance matrix? This is a hard
question, harder than the problem that we would solve if we gimenthe matrix.
Most people simply give up and let the inverse covariance be a roughening oper
like a Laplacian, constant over space.

With the filling of data space, will it still be necessary to smooth the model ex
plicitly (by minimizing energy in a roughened model)? Mathematically, the que:s
tion is one of the “completeness” of the data space. | believe there are analy



solutions well known in medical imaging that prove that a circle of data is enoug
information to specify completely the image. Thus, we can expect that little or r
arbitrary image smoothing is required to resolve the indeterminacy—it should |
resolved by the assertion that statistics gathered from the known data are applic:
to the missing data.

| suggest, therefore, that every data space be augmented until it has the dirr
sionality and completeness required to determine a solution. If this cannot be dc
fully, it should still be done to the fullest extent feasible.

The covariance matrix of theresidual in data space (missing and observed)
seems a reasonable thing to estimate—easier than the covariance matrix of
model. | think the model covariance matrix should not be thought of as a cova
ance matrix of the solution, but as a chosen interpolation function for plotting tt
solution.

8.6.1. Clash in philosophies

One philosophy of geophysical data analysis calladérse theory’ says that miss-
ing data is irrelevant. According to this philosophy, a good geophysical model on



needs to fit the real data, not interpolated or extrapolated data, so why bother v
interpolated or extrapolated data? Even some experienced practitioners belon
this school of thought. My old friend Boris Zavalishin says, “Do not trust the dat
you have not paid for.”

| can justify data interpolation in both human and mathematical terms. In hi
man terms, the solution to a problem often follows from the adjoint operator, whe
the data space has enough known values. With a good display of data space, |
ple often apply the adjoint operator in their minds. Filling the data space prever
distraction and confusion. The mathematical justification is that inversion metho
are notorious for slow convergence. Consider that matrix-inversion costs are p
portional to the cube of the number of unknowns. Computers balk when the numlt
of unknowns goes above one thousand; and our images generally have millions.
extending the operator (which relates the model to the data) to include missing d:
we can hope for a far more rapid convergence to the solution. On the extended d
perhaps the adjoint alone will be enough. Finally, we are not falsely influenced |
the “data not paid for” if we adjust it so that there is no residual between it and tt
final model.



8.6.2. An aside on theory-of-constraint equations

A theory exists for generaonstraints inquadratic form minimization. | have not
found the theory to be useful in any application | have run into so far, but it shou
come in handy for writing erudite theoretical articles.

Constraint equations are an underdetermined set of equationd=s&x (the
number of components kexceeds that id), which must be solved exactly while
some other set is solved in tleast-squaressense, say ~ Bx. This is formalized
as

min {Qc(x) = lim [(y—Bx)'(y —Bx)+ %(d —Gx)'(d—Gx)]} (8.15)

In my first book (FGDP: see page 113), | minimiz€¢ by power series, letting

x = xO + ex®), and henceQc = QO +eQM ... | minimized bothQ©® and
QM with respect tox@ andx). After a page of algebra, this approach leads to the
system of equations

BB G X By
TSI - [ 619



wherex® has been superseded by the variabte Gx(Y), which has fewer compo-
nents tharx?, and wherex© has simply been replaced by The second of the
two equations shows that the constraints are satisfied. But it is not obvious frc
equation 8.16) that 8.15 is minimized.

The great mathematician Lagrange apparently looked at the result, eq@atign (
and realized that he could arrive at it far more simply by extremalizing the followin
guadratic form:

QL(x,A) = (y—Bx)(y—Bx)+(d—Gx)A+1'(d—Gx) (8.17)

We can quickly verify that Lagrange was correct by setting to zero the derivativi
with respect tax’ and’. Naturally, everyone prefers to handle constraints by La
grange’s method. Unfortunately, Lagrange failed to pass on to the teachers of
world an intuitive reasowhyextremalizing 8.17) gives the same result as extremal-
izing (8.19. Lagrange’s quadratic form is not even positive definite (that is, it car
not be written as something times its adjoint). In honor of Lagrange, the variables
have come to be known asgrange multipliers.
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Chapter 9
Hyperbola tricks

In exploration seismology much attention is given to all aspects of hyperbolas. N
previous book (IEI) is filled witthyperbola lore, especially wave-equation solution
methodology. That book, however, only touches questions of hyperbolas arising

513



least-squares problems. | wish | could say this chapter organizes everything t
ter, but in reality it is a miscellaneous collection of additional material in whict
hyperbolas are exploited with due regard to operator conjugacy and least square

9.1. PIXEL-PRECISE VELOCITY SCANNING

Traditionally, velocity scanning is done by the loop structure given in ch&pier
which the concept of a velocity transform was introduced. This structure is

do v
do tau
do x

t = sgrt( tau**2 + (x/v)**2 )

velo( tau, v) = velo( tau, v) + data( t, x)
These loops transform source-receiver offséb velocity v in much the same way
as Fourier analysis transforms time to frequency. Here we will investigate a ne
alternative that gives conceptually the same result but differs in practical ways. It
to transform with the following loop structure:



do tau
do t = tau, tmax
do x

v = sgrt( x**2 [/ ( t**2 - tau**2 ))

velo( tau, v) = velo( tau, v) + data( t, x)
Notice thatt = /724 (x/v)? in the conventional code is algebraically equivalent to
v = X/+/t2—12in the new code. The traditional method finds one value for eac
point in outputspace, whereas the new method uses each point afipéspace
exactly once.

The new method, which | have chosen to call th&xél-precisemethod,” dif-
fers from the traditional one in cost, smoothing, accuracy, and truncation. The ct
of traditional velocity scanning is proportional to the prodNgNy N, of the lengths
of the axes of time, offset, and velocity. The cost of the new method is proportion
to the productNtZNX/Z. Normally N;/2 > N,, so the new method is somewhat
more costly than the traditional one, but not immensely so, and in return we ¢
have all the (numerical) resolution we wish in velocity space at no extra cost. T
verdict is not in yet on whether the new method is better than the old one in routi
practice, but the reasoning behind the new method teaches many lessons. No



amined here is the smooth envelope (pa@gthat is a postprocess to conventional
velocity scanning.

Certain facts about aliasing must be borne in mind as one defines any veloc
scan. A first concern arises because typical hyperbolas crossing a tyy@shen-
counter multiple points on the time axis for each point on the space axis. This
shown in Figured.1. An aliasing problem will be experienced by any program tha
selects only one signal value for eachnstead of the multiple points that are shown.
The extra boxes complicate traditional velocity scanning. Many programs igno
it without embarrassment only because low-velocity events contain only shallc
information about the earth. (A cynical view is that field operations tend to ove
sample in offset space because of this limitation in some velocity programs.)
significant improvement is made by summing all the points in boxes. A still mor
elaborate analysis (which we will not pursue here) is to lay down a hyperbola or
mesh and interpolate a line integral from the traces on either side of the line.

A second concern arises from the sampling in velocity space. Traditionally pe
ple question whether to sample velocity uniformly in velocity, slowness, or slowne
squared. Difficulty arises first on the widest-offset trace. When jumping from or
velocity to the next, the time on the wide-offset trace should not jump so far that



one x, several t

Figure 9.1: A typical hyperbola =
crossing a typical mesh. Notice =
that the curve is represented by =

multiple time points for eaclx.
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leaves a gap, as shown in Fig@&.

Figure 9.2: Too large an inter-
val in velocity will leave a gap
between the hyperbolic scans.

[y deliave][NR

t =

With the new method there is no chance of missing a point on the wide-offs
trace. For each depth every point belowt in the input-data space (including the



wide-offset trace) is summed exactly once into velocity space (whether that sps
is discretized uniformly in velocity or slowness). Also, the inner trace ertels
once.

The new method also makes many old interpolation issues irrelevant. Ne
guestions arise, however. TheX)-position of the input data is exact, asds
Interpolation becomes a question only @nSince velocity scanning in this way is
independent of the number of points in velocity, we could sample densely and t
nearest-neighbor interpolation (or any other form of interpolation). A disadvanta
is that some points inc( v)-space may happen to gad input data, especially if we
refinev too much.

The result of the new velocity transformation is shown in Figiu® The fig-
ure includes some scaling that will be described later. The code that genera
Figure9.3is just like the pseudocode above except that it parameterizes velocity
uniform samples of inverse velocity squareds v—2. A small advantage of using
s-space instead af-space is that the trajectories we seertys)-space are readily
recognized as parabolas, namefy= t2 — x2s, where each parabola comes from a
particular point in {, x).

To exhibit all the artifacts as clearly as possible, | changed all signal values



Figure 9.3: Offset to slowness squared and back to off hyp-vspray1[NR]



their signed square roots before plotting brightness. This has the effect of mak
the plots look noisier than they really are. | also chageto be unrealistically
large to enable you to see each point. The synthetic input data was made v
nearest-neighbor NMO. Notice that resulting timing irregularities in the input ar
also present in the reconstruction. This shows a remarkable precision.

Balancing the pleasing result of Figuge3 is the poor result from the same
program shown in Figur8.4. The new figure shows that points in velocity space
map to bits of hyperbolas in offset space—not to entire hyperbolas. It also sho
thatsmalloffset points becomsparselydotted lines in velocity space.

The problem of hyperbolas being present only discontinuously is solvable |
smearing over any axis, X, ¢, or v, but we would prefer intelligent smoothing over
the appropriate axis.

9.1.1. Smoothing in velocity

To get smoother results | took the time axis to be continuous and the signal value
(t,x) to be distributed between the two poihts=t — At/2 andt; =t + At/2. The
two time pointst. and thex-value are mapped to two slownesses The signal
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Figure 9.4: Slowness squared to offset and back to slowness squar
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subroutine vspray( adj, ntdtt0, nx,dx,x0, tx, ns,ds,s0O, zs)
integer adj, it, nt, iz, nz, ix, nx, is, ns, isp, ism

real tx(nt,nx), zs(nt,ns), scale
real z,dz,z0, t,dt,t0, x,dx,x0, s,ds,sO, sm,sp, xmxp, tm,tp
nz=nt; dz=dt; 2z0=t0;
call adjnull( adj, O, X, nt*nx, nz*ns)
ift adj == 0) { do ix=1,nx; call halfdif (1, nt tx(l ix), tx(1,ix) )}
do iz= 1, nz{ z = z0 + dz*(iz-1)
do ix= 1, nx { x = x0 + dx*(ix-1)
do it= iz, nt { t = t0 + dt*(it-1)
tm = t-dt/2; Xxm = X

tp = t+dt/2; Xp = X
= (tm**z -z**2)Ixp**2; ism = 1.5+(sm-s0)/ds
= (tp**2 -z**2)/xm**2; isp = 1.5+(sp-s0)/ds
|f( |sm<2 ) next
if( isp>ns) next
scale = sqrt( t / (1.+isp-ism) ) / ( abs(x) + abs(dx)/2.)
do is= ism, isp {
if( adj ==
zs(iz ,is) = zs(iz ,is) + tx(it ,ix) * scale
else
tx(it ,ix) = tx(it ,ix) + zs(iz ,is) * scale

if( adj != %J)} }{ do ix=1,nx; call halfdif ( 0, nt, tx(1,ix), tx(1,ix) )}
return; end

Back



Figure 9.5: Horizontal line method. Compare the left to Figufeand the right to
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from the ¢,x)-pixel is sprayed into the horizontal line,6.). To enable you to
reproduce the result, | include thspray() subroutine Figure9.5shows
the result for the same inputs as used in Fig@éand9.4.

9.1.2. Rho filter

Notice the darkhalo around the reconstruction in Figuge3. It was suppressed
in Figure 9.5 by the subroutingéalfdifa() . Recall that slant-stack inversion (see
IEI for an example) requires aj| filter. Without doing any formal analysis |
guessed that the same filter would be helpful here because the dark halo has a st
spectral component at = 0 which would be extinguished by asn| filter. The|w|
filter is sometimes called arlio filter.” Because of the close relation of slant-
stack inversion to wave propagation acausality, | found it appealing to factor
lw| into a causal/—iw part and an anticausali w part. | applied a causal/—i»
after generating the (x)-space and an anticausdl » before making thet(,v—2)-
space. | implemented the causality by taking the square root of a Fourier dom
representation of causdifferentiation, namely,/1— Z. | show this in subroutine

halfdifa() . | halfdifa



# Half order causal derivative. OK to equiv(xx,yy)

subroutlne halfdifa( adj, add, n, xx, yy )

integer n2, i, adj, add, n
real omega, xx(n), yy(n)
complex cz, cv(4096)
n2=1; while(n2<n) n2=2*n2; if( N2 > 4096) call erexit('halfdif memory’)
do i= 1, n2 { cv() = 0.}
do i= 1, n

|f( adj == 0) { cv(i) = xx(|)}

. else i { cv() = yy(@)}

call adjnull( adj, add, Xx,n, yy,n)

call ftu( +1., n2, cv)
do i= 1, n2 {
omega = (i-1.) * 2.*3.14159265 / n2
cz = csqrt( 1. - cexp( cmplx( 0., omega)))
if( adj !'= 0) cz = conjg( cz)
cv(i) = cv(i) * cz

call ftu( -1., n2, cv)

doi=1,n _ . _
if( adj == 0)  { yy() = yy() + cv()}
else { xx(@)) = xx(@i) + cv(i)}
return; end

Back



Notice also thatspray() includes a scaling variable namechle . | have
not developed a theory for this scale factor, but if you omit it, amplitudes in th
reconstructions will be far out of amplitude balance with the input.

9.2. GEOMETRY-BASED DECON

In chapter7 deconvolutionwas considered to be a one-dimensional problem. W
ignored spatial issues. The one-dimensional approach seems valid for waves fro
source and to a receiver in the same location, but an obvious correction is requi
for shot-to-receivespatial offset A first approach is to apply normal-moveout cor-
rection to the data before deconvolution. Previous figures have appifedrapli-
tude correction to the deconvolutiomput (Simple theory suggests that the am-
plitude correction should be nott2, but experimental work, summarized along
with more complicated theory in IEI, sugges?s) Looking back to Figur@?, we
see that the quality of the deconvolution deteriorated with offset. To test the id
that deconvolution would work better after normal moveout, | prepared Figére
Looking in the region of Figur®.6 outlined by a rectangle, we can conclude that
NMO should be done before deconvolution. The trouble with this conclusion is th
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Figure 9.6: Data from Yilmaz and Cumro dataset 27 afterain illustrates decon-

volution working better after NMO| hyp-wz27nma[NR]



data comes in many flavors. On the wider offsets of any data (such as Pigure
it can be seen that NMO destroys the wavelet. A source of confusion is that t
convolutional model can occur in two different forms from two separate physic:
causes, as we will see next.

9.2.1. A model with both signature and reverberation

Convolution occurs in data modeling both before and after moveout correction. Ti
different deconvolution processes that deal with the two ways convolution occt
are called tesignaturé' and “dereverberation.”

e Reverberation

Reverberation is theultiple bouncing of waves between layers. Waves at vertica
incidence in a water layer over the earth can develop clear, predictable, perio
echos. FGDP gives a detailed theory for this. At nonzero shot-to-geophone offs
the perfect periodicity is destroyed, i.e., multiple reflections no longer have a ur
form reverberation period. In a model earth with velocity constant in depth, norme
moveout correction restores the uniform reverberation period. Mathematical tec



nigues for dealing with reverberation in the presence of depth-variable velocity &
described in considerable detail in IEI

e Signature

Seismic “signature” is defined to be a convolutional filtering on impulse-source da
This convolution models the nonimpulsive nature of real sources. Imagine the «
cillation of a marineairgun’s bubble. On land, the earth’s near surface can hav
a very slow velocity. There Snell's law will bend all rays to very near vertical in:
cidence. Mathematically, such reverberations in such layers are indistinguisha
from source signature. For example, in California the near-sudaiteoften have
a velocity near the air velocity (340 m/s) that grades toward the water velocity (15
m/s). A buried shot typically has a free-surface reflection ghost whose time delay
virtually independent of angle. Thus the ghost is more like signature than multipl
Synthetic data in Figur8.7 shows the result of convolution before and after
NMO. An event labeled “G" marks the tail-end of the source signature. The ma
idea illustrated by the figure is that some events are equally spgmfeceNMO,
while other events are equally spaadter NMO. We will see that proper deconvo-
lution requires a delicious mixture of NMO and deconvolution principles.



Figure 9.7:  Example of con-
volution before and after NMO.
The raw data shows a uniform
primary-to-tail interval, while the

NMQO’ed data shows uniform
multiple reverberation. The let-
ters F, G, and V are ad-

justable parameters in the int@1

active program controlling water
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Figure9.7 happens to have a short time constant with the signature and a long
one with the reverberation. The time constants would be reversed in water shall
compared with the gun’s quieting time. This is shown in Figtu@ This figure

Raw NMOed

Figure 9.8: Model in water

shallow compared to gun quiet
ing time. | hyp-shallow [NR]




shows an interesting interference pattern that could also show up in amplitude ver
offset studies.

9.2.2. Regressing simultaneously before and after NMO

Before launching into a complicated theory for suppressing both reverberation &
signature, let us make some guesses. d_denote an original data panel like the
left sides of Figur®.7and9.8, and letd be moved out like the right sides of those
figures. If we had onlgignatureto contend with, we might formulate the problem
asd =~ ) ; aiXi, where thex; are delayed versions of the data, contairilg—i),
and where they; are the scaling coefficients to be found. If we had aelyerber-
ation to contend with, we might formulate the problemdas: 3", @i x;, where the

X; are delayed versions of tmeoved-outlata, and the; are more unknowns. To
suppress both signature and reverberation simultaneously, we need to express
“statements of wishes” in the same domain, either moved out or not. Létting
the moveout operator, and choosing the moved-out domain, we write the statem

of wishes as _
d ~ Y aiXi + Y aiNx (9.1)
i i



Why not estimate the filters sequentially instead of simultaneously? What fa
if we first process raw data by blind deconvolution for the source signature, then
NMO, and finally do blind deconvolution again for reverberation?

At vertical incidence, both filters are convolutional, and they are indistinguist
able. At vertical incidence, doing a stage of deconvolution for each process le:
to nonsensical answers. Whichever stage is applied first will absorb all the color
the data, leaving nothing for the second stage. The color will not be properly di
tributed between the stages. In principle, at nonzero offset the information is pres
to distinguish between the stages, but the first stage will always tend to absorb
color attributable to both. A simpler expression of the same concept arises wt
we are regressing two theoretical signals against some data. If the regressors
orthogonal, such as a mean value and a sinusoid, then we tend to get the same r
regardless of the order in which we subtract them from the signal. If the regress
resemble one another, as a mean can resemble a trend, then they must be estir
simultaneously.



9.2.3. A model for convolution both before and after NMO

Here we will develop a formal theory foB(1). By formalizing the theory, we will
see better how it can be made more precise, and how the wishes expres3ed by
are a linearization of a nonlinear theory.

For a formal model, we will need definitions. Simple multiple reflections ar
generated by A1+ cZ"), wherec is a reflection coefficient and" is the two-way
traveltime to the water bottom. We will express reflectivity as an unspecified filte
R(Z), so the reverberation operator as a whole/id # R(Z)), whereR(Z) is like
the adjustable coefficients in a gapped filter. This form is partly motivated by tf
idea that 1> |R|. Takingx; to denote the reflection coefficients versus depth or th
multiple-free seismogram, and takiggto denote the one-dimensional seismogram
with multiples, we find that the relation between them is conveniently express
with Z-transforms a¥ (Z) = X(Z)/(1+ R(2)).

Likewise, we will express the source signature not as a convolution but as
inverse polynomial (so designature turns into convolution). Suppose that sou
signature as a whole is given by the operatofl¥ S(Z)). The final dataD(Z) is
related to the impulse-source seismogré(Z) by D(Z) =Y (2)/(1+ 2)).

The trouble with the definitions above is that they are in the Fourier domail



Since we are planning to mix in the NMO operator, which stretches the time axis, \
will need to reexpress everything in the time domain. Instead(@) = Y(Z)(1+
R(2)) andY(Z) = D(Z)(1+ $(2)), we will use shifted-column matrices to denote
convolution. Thus our two convolutions can be written as

x = (I+R)y (9.2)
y = (1+9d (9.3)

wherel is an identity matrix. Combining these two, we have a transformation fror
the data to the reflection coefficients for a one-dimensional seismogram. Dep
tures from one-dimensionality arise from NMO and from spheritbargenceof
amplitude. Simple theory (energy distributed on the area of an expanding sphe
suggests that the scaling factoconverts the amplitude of to x. So we define a
matrix T to be a diagonal with the weighdistributed along it.

We need also to include the time shifts of NMO. In chaptere saw that NMO
is a matrix in which the diagonal line is changed to a hyperbola. Denote this mati
by N. Letyg be the result of attempting to generate a zero-offset signal from a sigr
at any other offset by correcting for divergence and moveout:

Yo = NTy (9.4)



The NMO operator can be interpreted in two ways, depending on whether \
plan to find one filter for all offsets, or one for each. In other words, we can decic
if we want one set of earth reflection coefficients applicable to all offsets, or if w
want a separate reflection coefficient at each offset. From chapterrecall that
the more central question is whether to include summation over offset in the NM
operator. If we choose to include summation, then the adjoint sprays the same c
dimensional seismogram out to each offset at the required moveout. This cho
determines if we have one filter for each offset, or if we use the same filter at :
offsets.

Equation 0.2) actually refers only to zero offset. Thus it means (I + R)yp.
Merging this with equations3(3) and ©.4) gives

x = (I+R)NT(1+9)d (9.5)
X = NTd+RNTd+NTSd+RNTSd (9.6)

Now it is time to think about what is known and what is unknown. The un

knowns will be the reverberation operatétsandS. Since we can only solve non-

linear problems by iteration, we linearize by dropping the term that is the product
unknowns, namely, the last term i&.Q). This is justified if the unknowns are small,



and they might be small, since they are predictions. Otherwise, we must itere
which is the usual solution to a nonlinear problem by a sequence of linearizatiol
The linearization is

X = (NTd+RNTd+NTSd). 9.7)

When a product ofZ-transforms is expressed with a shifted-column matrix, we
have a choice of which factor to put in the matrix and which in the vector. Th
unknown belongs in the vector so that simultaneous equations can be the end re
We need, therefore, to rearrange the capital and lower-case letté&x3)ino(place
all unknowns in vectors. Also, besides the original ditave will be regressing on
processed datd, defined by _
d = NTd (9.8)

Equation 0.7) thus becomes

X = d+Dr+NTDs (9.9)

Now the unknowns are vectors.
Recall that the unknowns are like prediction filters. Everything ithat is
predictable by andsis predicted in an effort to minimize the powenin During



the process we can expecto tend to whiteness. Thus our statement of wishes is
0 ~ d+4Dr+NTDs (9.10)

Equation 0.10 is about the same a$8.(). To see this, associater with « and
associate—s with «. To make 0.10 look more like a familiar overdetermined
system, | write it as

- = r

d ~ [-D —NTD] [ S} (9.11)

Some years ago | tested this concept on a small selection of data, includi

Yilmaz and Cumro dataset 27, used in Fig@ré. The signature waveform of
this dataset was hardly measurable, and almost everything was in the reverbi
tion. Thus, results nearly equal to Figude5 could be obtained by omitting the
deconvolution before NMO. Although | was unable to establish by field-data tria
that simultaneous deconvolution is necessary, | feel that theory and synthetic stuc
would show that it is.



9.2.4. Heavy artillery

In Figure 9.6, we can see that events remain which look suspiciously like multipl
reflections. Careful inspection of the data (rapid blinking on a video screen) co
vinced me that the problem lay in imperfect modeling of depth-variable velocit
It is not enough to use a depth-variable velocity in the NMO (a constant veloci
was used in Figur8.6), because primary and multiple reflections have different ve
locities at the same time. | used instead a physical technique called “diffractio
(explained in detail in IEI) to make the regressors. Instead of simply shifting c
the time axis, diffraction shifts on the depth axis, which results in subtle changes
hyperbola curvature.

The downward-continuation result is significantly better than the NMO resul
but it does contain some suspicious reflections (boxed). My final effort, shown
the right, includes the idea that the data contains random noise which could be w
dowed away in velocity space. To understand how this was done, recall that
basic model igl ~ ) ; i x;, whered is the left panelg; are constants determined
by least squares, angl are the regressors, which are panels tideut delayed and
diffracted. LetV denote an operator that transforms to velocity space. Instead
solving the regressioth~ Y. «; x;, | solved the regressiod ~  ; o Vx; and used



Figure 9.9: Left is the original data. Next is the result of using NMO in the
regressors. Next, the result of downward continuation in the regressors. On
right, velocity scans were also used. Rectangles outline certain or likely multip
reflections.




the resulting values af; in the original ¢, x)-space. (Mathematically, | did the same
thing when making Figur@?.) This procedure offers the possible advantage tha
a weighting function can be used in the velocity space. Applying all these ides
we see that a reflector remains which looks more like a multiple than a primal

A regressiond ~ ) ; @iXi) can be done in any space. You must be able|to
transfer into that space (that is, to make andVx;) but you do not need to be
able to transform back from that space (you do not néet). You should find

theq; in whatever space you are able to define the most meaningful weighting
function.

A proper “industrial strength” attack on multiple reflections involves all the
methods discussed above, wave-propagation phenomena described in IEI, and |
cious averaging in the space of source and receiver distributions.

9.3. References
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Chapter 10
Spectrum and phase

In this chapter we will examine
e 90 phase shift, analytic signal, and Hilbert transform.

545



e spectral factorization, i.e., finding a minimum-phase wavelet to fit any spe
trum.

e a “cookbook” for Butterworth causal bandpass filters.
e phase delay, group delay, and beating.
e where the name “minimum phase” came from.

e what minimum phase implies for energy delay.

10.1. HILBERT TRANSFORM

Chapte” explains that many plots in this book have various interpretations. Supe
ficially, the plot pairs represent cosine transforms of real even functions. But sin
the functions are even, their negative halves are not shown. An alternate interpre
tion of the plot pairs is that one signal is real azalisal This is illustrated in full
detail in Figurel0.1 Half of the values in Figur&0.1convey no information: these
are the zero values at negative time, and the negative frequencies of the FT. In o



causal wavelet

Figure 10.1: Both positive an [ Re(omega) or Hilbert amplitude
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a real causal response (top) and

real (mid) and imaginary (bot-
tom) parts of its FT.
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words, the right half of Figur&0.1is redundant, and is generally not shown. Like-
wise, the bottom plot, which is the imaginary part, is generally not shown, becau
it is derivable in a simple way from given information. Computation of the unsee
imaginary part is calledHilbert transform .” Here we will investigate details and
applications of the Hilbert transform. These are surprisingly many, includifig 9(
phase-shift filtering, envelope functions, the instantaneous frequency function, &
relating amplitude spectra to phase spectra.

Ordinarily a function is specified entirely in the time domain or entirely in the
frequency domain. The Fourier transform then specifies the function in the otf
domain. TheHilbert transform arises when half the information is in the time
domain and the other half is in the frequency domain. (Algebraically speaking, a
fractional part could be given in either domain.)

10.1.1. A Z-transform view of Hilbert transformation

Let x; be an even function df The definitionZ = €« givesZ "+ Z" = 2coswn;
SO

X(2) = +xZ M xo+xaZ %2+ (10.1)



X(Z) = Xo+2X1C0sw+2X2C0S2+ -+ (10.2)
Now make up a new functio¥i(Z) by replacing cosine by sine ii(.2:
Y(Z) = 2xiSinw+2x2sin2w+--- (10.3)
Recalling thatZ = cosw + i sinw, we see that all the negative powersadtancel
from X(Z)+iY (Z), giving acausalC(Z):
cz) = %[X(Z)+iY(Z)] = %xo~|—xlz~|—xz22~|—-~~ (10.4)

Thus, for plot pairs, the causal responsecisthe real part of the FT is equa-
tion (10.2), and the imaginary part not usually shown is given by equation?.

10.1.2. The quadrature filter

Beginning with a causal response, we switched cosines and sines in the freque
domain. Here we do so again, except that we interchange the time and freque
domains, getting a more physical interpretation.

A filter that converts sines into cosines is called a*'@Base-shift filter" or a
“quadrature filter ." More specifically, if the input is coaf + ¢1), then the output



should be cosft + ¢1 — 7 /2). An example is given in Figurg0.2 LetU (Z) denote

Figure 10.2:
with quadrature filter yields
phase-shifted signal (bot-
tom). ] Input (top) filtered
with quadrature filter yields
phase-shifted signal (bottom).

[spec b INR] N

the Z-transform of a real signal input ar@(Z) denote a quadrature filter. Then the
output signal is

V(Z) = Q()U(2) (10.5)



Let us find the numerical values gf. The time-derivative operation has the
9 phase-shifting property we need. The trouble with a differentiator is that high
frequencies are amplified with respect to lower frequencies. Recall the FT and t
its time derivative:

bt) = / B(w)e ' “'dw (10.6)
db . ;
Fri / —iwB(w)e 'dw (10.7)

Thus we see that time differentiation corresponds to the weight fadterin the
frequency domain. The weighti w has the proper phase but the wrong amplitude
The desired weight factor is

Q(w) = ﬂ = —i sgnw (10.8)
|l

wheresgn is the ‘signum” or “sign” function. Let us transformQ(w) into the
domain of sampled time= n:
1 (" i
Oh = — Q(w)e"“"dw (10.9)
27 J_,
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= for n odd

Examples of filtering wittg, are given in Figurd0.2and10.3

Sinceq, does not vanish for negative the quadrature filter is nonrealizable
(that is, it requires future inputs to create its present output). If we were discussi
signals in continuous time rather than sampled time, the filter would be of the for
1/t, a function that has a singularity at= 0 and whose integral over positivas
divergent. Convolution with the filter coefficierds is therefore painful because the
infinite sequence drops off slowly. Convolution with the filtgris called “Hilbert
transformation."
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10.1.3. The analytic signal

The so-calledanalytic signal can be constructed from a real-valued time senies
and itself 90 phase shifted, i.ey; can be found using equatiohd.5. The analytic
signal isgt, where

G(Z) = U@)+iV(Z) = [1+iQ@)]U(2) (10.11)

In the time domain, the filter [+iQ(Z)] is 8t +iqt, wheres is an impulse function
at timet = 0. The filter 141 Q(Z) = 1+ w/|w| vanishes for negative. Thus it

is a realstepfunction in thefrequencydomain. The values all vanish aegative

frequency.

We can guess where the nanmanalytic signal’ came from if we think back
to Z-transforms and causal functions. Causal functions are frpele$ inside the
unit circle, so they are “analytic” there. Their causality is the Fourier dual to th
one-sidedness we see here in the frequency domain.

A function is “analytic” if it is one-sided in the dual (Fourier) domain.




10.1.4. Instantaneous envelope
Thequadrature filter is often used to make trenvelopeof a signal. The envelope
signal can be defined bgt = ,/u?+v?. Alternatively, with theanalytic signal

Ot = Ut +1ivt, the squared envelopee% = OG-

A quick way to accomplish the 9(phaseshift operation is to use Fourier trans-
formation. Begin withu; +i - 0, and transform it to the frequency domain. Then
multiply by the step function. Finally, inverse transform to get u; +ivt, which
is equivalent to§ +iqt) * U.

Sinusoids have smootnvelopefunctions, but that does not mean real seis-
mograms do. Figuré0.4gives an example of a field profile and unsmoothed an
smoothed envelopes. Befosemoothing the stepout (alignment) of the reflections
is quite clear. In the practical world, alignment is considered to be a manifestati
of phase. An envelope should be a smooth function, such as might be used to s
data without altering its phase. Hence the reason for smoothing the envelope.

If you are interested in wave propagation, you might recognize the possibili
of usinganalytic signals. Energy stored as potential energy i$ @it of phase
with kinetic energy, soi; might represent scaled pressure whileepresents scaled



Figure 10.4: Leftis a field profile. Middle is the unsmoothed envelope functior
Right is the smoothed envelope. The vertical axis is time and the horizontal a

is space. Independent time-domain calculations are done at each point in sp:
spec-envelopdER]



velocity. Thenwiw is theinstantaneous energy (The scales are the square root
of compressibility and the square root of density.)

10.1.5. Instantaneous frequency

The phase; of acomplex-valued signab; = u; +i vt is defined byp; = arctan(; /uy).
The instantaneous frequencyis d¢/dt. Before forming the derivative, recall the
definition of a complex logarithm df:

g = re? ‘
Ing = Injr|+Ine? (10.12)
= In|r|+i¢
Henceg = JIng. Theinstantaneous frequencyis
d d 1d
Winstantaneous = d_(f = S&M agit) = Sad—? (10.13)

For a signal that is a pure sinusoid, suctgéd = go€'®!, equation {0.13 clearly
gives the right answer. When various frequencies are simultaneously present,
can hope that1(0.13 gives a sensible average.



Trouble can arise inl(0.13 when the denominata@ gets small, which happens
whenever thenvelopeof the signal gets small. This difficulty can be overcome by
carefulsmoothing Rationalize the denominator by multiplying by the conjugate
signal, and then smooth locally a little (as indicated by the summation sign belov

C’!\)smoothed = 3 —Z g(t) %g(t)
> 9(t) 9()
(Those of you who have studieghantum mechanicsmay recognize the notion of
“expectation of an operator.” You will also see why the wave probability function o
guantumphysicsmust be complex valued: as a consequence odittadytic signal
eliminating negative frequencies from the average. If the negative frequencies w
not eliminated, then the average frequency would be zero.)

What range of times should be smoothed in equatidni()? Besides the na-
ture of the data, the appropriate smoothing depends on the method of represen
%. To prepare a figure, | implementﬁ by multiplying by —iw. (This is more
accurate than finite differences at high frequencies, but has the disadvantage
the discontinuity in slope at the Nyquist frequency gives an extended transient in 1
time domain.) The resultis shown in Figuré.5 Inspection of the figure shows that

(10.14)
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Figure 10.5: A sum of three sinusoids (top), unsmoothed instantaneous freque

(middle), and smoothed instantaneous frequency (bott[NR]




smoothing is even more necessary for instantaneous frequency than for envelo
and this is not surprising because the presenc& afakes the signal rougher. Par-
ticularly notice times in the range 400-512 where the sinusoids are truncated. Th
the unsmoothed instantaneous frequency becomes a large rapid oscillation nea
Nyquist frequency. This roughness is nicely controlled by (1,2, 1) smoothing.

It is gratifying to see that a spike added to the sinusoids (at point 243) cause
burst of high frequency. Also interesting to notice is where an oscillation approach
the axis and then turns away just before or just after crossing the axis.

An example ofinstantaneous frequencyapplied to field data is shown in Fig-
urel0.6

The instantaneous-frequency idea can also be applied to the space axis. -
will be more easily understood by readers familiar with the methodology of imagir
and migration. Instead of temporal frequeney= d¢/dt, we compute the spatial
frequencykyx = d¢/dx. Figurel10.7gives an example. Analogously, we could make
plots of local dipky /w.
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Figure 10.6: A field profile (left), instantaneous frequency smoothed only wit
(1,2,1) (middle), and smoothed more heavily (righ spec-frequency[ER]



Figure 10.7: A field profile (left)kx smoothed ovex only (center), and smoothed

overt andx (right). [ER]



EXERCISES:

1

Let ¢; be a causal complex-valued signal. How do€&) change in equation
(10.2, and how musY (Z) in equation (0.3 be deduced fronxX(Z)?

Figure10.3shows a Hilbert-transform pair, the real and imaginary parts of th
Fourier transform of a causal response. Describe the causal response.

Given Y (Z) = Q(Z)X(2), prove that the envelope of is the same as the
envelope ofk;.

Using partial fractions, convolve the waveform
2 1 1 1 1
-{...,—=,0,—-,0,—-1,0,1,0-,0,-,...
T ( 5 3 3 5 )
with itself. What is the interpretation of the fact that the result.is, 0,0,—1,0,0,..
(HINT: 72/8=1+3 + 5 + 45 +....)
Using the fast-Fourier-transform matrix, we can represengttearature fil-
ter Q(w) by the column vector

-i(0,1,1,1,..,0,~1,—-1,~1,...,—1Y



Multiply this vector into the inverse-transform matrix to show that the trans
form is proportional to (cogsk/N)/(sintk/N). What is the scale factor?
Sketch the scale factor fdt « N, indicating the limitN — oco. (HINT:
1+x+x24.. . +xN =@ —-xN*t1)/(1-x).)

10.2. SPECTRAL FACTORIZATION

The “spectral factorization" problem arises in a variety of physical contexts. It |
this: given a spectrum, find a minimum-phase wavelet that has that spectrum.
will see how to make this wavelet, and we will recognize that it is unique. (I
is unique except for a trivial aspect. The negative of any wavelet has the sa
spectrum as the wavelet, and, more generally, any wavelet can be multiplied by
complex number of unit magnitude, suchis etc.)

First consider the simpler problem in which the wavelet need not be caus
We can easily find a symmetric wavelet with any spectrum (which by definition |
an energy or power). We simply take the square root of the spectrum—this is 1
amplitude spectrum. We then inverse transform the amplitude spectrum to th
time domain, and we have a symmetric wavelet with the desired spectrum.



Theprediction-error filter discussed in chapt@ris theoretically obtainable by
spectral factorization of an inverse spectrum. Kodmogoroff method of spectral
factorization, which we will be looking at here, is much faster than the time-domail
least-squares methods considered in chapterd the least-squares methods given
in FGDP. Its speed motivates its widespread practical use.

| )
il L
_

Figure 10.8: Left are given wavelets, and right are minimum-phase equivalen

spec-mpsamplefNR]




Some simple examples of spectral factorization are given in Fituée For all
but the fourth signal, the spectrum of the minimum-phase wavelet clearly matct
that of the input. Wavelets are shiftedtte- 0 and turned backwards. In the fourth
case, the waveshape changes into a big pulse at zero lag. Relfiesontheorem
introduced on pagé05 suggests, minimum-phase wavelets tend to decay rapidl
after a strong onset. | imagined that hand-drawn wavelets with a strong onset wo
rarely turn out to be perfectly minimum-phase, but when | tried it, | was surprise
at how easy it seemed to be to draw a minimum-phase wavelet. This is shown
the bottom of Figuré.0.8

To begin understanding spectral factorization, notice that the polar form of al
complex number puts the phase into the exponentialxi-eiy = |r |€¢ = &nIrI+ié,
So we look first into the behavior of exponentials and logarithms of Fourier tran
forms.

10.2.1. The exponential of a causal is causal.

Begin with acausalresponse; and its associate@(Z). The Z-transformC(2)
could be evaluated, giving a complex value for each &ealThis complex value



could be exponentiated to get another value, say
B(Z(»w)) = €CZ@) (10.15)

Next, we could inverse transforB(Z(w)) back tob;. We will prove the amazing
fact thatb; must be causal too.

First notice that ifC(Z) has no negative powers &, thenC(Z)? does not
either. Likewise for the third power or any positive integer power, or sum of positiv
integer powers. Now recall the basic power-series definition of the exponent
function:

« x> x38 x4 x>
e = 1+x+2+23 234 2345 (10.16)

Including equation0.19 gives theexponential of a causal
C(z)*  c(z® c@f*

B(z) = €@ = 14c(z .+ (1017
(2) e +C(2)+ 5 +2.3 +2.3.4+ (10.17)
Each term in the infinite series corresponds to a causal response, so th®,58m,
causal. (If you have forgotten the series for the exponential function, then recall tt

the solution tody/dx = y is the definition of the exponential functiof{x) =




and that the power series satisfies the differential equation term by term, so it m
be the exponential too. The factorials in the denominators assure us that the po
series always converges, i.e., it is finite for any finite

Putting one polynomial into another or one infinite series into another is ¢
onerous task, even if it does lead to a wavelet that is exactly causal. In pract
we do operations that are conceptually the same, but for speed we do them v
discrete Fourier transforms. The disadvantage is periodicity, i.e., negative times
represented computationally like negative frequencies. Negative times are the
half of the elements of a vector, so there can be some blurring of late times ir
negative ones.

z exp(2)

Figure 10.9: Exponentials:

specezINR ; o

Figure 10.9 gives examples of equatioA@.17 for C = Z andC = 4Z. Un-



fortunately, | do not have an analytic calculation to confirm the validity of thes
examples.

10.2.2. Finding a causal wavelet from a prescribed spec-
trum

To find a causal wavelet from a prescritsgzectrum, we will need to form the log-
arithm of the spectrum. Since a spectrum can easily vanish, and since the logarif
of zero is infinite, there is a pitfall. To prepare ourselves, we first examine the Ic
spectra example given in Figufi®.1Q On the infinite domain, the FT of a box
function is a sinc whose zeros become minus infinities in the logarithm. On tt
discrete domain, exact zeros may occur or not. The transform of a triangle is a s
squared, but since this triangle was imperfectly drawn (by me), its transform do
not go identically to zero. The sinc function drops off@sand sinc squared drops
off asw?. We confirm this on the logarithm plot: sinc squared dropshwite as
much.

Now for the task of going from a spectrum to a causal wavelet. Take as giv
the spectrum of the causal wavel{Z). This means that we are not giv&{Z)



Figure 10.10: Log spectra of;aJ \— WWW
box function and a triangle func-
tion. |spec-logspedNR] M

itself, but we are givers(Z) = B(1/Z)B(Z). Assuming no zeros in the spectrum
Sw), it is easy to find the log of the spectruth=InS. The spectrum may be
specified agqwutocorrelation coefficients or values on the unit circle. Thus,
E(l/z) B(Z) — S(Z) — eln S(2) — eU (2) — eé(l/Z)JrC(Z) — eé(l/Z) eC(Z) (1018)
Given the spectrun®(Z) for each value on the unit circle, we could deduceltye
spectrumU (Z) = In S(Z) at each point on the unit circle:
Uz) = InN[2)] = C(1/2)+C(2) (10.19)

This is the answer we have been looking for. Gilgf) for all real values ofw,
we could inverse transform to the time domain, obtaining the two-sided functic




U = C_; +¢. Setting to zero the coefficients at negative times eliminates
leaving justct; henceC(Z). And we already know that the exponential ©f2)
gives B(Z) with a causab;. This method is known asKblmogoroff spectral
factorization," after the mathematician who discovered it.

The programmpwave() below begins with a wavelet, forms its spectrum, and
then callskolmogorofi() to factor the spectrum. The prograaimogoroff() first
takes the logarithm of the spectrum, then returns to the time domain and sets
zero the noncausal part. It returns to frequency, exponentiates, and returns to
time domain with a wavelet that will be proven to tenimum-phase

Between the times when negative lags are set to zero and positi
lags are Teft untouched are two points that are scaled by half. The overall scal
was chosen to preserve the scale of the input wavelet.

The first test | tried on this program was the input wavelet (1,2,0,0). Th
desired result is that the wavelet should time-reverse itself to (2,1,0,0). The ¢
tual result was (1.9536, 1.0837, 0.0464, -0.0837), imperfect because the four-pc
Fourier transform is a summation around the unit circle, whereas theoretically
integration is called for. Therefore, better results can be obtained by padding :
ditional zeros after the input wavelet. Also, you might notice that the program



subroutine mpwave( n CX) # minimum phase equivalent wavelet
integer i, # input: cx = any wavelet
complex cx(n) # output: cx = min phase wavelet
call ftu( 1., n, cx) # with same spectrum.
call scaleit( sgrt(1.*n), 2*n, cx)
do i= 1, n

ex(i) = cx(i) * conjg( cx(i))
call kolmogoroff( n, cx)
return; end

Back

subroutine kolmogoroff( n, cx) # Spectral factorlzatlon

integer i, # input:  cx = spectrum
complex cx(n) # output: cx = min phase wavelet
do i= 1, n
cx(i) = clog( cx(i) )
call ftu( -1., n, cx); call scaleit( sqrt(1./n), 2*n, cx)

cx(1 ) = ex(1 )/ 2.
cx(1+n/2) = cx(1+n/2) | 2.
do i= 1+n/2+1, n

ex(i) = 0.
call ftu( +1., n, cx); call scaleit( sqrt(1.*n), 2*n, cx)
do i= 1, n
cx(i) = cexp( cx(i))
call ftu( -1., n, cx); call scaleit( sqrt(1./n), 2*n, cx)
return; end

Back



designed for complex-valued signals. As typical of Fourier transform with single
word precision, the imaginary parts were about 0of the real parts instead of
being precisely zero.

Some examples afpectral factorization are given in Figuré.0.11

10.2.3. Why the causal wavelet is minimum-phase

Next we see why the causal waveRZ), which we have made from the prescribed
spectrum, turns out to be minimum-phase. First return to the original definition
minimum-phase: a causal wavelet is minimum-phase if and only if its inverse
causal. We have our wavelet in the fo§Z) = e“(%9). Consider another wavelet
A(Z) = e ©(9) constructed analogously. By the same reasorinig; also causal.
SinceA(Z)B(Z) = 1, we have found a causal, inverse wavelet. Thubtheavelet
is minimum-phase

Since thephaseis a Fourier series, it must be periodic; that s, it cannot increas
indefinitely withw as it does for the nonminimum-phase wavelet (see Fitared.



log Bnergy spectrum, 1000:1 Minimum phase wavelet

log HEnergy spectrum N=512, (30:1) Minimum phase wavelet

log Bnergy spectrum, 1000:1 Hand—drawn minimum—phase wavelet

Figure 10.11: Examples of log spectra and their associated minimum-phe

wavelets. | spec-examplNR]




10.2.4. Pathological examples

The spectral-factorization algorithm fails when an infinity is encountered. This
happens when the spectrum becomes zero, so that its logarithm becomes m
infinity. This can occur in a benign way—for example, in the case of the spectru
of the wavelet (1, 1), where the infinity occurs at the Nyquist frequency. We cou
smooth the spectrum near the Nyquist before we take the logarithm. On the ot
hand, the pathology can be more extreme. Convolving (1, 1) with k&éihes, we
see that the result and its spectrum ten@&ussiars. So, at the Nyquist frequency,
smoothing would only replace zero by a very tiny number.

Figure 10.12 shows functions whose spectra contain zeros, along with the
minimum-phase equivalents. When the logarithm of zero arises during the comj
tation, it is replaced by the log of 18°. It is surprising that the triangle suffered so
much less than the other two functions. It seems that minor imperfection in speci
ing the triangle resulted in a spectrum that did not have the theoretical zeros of s
squared.



Figure 10.12: Functions WhOSJH M I

spectra contain zeros, along with

their minimum-phase equiva- HM-“J
lents, as computed by dlscr

Fourier transform.
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10.2.5. Relation of amplitude to phase

As we learned from equatiori@.19, a minimum-phase function is determined
completely from its spectrum. Thus iphaseis determinable from itspectrum.
Likewise, we will see that, except for a scale, the spectrum is determinable from t
phase.

So far we have not discussed the fact that spectral factorization implicitly us
Hilbert transform ation. Somehow we simply generated a phase. To see how tl




phase arose, recall equatidd(18 and (L0.19:
S = NS = gk — gUkT®/2gUkti®)/2 — Ckelh — By B (10.20)

Where diddyk come from? We tookJ +i 0 to the time domain, obtaining. Then
we multipliedu; by a real-valued step function of time. This multiplication in the
time domain is what created the phase, because multiplication in the time dom
implies a convolution in the frequency domain. Recall that the Fourier transfor
of a real-valued step function arises with Hilbert transform. Multiplying in time
with a step means that, in frequentd, has been convolved witbx—o +i x (90°
phase-shift filter). S&J is unchanged and a phasky, has been generated. This
explanation will be somewhat clearer if you review thdransform approach dis-
cussed at the beginning of the chapter, because there we can see both the freqt
domain and the time domain in one expression.

To illustrate different classes of discontinuity, pulse, step, and slope, Figuta
shows another Hilbert-transform pair.



Hilbert amplitude Hilbert phase

‘I
Figure 10.13: A Hilbert-transform paii spec-hilb2 [NR]

EXERCISES:

1 What is the meaning ahinimum-phase waveforifithe roles of the time and
frequency domains are interchanged?

2 Show how to do the inverse Hilbert transform: givenfind u. What is the
interpretation of the fact that we cannot ge

3 Consider a model of a portion of the earth wheiig the north coordinate;z
represents altitude above the earth, and magnetic bodies are distributed in
earth, creating no componentmiagnetic fieldin the east-west direction. We



can show that the magnetic fighdabove the earth is represented by

hx(x,2) oo —iK | ikx—|kiz
[ ha(x.2 }:/_ F(k)[ M ]ék kizgk

e¢]

Here F (k) is some spatial frequency spectrum.

(a) By using Fourier transforms, how do you comphigx, 0) fromhz(x, 0)
and vice versa?
(b) Givenhy(x,0), how do you computh,(x,2)?
(c) Notice that, az =0,
+oo |
f(x):hz(x)+ihx(x):/ &*XF (k) (|| + k) dk

—00
and thatF (k)(]k| + k) is a one-sided function df. With a total field
magnetometer we observe that

hZ(X) +h3(x) = w(x)w(x)
What can you say about obtainifigk) from this?



(d) How unique aréhy(x) andh(x) if f(x) f_(x) is given?

4 Test this idea: write code to factd{(Z) into X(Z) = A(Z)B(Z), whereB(Z)
is minimum-phase ané\(Z) is maximum-phase. Maximum-phase means tha
ZNA(1/Z) is minimum-phase. First comput#(w) = In X(w). Then remove
a linear trend in the phase tf(w) to get N. Then split U with its trend re-
moved into causal and anticausal pdst€Z) = C~(1/Z)+ C*(Z). Finally,
form B(Z) = expC*(Z) andZN A(1/Z) = expC~(2)).

10.3. ABUTTERWORTH-FILTER COOKBOOK

An ideal bandpass filter passes some range of frequencies without distortion :
suppresses all other frequencies. Further thought shows that what we think of as
ideal bandpass filter, a rectangle function of frequency, is instead far from ideal, |
cause its time-domain representation ¢sih)/(wot) is noncausal and decays much
too slowly with time for many practical uses. The appropriate bandpass filter is o
whose time decay can be chosen to be reasonable (in combination with a reason
necessary compromise on the shape of the rectanBlafterworth filter s fulfill



these needs. They are causal and of various orders, the lowest order being
(shortest) in the time domain, and the higher orders being better in the frequer
domain. Well-engineered projects often include Butterworth filters. Unfortunate
they are less often used in experimental work because of a complicated setting
issue that | am going to solve for you here. | will give some examples and discu
pitfall s as well.

The main problem is that there is no simple mathematical expression for t
filter coefficients as a function of order and cutoff frequency.

Analysis starts from an equation that for large-ondés the equation of a box:

B(w)B(w) = _r (10.21)

1+(wﬂo)2n

When |w| < wp, this Butterworth low-pass spectrum is about unity. Wheh>
|wo|, the spectrum drops rapidly to zero. The magnitiB&v)| (with some trun-
cation effects to be described later) is plotted in Figl@el4for various values of
n.

Conceptually, the easiest form of Butterworth filtering is to take data to the fre
guency domain and multiply by equatiohQ(21), where you have selected some
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Figure 10.14: Spectra of Butterworth filters of various-omdef spec-butf[NR]




value ofn to compromise between the demands of the frequency domain (she
cutoff) and the time domain (rapid decay). Of course, the time-domain represen
tion of equation {0.27) is noncausal. If you prefer a causal filter, you could take the
Butterworth spectrum into a spectral-factorization program sugbirasgoroff()

The time-domain response of the Butterworth filter is infinitely long, althoug!
a Butterworth filter of degrea can be well approximated by a ratio o¥'-order
polynomials. Since, as we will ses,is typically in the range 2-5, time-domain
filtering is quicker than FT. To proceed, we need to expiessterms ofZ, where
Z =€t This is done in an approximate way that is valid for frequencies far fror
the Nyquist frequency. Intuitively we know that time differentiation is implied by
—iw. We saw that in sampled time, differentiation is generally represented by tl
bilinear transform, equatior?®?): —i @At =2(1— Z)/(1+ Z). Thus a sampled-time
representation ab? = (i w)(—iw) is

) 1-z7t1-7

_ g2 1-7 10.22
@ 11z 11+7 (10.22)



Substituting equationl(.22 into (10.21) we find

1 _ [(1+Z7hHa+2)"
’ ( ) MO T rzaaror + [z -z"Ha-2r 1o
1 _ N(@ZHN(2)

where the desired, causal, Butterworth, discrete-domain fil&{Z9 = N(Z)/D(2).
You will be able to appreciate the enormity of the task represented by these eq
tions when you realize that the denominator 19.¢3 must be factored into the
product of a function o times the same function &1 to get equation0.29.
Since the function is positive, it can be considered to be a spectrum, and factori
tion must be possible.



10.3.1. Butterworth-filter finding program

To express equatioriL().23 in the Fourier domain, multiply every parenthesized
factor by+/Z and recall that/Z 4+ 1/+/Z = 2cosf/2). Thus,
(2 cosw/2)?"

B)B() = (2 cosw/22" + (& sinw/2)2 (10.25)

An analogous equation holds for high-pass filters. Subroutite()
does both equations. First, the denominator of equafior§ is set up as a spec-
trum and factored. The numerator could be found in the same way, but the res
is already apparent from the numerator 8923, i.e., we need the coefficients of
(14 Z)". In subroutineoutter()  they are simply obtained by Fourier transforma-
tion. The occurrence of a tangent in the program arises from equém)n

10.3.2. Examples of Butterworth filters

Spectra and log spectra of various orders of Butterworth filters are shown in F
ure10.14 They match a rectangle function that passes frequencies below the h:



# Find the numerator and denominator Z-transforms of the Butterworth filter.

#  hilo={1.,-1.} for {low,high}-pass filter

#  cutoff in Nyquist units, i.e. cutoff=1 for (1,-1,1,-1...)
#

subroutine butter( hilo, cutoff, npoly, num, den)

integer npoly, nn, nw, i

real hilo, cutoff, num(npoly), den(npoly), arg, tancut, pi
complex cx(2048)

pi = 3.14159265; nw=2048; nn = npoly - 1
tancut = 2. * tan( cutoff*pi/2. )
do i= 1, nw {
arg = (2. * pi * (i-1.) / nw) / 2.
if( hilo > 0. ) # low-pass filter

cx(i) = (2.*cos(arg) ) **(2*nn) +
(2.*sin(arg) * 2./tancut ) **(2*nn)
else

cx(i) = (2.*sin(arg) **(2*nn) +
} (2.*cos(arg) * tancut/2. ) **(2*nn)
call kolmogoroff( nw, cx) # spectral factorization
do i= 1, npoly
den(i) = cx(i)
do i= 1, nw # numerator

cx(@) = (1. + hilo * cexp( cmplx(0., 2.*pi*(i-1.)/nw))) ** nn
call ftu( -1., nw, cx)

do i= 1, npoly
num(i) = cx(i)
return; end

Back

# high-pass filter



Nyquist. Convergence is rapid with order. The logarithm plot shows a range
0-3, meaning an amplitude ratio of 36 1000. Tiny glitches near the bottom for
high-order curves result from truncating the time axis in the time domain shown
Figure10.15 The time-domain truncation also explains a slight roughness on tt
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top of the rectangle function.

In practice, the filter is sometimes run both forward and backward to achie
a phaseless symmetrical response. This squares the spectral amplitudes, rest
in convergence twice as fast as shown in the figure. Notice that the higher-or
curves in the time domain (Figur0.15 have undesirable sidelobes which ring
longer with higher orders. Also, higher-order curves have increasing delay for t
main signal burst. This delay is a consequence of the binomial coefficients in t
numerator.

Another example of a low-pass Butterworth filter shows some lurkistabil-
ity. This is not surprising: a causal bandpass operator is almost a contradictior
terms, since the worddandpass implies multiplying the spectrum by zero outside
the chosen band, and the worchtisal implies a well-behaved spectral logarithm.
These cannot coexist because the logarithm of zero is minus infinity. All this
another way of saying that when we use Butterworth filters, we probably shou
not use high orders. Figudg.16illustrates that an instability arises in the seventh-
order Butterworth filter, and even the sixth-order filter looks suspicious. If we insi
on using high-order filters, we can probably go to an order about twice as high
we began with by using double precision, increasing the spectral widtland,
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if we are really persistent, using the method of the exercises below. My favori
Butterworth filters for making synthetic seismograms have five coefficients (four
order). 1 do one pass through a low cutabfi=.1  and another through a high cut
atcutoff=4

EXERCISES:

1 Above we assumed that a bandpass filter should be made by cascading a |
pass and a high-pass filter. Suggest a revised form of equdtibalf for
making bandpass filters directly.

2 Notice that equation1(0.21) can be factored analytically. Individual factors
could be implemented as tietransform filters, and the filters cascaded. This
prevents the instability that arises when many poles are combined. Identify t
poles of equation1(0.21). Which belong in the causal filter and which in its
time reverse?



10.4. PHASE DELAY AND GROUP DELAY

The Fourier-domain ratio of a wave seenBatlivided by a wave seen & can be
regarded as a filter. The propagation velocity is the distance famB divided by
the delay. There are at least two waysi&dinethe delay, however.

10.4.1. Phase delay

Whenever we put a sinusoid into a filter, a sinusoid must come out. The only thin
that can change between input and output are the amplitude and the phase. C
paring a zero crossing of the input to a zero crossing of the output measures
so-calledphasedelay. To quantify this, define an input, s and an output,
sin(wt — ¢). Then the phase deldy is found by solving

sint —¢) = sinw(t—tp)
ot—¢ = ot—otp (10.26)

A problem with phase delay is that the phase can be ambiguous within an addit
constant of 2 N, whereN is any integer. In wave-propagation theory, “phase ve:



locity" is defined by the distance divided by the phase delay. There it is hoped tt
the 2r N ambiguity can be resolved by observations tending to zero frequency
physical separation.

10.4.2. Group delay

A more interesting kind of delay isgfoup delay," corresponding tgroup veloc-
ity in wave-propagation theory. Often the group delay is nothing more than tl
phase delay. This happens when the phase delay is independent of frequency.
when the phase delay depends on frequency, then a completely new velocity,
“group velocity," appears. Curiously, the group velocityit an average of phase
velocities.

The simplest analysis of group delay begins by defining a filter inpas the
sum of two frequencies:

Xt = COSwit -+ coswot (20.27)



By using a trigonometric identity,

Xx = 2 cos(ul;wzt) cos(wl;wzt

_\/_/
beat
we see that the sum of two cosines looks like a cosine of the average frequel
multiplied by a cosine of half the difference frequency. Since the frequencies
Figure 10.17 are taken close together, the difference frequency factot(n2g

) (10.28)

Figure 10.17: Two nearby frequencies beatil spec-bed{NR]

represents a slowly variable amplitude multiplying the average frequency. T



slow (difference frequency) modulation of the higher (average) frequency is calls
“beating.”

The beating phenomenon is also callédtérference,” although that word is
deceptive. If the two sinusoids were two wave beams crossing one another, tl
would simply crosswithout interfering. Where they are present simultaneously
they simply add.

Each of the two frequencies could be delayed a different amount by a filter,
take the output of the filtey; to be

Yt = cOS@it—¢1)+CoSat — ¢2) (10.29)

In doing this, we have assumed that neither frequency was attenuatedyrftipe
velocity concept loses its simplicity and much of its utility in dissipative media.]
Using the same trigonometric identity oh0(29 as we used to gefl(.29, we find
that

t_ d1+ P2
2 2

v = ZCos\Pl;wzt—d’l;@) COS(601+CL)2

beat

) (10.30)




Rewriting the beat factor in terms of a time detgywe now have

Ccos

w1 — w2
[

(t-t] =
(w1— wz)tg =

tg =

COS(Dl_wzt _ ¢1—¢2)

2 2
$1— P2
$1—¢2 Ag
w1 — w2 T Aw

For a continuum of frequencies, theoup delayis

iy

d¢
dw

10.4.3. Group delay as a function of the FT

We will see that the group delay of a filtBris a simple function of the Fourier trans-
form of the filter. | have named the filtd? to remind us that the theorem strictly
applies only to all-pass filters, though in practice a bit of energy absorption mig
be OK. The phase angjecould be computed as the arctangent of the ratio of imag
inary to real parts of the Fourier transform, namelfy) = arctanR P(w) /N P (w)].

(10.31)

(10.32)

(10.33)



As with (10.12, we usep = JIn P; and from (L0.33 we get
do d 1dP
ty = — = 3I—InP = J=——
g do ‘G P P do
which could be expressed as the Fourier dual to equation. ).

(10.34)

10.4.4. Observation of dispersive waves

Various formulas relate energy delay to group delay. This chapter illuminates thc
that are one-dimensional. In observational work, it is commonly said that “what yc
see is the group velocity.” This means that when we see an apparently sinuso
wave train, its distance from the source divided by its traveltime (group delay)
the group velocity. An interesting example of a dispersive wave is given in FGD
(Figure 1-11).

10.4.5. Group delay of all-pass filters

We have already discussed (pe® all-pass filters, i.e., filters with constant unit
spectra. They can be written 8&2Z)P(1/Z) = 1. In the frequency domairR(Z)



can be expressed a¥(), whereg is real and is called the “phase shift." Clearly,
PP =1 for all real¢. It is an easy matter to make a filter with any desired phas
shift—we merely Fourier transforet?(®) into the time domain. 16(w) is arbitrary,
the resulting time function is likely to be two-sided. Since we are interested |
physical processes that are causal, we may wonder what class of fungfions
corresponds to one-sided time functions. The answer is tharthg delay g =
d¢/dw of a causahll-pass filter must be positive.

Proof thatd¢ /dw > 0 for a causal all-pass filter is found in FGDP; there is no
need to reproduce the algebra here. The proof begins from equa#par(d uses
the imaginary part of the logarithm to get phase. Differentiation with respest to
yields a form that is recognizable as a spectrum and hence is always positive.

A single-pole, single-zero all-pass filter passes all frequency components w
constant gain and a phase shift that can be adjusted by the placement of the ¢
Taking Zp near the unit circle causes most of the phase shift to be concentrated n
the frequency where the pole is located. Taking the pole farther away causes
delay to be spread over more frequencies. Complicated phase shifts or group de
can be built up by cascading single-pole filters.

The above reasoning for a single-pole, single-zero all-pass filter also applies



many roots, because the phase of each will add, and the sug=oti¢ /dw > 0
will be greater than zero.

The Fourier dual to the positive group delay of a causal all-pass filter is that tl
instantaneous frequency of a certain class of analytic signals must be positive. T
class of analytic signals is made up of all those with a constant envelope functi
as might be approximated by field data after the process of automatic gain contr

EXERCISES:

1 Letx be some real signal. Let = x¢+3 be another real signal. Sketch the
phase as a function of frequency of the cross-speciX(ii Z)Y(Z) as would
a computer that put all arctangents in the principal quadrant® < arctan<
7 /2. Label the axis scales.

2 Sketch the amplitude, phase, and group delay of the all-pass fikeZ§¥)/(Zo—
Z), whereZg = (1+ €)€'®0 ande is small. Label important parameters on the
curve.

3 Show that the coefficients of an all-pass, phase-shifting filter made by casc:
ing (1— Zo2Z)/ (Zo— Z) with (1— ZoZ)/(Zo— Z) are real.



4 A continuous signal is the impulse response of a continuous-time, all-pass
ter. Describe the function in both time and frequency domains. Interchan
the words “time" and “frequency" in your description of the function. What
is a physical example of such a function? What happens to the statement,
group delay of an all-pass filter is positive?

5 A graph of the group delayy(w) showsrg to be positive for altv. What is the
area undetg inthe range O< w < 27? (HINT: This is a trick question you can
solve in your head.)

10.5. PHASE OF A MINIMUM-PHASE FILTER

In chapter3 we learned that the inverse of a causal filB{iZ) is causal ifB(Z)
has no roots inside the unit circle. The termihimum phasée’ was introduced
there without motivation. Here we examine the phase, and learn why it is calls
“minimum."



10.5.1. Phase of a single root

For realw, a plot of real and imaginary parts gfis the circle &, y) = (cosw, Sinw).
A smaller circle is .Z. A right-shifted circle is 1-.9Z. Let Zg be a complex
number, such agg+iyp, or Zg = €%/p, wherep andwg are fixed constants.
Consider the compleX plane for the two-term filter

B(Z) = 1_£ (10.35)
Zg

B(Z(w)) = 1— pe @0 (10.36)

B(Z(w)) = 1—pcoS —wp)—ipSsin(w—wo) (10.37)

Real and imaginary parts @ are plotted in Figure0.18 Arrows are at fre-
guencyw intervals of 20. Observe that fop > 1 the sequence of arrows has a
sequence of angles that ranges over3éhereas fop < 1 the sequence of arrows
has a sequence of angles betweed0°. Now let us replot equationl(.37) in a
more conventional way, with» as the horizontal axis. Whereas tpleaseis the
angle of an arrow in Figur&0.1§ in Figure10.19it is the arctangent a&B/%i B.
Notice how different is the phase curve in Figaf@ 19for p < 1 than forp > 1.



Im Im

Figure 10.18: Left, comple® plane forp < 1. Right, forp > 1.
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Real and imaginary parts & areperiodicfunctions of the frequency, since
B(w) = B(w + 27). We might be tempted to conclude that the phase would b
periodic too. Figurel0.19shows, however, that for a nonminimum-phase filter, a
o ranges from—x to 7, the phasep increases by 2 (because the circular path
in Figure 10.18 surrounds the origin). To make Figut®.191 used the Fortran
arctangent function that takes two argumertsandy. It returns an angle between
—m and+x. As | was plotting the nonminimum phase, the phase suddenly jumpe
discontinuously from a value nearto —z, and | needed to addr2to keep the
curve continuous. This is calleghghase unwinding”

You would use phase unwinding if you ever had to solve the following probler
given anearthquake at location &, ), did it occur in country X? You would cir-
cumnavigate the country—compare the circle in Figliel8—and see if the phase
angle from the earthquake to the country’s boundary accumulated to O (yes) ol
27 (no).

The word “minimum" is used in “minimum phase" because delaying a filter ca
always add more phase. For example, multiplying any polynomia loelays it
and addso to its phase.

For the minimum-phase filter, the group deldy/dw applied to Figurel0.19
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is a periodic function of». For the nonminimum-phase filter, group delay happen:
to be a monotonically increasing function®f Since it is not an all-pass filter, the
monotonicity is accidental.

Becauseagroup delay d¢ /dw is the Fourier dual ténstantaneous frequency
d¢/dt, we can now go back to Figufg.5and explain the discontinuous behavior
of instantaneous frequency where the signal amplitude is near zero.

10.5.2. Phase of a rational filter

Now let us sum up the behavior of phase of thgonal filter
(Z-c)(Z—-cp)--
(Z—a)(Z—ap) -

By the rules of complex-number multiplication, the phaseB¢Z) is the sum of
the phases in the numerator minus the sum of the phases in the denominator. S
we are discussing realizable filters, the denominator factors must all be minimu

phase, and so the denominator phase curve is a sum of periodic phase curves
the lower left of Figurel0.19

B(Z) = (10.38)



The numerator factors may or may not be minimum-phase. Thus the numera
phase curve is a sum of phase curves that may resemble either type inFiglLte
If any factors augment phase by 2then the phase is not periodic, and the filter is
nonminimum-phase.

10.6. ROBINSON’'S ENERGY-DELAY THEOREM

Here we will see that eninimum-phasefilter has les&nergy delaythan any other
one-sided filter with the same spectrum. More precisely, the energy summed fr
zero to any time for the minimum-phase wavelet is greater than or equal to that
any other wavelet with the same spectrum.

Here is how | provéRobinsoris energy-delay theorem: compare two wavelets,
Fin and Foyut, that are identical except for one zero, which is outside the unit circl
for Fout and inside forFi,. We can write this as

Fou(Z) = (b+s2F(2) (10.39)
Fin(Z) = (s+b2)F(2) (10.40)

whereb is bigger thars, andF is arbitrary but of degrem. Proving the theorem for



complex-valued ands is left as an exercise. Notice that the spectrurb ¢fsZ is
the same as that a4 bZ. Next, tabulate the terms in question.

t Fout Fin Fout Fiﬁ Zk O(Fout
0 bfo sfy (b? — &?) f? (b? — &?) fp?
1 bfi+sfy | sfi+bfy (b2 —s?)(f12— fo?) | (b%—S5?) f12
K bfc+sf—1 | sf+bficy | (0P —s?)(fi2— f2 ) | (b®—s?) fi®
n+1| sf, bfn (b2 — s2)(— f1?) 0

The difference, which is given in the right-hand column, is always positive. A
example of the result is shown in Figut8.2Q

Notice that 6+ bZ)/(b+sZ) is an all-pass filter. Multiplying by an all-pass
filter does not change the amplitude spectrum but instead introduces a zero ar
pole. The pole could cancel a preexisting zero, however. To sum up, multiplyir
by a causal/anticausal all-pass filter can move zeros inside/outside the unit cir
Each time we eliminate a zero inside the unit circle, we cause the energy of t
filter to come out earlier. Eventually we run out of zeros inside the unit circle, an
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the energy comes out as early as possible.

EXERCISES:

1 Repeat the proof of Robinson’s minimum-energy-delay theorem for comple
valuedb, s, and fy. (HINT: DoesFi, =(s+b2Z)F or Fjn = (5+b2)F?)

10.7. FILTERS IN PARALLEL

We have seen that incascade of filterghe Z-transform polynomials are multiplied
together. Fofilters in parallel the polynomials add. See Figut8.21

A(2)
Figure 10.21: Filters operatingx(z) T~ + ¥(@)
in parallel. -spec—paraIII[NR]

«w |

We have seen also that a cascade of filters is minimum-phase if, and only
each element of the product is minimum-phase. Now we will find a condition th:



is sufficient (but not necessary) for a sux(Z) + G(Z) to be minimum-phase. First,
assume thaf\(Z) is minimum-phase. Then write
G(2)

A(2)+G(Z) = A(Z) <1+ A(Z)> (10.41)
The question as to whethé&(Z) + G(Z) is minimum-phase is now reduced to de-
termining whetherA(Z) and 1+ G(Z)/A(Z) are both minimum-phase. We have
assumed tha#\(Z) is minimum-phase. Before we ask whether G(Z)/A(Z) is
minimum-phase, we need to be sure that it is causal. Sife€Z) is expand-
able in positive powers oF only, thenG(Z)/A(Z) is also causal. We will next
see that a sufficient condition foH1G(Z)/A(Z) to be minimum-phase is that the
spectrum ofA exceed that of5 at all frequencies. In other words, for any real
|Al > |G|. Thus, if we plot the curve o&(Z)/A(Z) in the complex plane, for real
0 < w < 2w, it lies everywhere inside the unit circle. Now, if we add unity, ob-
taining 1+ G(2)/A(Z), then the curve will always have a positive real part as ir
Figure10.22 Since the curve cannot enclose the origin, the phase must be that c
minimum-phase function.
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You can add garbage to a minimum-phase wavelet if you do not add too much

This abstract theorem has an immediate physical consequence. Suppose a \
characterized by a minimum-phag€Z) is emitted from a source and detected
at a receiver some time later. At a still later time, an echo bounces off a near
object and is also detected at the receiver. The receiver sees the ‘8{@hak
A(Z)+ Z"a A(Z), wheren measures the delay from the first arrival to the echo, an
a represents the amplitude attenuation of the echo. To sed (Eatis minimum-
phase, we note that the magnitudest is unity and the reflection coefficient
must be less than unity (to avoid perpetual motion), so #atA(Z) takes the role
of G(Z). Thus, a minimum-phase wave along with its echo is minimum-phase. W
will later consider wave propagation with echoes of echoes ad infinitum.

EXERCISES:
1 Find two nonminimum-phase wavelets whose sum is minimum-phase.
2 Let A(Z) be aminimum-phase polynomial of degideLet A'(Z) = ZN'A(1/ 2).
Locate in the compleZ plane the roots ofN'(Z). A'(Z) is called “maximum
phase." HINT: Work the simple casé(Z) = ap+ a3 Z first.)



3 Suppose tha#\(Z) is maximum-phase and that the degre€&¢¥) is less than
or equal to the degree &(2). Assumg Al > |G|. Show thatA(Z) + G(Z) is
maximum-phase.

4 Let A(Z) be minimum-phase. Where are the rootsA¢%) + czN A(1/Z) in
the three casgg| < 1,|c| > 1,|c| = 1? HINT: The roots of a polynomial are
continuous functions of the polynomial coefficients.)



Chapter 11

Resolution and random signals

The accuracy of measurements on observed signals is limited not only by practi
realities, but also by certain fundamental principles. The most famous exam|
included in this chapter is the time-bandwidth product in Fourier-transformatic
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theory, called thetncertainty principle .”

Observed signals often look random and are often modeled by filtered rand
numbers. In this chapter we will see many examples of signals built from randc
numbers and discover how the nomenclature of statistics applies to them. Fun
mentally, this chapter characterizeg$olution,” resolution of frequency and ar-
rival time, and the statistical resolution of signal amplitude and power as functio
of time and frequency.

We will see/n popping up everywhere. Thigh enters our discussion when
we look at spectra of signals built from random numbers. Also, signals that a
theoretically uncorrelated generally appear to be weakly correlated at a level
1/./n, wheren is the number of independent points in the signal.

Measures of resolution (which are variously callediances, tolerances, un-
certaintiespandwidths, duration s, spreads, rise times, spans, etc.) often interact
with one another, so that experimental change to reduce one must necessarily
crease another or some combination of the others. In this chapter we study b:
cases where such conflicting interactions occur.

To avoid confusion | introduce the unusual notatidbrwhere A is commonly
used. Notice that the lettex resembles the lettek, and A connotes length with-



out being confused with wavelength. Lengths on the time and frequency axes
defined as follows:

dt,df mesh intervals in time and frequency

At, Af mesh intervals in time and frequency

AT AF  extent of time and frequency axis

AT, AF time duration and spectrabndwidth of a signal

There is no mathematically tractable and universally acceptable definition f
time spanA T and spectral bandwidth F. A variety of defining equations are easy
to write, and many are in general use. The main idea is that the time/span
or the frequency span F should be able to include most of the energy but nee
not contain it all. The time duration of a damped exponential function is infinite |
by duration we mean the span of nonzero function values. However, for practic
purposes the time span is generally defined as the time required for the amplit
to decay toe~! of its original value. For many functions the span is defined by
the span between points on the time or frequency axis where the curve (or its |
velope) drops to half of the maximum value. Strange as it may sound, there :
certain concepts about the behavior/of and AF that seem appropriate for “all”
mathematical choices of their definitions, yet these concepts can be proven only



special choices.

11.1. TIME-FREQUENCY RESOLUTION

A consequence of Fourier transforms being built fréftf is that scaling a function
to be narrower in one domain scales it to be wider in the other domain. Sealing
implies inverse scaling dfto keep the produebt constant. For example, the FT of
arectangle is a sinc. Making the rectangle narrower broadens the sinc in proport
becausent is constant. A pure sinusoidal wave has a clearly defined frequency, k
it is spread over the infinitely long time axis. At the other extreme is an impuls
function (often called a delta function), which is nicely compressed to a point ¢
the time axis but contains a mixture of all frequencies. In this section we exami
how the width of a function in one domain relates to that in the other. By the end
the section, we will formalize this into an inequality:



For any signal, the time duratiohT and the spectral bandwidthF are re-
lated by
AFAT > 1 (11.1)

Thisinequality is theuncertainty principle .

Since we are unable to find a precise and convenient analysis for the def

nitic

of AF andAT, the inequality {1.7) is not strictly true. What is important is that
rough equality in {1.7) is observed for many simple functions, but for others the
inequality can be extremely slack (far from equal). Stramgguality arises from
all-pass filters. An all-pass filter leaves the spectrum unchanged, and hekce

unchanged, but it can spread out the signal arbitrarily, increasingarbitrarily.

Thus the time-bandwidth maximum is unbounded for all-pass filters. Some peoj
say that theGaussianfunction has the minimum product inlZ.1), but that really

depends on a particular method of measuriig andAT.



11.1.1. A misinterpretation of the uncertainty principle

It is easy to misunderstand the uncertainty principle. An oversimplification of it i
to say that it is “impossible to know the frequency at any particular time.” This ovel
simplification leads us to think about a truncated sinusoid, such as in Figute
We know the frequency exactly, SoF seems zero, whereasT is finite, and this
seems to violatel(l.1). But what the figure shows is that the truncation of the si-
nusoid has broadened the frequency band. More particularly, the impulse funct
in the frequency domain has been convolved by the sinc function that is the Four
transform of the truncating rectangle function.

Windowed Sinusoid FT

Tf—-

Figure 11.1: Windowed sinusoid and its Fourier transforf{rand-windco$[NR]




11.1.2. Measuring the time-bandwidth product

Now examine Figurel1l.2, which contains sampled Gaussian functions and thei
Fourier transforms. The Fourier transform of a Gaussian is well known to be anott
Gaussian function, as the plot confirms. | adjusted the width of each Gaussian
that the widths would be about equal in both domains. The Gaussians were samj
at various values of, increasing in steps by a factor of 4. You can measure th
width dropping by a factor of 2 at each step. For those of you who have alrea
learned about the uncertainty principle, it may seem paradoxical that the functio
width is dropping in both time and frequency domains.

Figure 11.2: Sampled GaussiLZ L

N = 64

functions and their Fourier trangs \&Hk

forms for vectors of lengtn = Fk
16, 64, and 256 rand-uncerlaih -

[NR]




The resolution of the paradox is that the physical length of the time axis or t
frequency axis is varying as we changéven though the plot length is scaled to a
constant on the page). We need to associate a physical mesh with the computati
mesh. A method of associating physical and computational meshes was descri
in chapte” on page??. In real physical space as well as in Fourier transform spac
the object remains a constant size as the mesh is refined.

Let us read from Figuré1.2values for the widths\F and AT. On the top
row, whereN = 16, | pick a width of about 4 points, and this seems to include
about 90% of the area under the function. For this signal (with the widths rough
equal in both domains) it seems thal = +/Ndt andAF = +/Ndf. Using the
relation betweenlt andd f found in equation??), which says thatlitdf = 1/N,
the product becomeSTAF = 1.

We could also confirm the inequality1.1) by considering simple functions for
which we know the analytic transforms—for example, an impulse function in time
ThenAT = dt, and the Fourier transform occupies the entire frequency band fro
minus to plus the Nyquist frequeney.5/dt Hz, i.e., AF = 1/dt. Thus again, the
product iSATAF =1.



11.1.3. The uncertainty principle in physics

The inequality {1.1) derives the nameuhcertainty principle ” from its interpreta-

tion in quantum mechanics Observations of subatomic particles show they behav
like waves with spatial frequency proportional to particle momentum. The classic
laws of mechanics enable prediction of the future of a mechanical system by extr
olation from the currently known position and momentum. But because of the wa
nature of matter, with momentum proportional to spatial frequency, such predicti
requires simultaneous knowledge of both the location and the spatial frequency
the wave. This is impossible, as we see frdrh.(); hence the word “uncertainty.”

11.1.4. Gabor’s proof of the uncertainty principle

Although it is easy to verify the uncertainty principle in many special cases, it |
not easy to deduce it. The difficulty begins from finding a definition of the width o
a function that leads to a tractable analysis. One possible definition uses a sec
moment; that iSAT is defined by

[ t2b(t)dt

2
(AT) Th(t)2dt

(11.2)



The spectral bandwidtiA F is defined likewise. With these definitions, Dennis
Gabor prepared a widely reproduced proof. | will omit his proof here; it is not ar
easy proof; it is widely available; and the definitidtil(2 seems inappropriate for
a function we often use, thenc function, i.e., the FT of a step function. Since the
sinc function drops off as™1, its width AT defined with (1.2 is infinity, which is
unlike the more human measure of width, the distance to the first axis crossing.

11.1.5. My rise-time proof of the uncertainty principle

In FGDP | came up with a proof of the uncertainty principle that is appropriate fc
causal functions. That proof is included directly below, but | recommend that tf
beginning reader skip over it, as it is somewhat lengthy. | include it because tt
book is oriented toward causal functions, the proof is not well known, and | hay
improved it since FGDP.

A similar and possibly more basic concept than the product of time and fri
guency spreads is the relationship between spduaradwidth and the tise time”
of a system-response function. The rise tik€ of a system response is defined
as follows: when we kick a physical system with an impulse function, it usuall



responds rapidly, rising to some maximum level, and then dropping off more slow
toward zero. The quantitative value of the rise time is generally, and somewhat
bitrarily, taken to be the span between the time of excitation and the time at whi
the system response is more than halfway up to its maximum.

“Tightness" (nearness to equality) in the inequality..() is associated with
minimum phase. “Slackness” (remoteness from equality) inlthel would occur
if a filter with an additional all-pass component were used. Slackness could a
be caused by a decay time that is more rapid than the rise time, or by other con
nations of rises and falls, such as random combinations. Minimum-phase syste
generally respond rapidly compared to the rate at which they later decay. Foc
ing our attention on such systems, we can now seek to derive the ineqaality (
applied to rise time and bandwidth.

The first step is to choose a definition for rise time. | have found a tractab
definition ofrise time to be

1 & Lp(r)2dt
AT [b(t)2dt
whereb(t) is the response function under consideration. Equatidn3( defines

(11.3)



AT by the first negative moment. Since this is unfamiliar, consider two example
Taking b(t) to be a step function, recognize that the numerator integral diverge
giving the desiredAT = O rise time. As a further example, takét)2 to grow
linearly from zero totg and then vanish. Then the rise tinA€T is tp/2, again
reasonable. It is curious thhft) could grow as/t, which rises with infinite slope
att =0, and not causA T to be pushed to zero.

e Proof by way of the dual problem

Although theZ-transform method is a great aid in studying cases where divergen
(as ¥/t) plays a role, it has the disadvantage that it destroys the formal interchang
ability between the time domain and the frequency domain. To take advantage
the analytic simplicity of thez-transform, we consider instead the dual to the rise:
time problem. Instead of a signal whose square vanishes at negative time, we ha
spectrumB(1/Z)B(Z) that vanishes at negative frequencies. We measure how fz
this spectrum can rise after= 0. We will find this time interval to be related to
the time duratiom T of the complex-valued signal. More precisely, we now de-
fine the lowest significant frequency componerf in the spectrum, analogously



to (11.3, as . .
I / LeBar - / B8 (11.4)
AF oo | o0 w
where we have assumed the spectrum is normalized, i.e., the zero lag of the a
correlation ofty is unity. Now recall thebilinear transform , equation ??), which
represents (—iw) as the coefficients c§(1+ Z)/(1—Z), namely, (..0,0, 0,%, 1,1,1.
The pole right on the unit circle @& = 1 causes some nonunigueness. Becayise 1
is an imaginary, odd, frequency function, we will want an odd expression (such
on page??) to insert into ((1.4):
-2_ 51 2
_i _ (-2 2740+ Z+2Z%+--) (11.5)
—iw 2
Using limits on the integrals for time-sampled functions and insertirigy into
(11.4) gives

1 —i [t71 2 1 2 =
—= = | o272z +...)B(
—TT

1

Z) B(Z)dw (11.6)



Let 5 be the autocorrelation df;. Since any integral around the unit circle of a
Z-transform polynomial selects the coefficientzf of its integrand, we have

Lo ettt a-wt] = tzzl—seal.?)

1 o0 N oo

= = Y% = Yl (11.8)
t=1 t=1

The height of the autocorrelation has been normalizeg ¢ 1. The sumin{1.9
is an integral representing area under flaefunction. So the area is a measure of
theautocorrelation width A Tayie Thus,

1 o0
AE = 2 Isi = ATauto (11.9)
Finally, we must relate the duration of a signel to the duration of its auto-

correlationA Tayto Generally speaking, it is easy to find a long signal that has sho
autocorrelation. Just take an arbitrary short signal and convolve it using a leng



all-pass filter. Conversely, we cannot get a long autocorrelation function from
short signal. A good example is the autocorrelation of a rectangle function, whit
is a triangle. The triangle appears to be twice as long, but considering that the
angle tapers down, it is reasonable to assert thatfhis are the same. Thus, we
conclude that

ATauto =< AT (11.10)
Inserting this inequality intol(1.9, we have the uncertainty relation
ATAF > 1 (11.11)

Looking back over the proof, | feel that the basic time-bandwidth idea is in th
equality(11.7). | regret that the verbalization of this idea, boxed following, is not
especially enlightening. Thaequalityarises fromA Tauio < AT, Which is a simple
idea.

The inverse moment of the normalized spectrum of an analytic signal equals
the imaginary part of the mean of its autocorrelation.




EXERCISES:

1 ConsiderB(Z) =[1—(Z/Zo)"1/(1— Z/Zo) as Zp goes to the unit circle.
Sketch the signal and its squared amplitude. Sketch the frequency funct
and its squared amplitude. Choos& andAT.

2 Atime series made up of two frequencies can be written as
bt = Acoswit + Bsinwit + C coswat + D sinwot

Given w1, w2, b, b1, by, andbs, show how to calculate the amplitude and
phase angles of the two sinusoidal components.

11.2. FT OF RANDOM NUMBERS

Many real signals are complicated and barely comprehensible. In experimer
work, we commonly transform such data. To better understand what this mea
it will be worthwhile to examine signals made frandom numbers.
Figure11.3shows discrete Fourier transforms of random numbers. The bas
conclusion to be drawn from this figure is that transforms of random numbers lo



FT of 32

Figure 11.3: Fourier cosine transforms of vectors containing random numbers.

is the number of components in the vect(rand-nrand[NR]



like more random numbers. A random series containing all frequencies is calle
“white-noise" series, because the color white is made from roughly equal amou
of all colors. Any series made by independently chosen random numbers is saic
be an “independent"” series. An independent series must be white, but a white se
need not be independent. Figure.4shows Fourier transforms of random numbers
surrounded by zeros (or zero padded). Since all the vectors of random numbers

W NS
i A gl
il i

Figure 11.4: Zero-padded random numbers and their frand-pad[NR]




the same length (each has 1024 points, including both sides of the even function v
the even part (513 points) shown), the transforms are also the same length. The
signal has less randomness than the second trace (16 random numbers versus
Thus the top FT is smoother than the lower ones. Although | introduced this figu
as if the left panel were the time domain and the right panel were frequency, y
are free to think of it the opposite way. This is more clear. With the left-hand sign
being a frequency function, where higher frequencies are present, the right-he
signal oscillates faster.

11.2.1. Bandlimited noise

Figure11.5shows bursts of 25 random numbers at various shifts, and their Fouri
transforms. You can think of either side of the figure as the time domain and tl
other side as the frequency domain. (See p®®r a description of the different
ways of interpreting plots of one side of Fourier-transform pairs of even functions
| like to think of the left side as the Fourier domain and the right side as the signa
Then the signals seem to be sinusoids of a constant frequency (called the “cen
frequency) and of an amplitude that is modulated at a slower rate (calledehé “



frequency). Observe that the center frequency is related tlmtia¢ion of the ran-
dom bursts, and that the beat frequency is related tdo#melwidthof the noise
burst.

4

Figure 11.5: Shifted, zero-padded random numbers in bursts of 25 numbe
[fand-shi| NR]

You can also think of Figuré1.5as having one-sided frequency functions on
the left, and the right side as being tfeal part of the signal. The real parts are



cosinelike, whereas the imaginary parts (not shown) are sinelike and have the s:
envelope function as the cosinelike part.

You might have noticed that the bottom plot in Figdre5 which has Nyquist-
frequency modulated beats, seems to have about twice as many beats as the
plots above it. This can be explained as an end effect. The noise burst near
Nyquist frequency is really twice as wide as shown, because it is mirrored abc
the Nyquist frequency into negative frequencies. Likewise, the top figure is n
modulated at all, but the signal itself has a frequency that matches the beats on
bottom figure.

11.3. TIME-STATISTICAL RESOLUTION

L If we flipped a fair coin 1000 times, it is unlikely that we would get exactly 50C
heads and 500 tails. More likely the number of heads would lie somewhere betwe

1] would like to thank GillesDarchefor carefully reading this chapter and point-
ing out some erroneous assertions in FGDP. If there are any mistakes in the text n
| probably introduced them after his reading.



400 and 600. Or would it lie in another range? The theoretical value, called tl
“mean’ or the “expectation” is 500. The value from our experiment in actually
flipping a fair coin is called thesample mea’ How much differenceAm should
we expect between the sample meamnd the true meam? Both the coin flips

X and our sample meat arerandom variables Our 1000-flip experiment could
be repeated many times and would typically give a differ@neach time. This
concept will be formalized in section 11.3.5. as thariance of the sample meayi
which is the expected squared difference between the true mean and the mean o
sample.

The problem of estimating thstatistical parameters of a time series, such as its
mean, also appears in seismic processing. Effectively, we deal with seismic tra
of finite duration, extracted from infinite sequences whose parameters can only
estimated from the finite set of values available in these seismic traces. Since
knowledge of these parameters, such as signal-to-noise ratio, can play an impor
role during the processing, it can be useful not only to estimate them, but also
have an idea of the error made in this estimation.



11.3.1. Ensemble

The “true value” of the mean could be defined as the mean that results when the ¢
is flippedn times, whem is conceived of as going to infinity. A more convenient
definition of true value is that the experiment is imagined as having been done s
arately under identical conditions by an infinite number of people éasémblé).
The ensemble may seem a strange construction; nonetheless, much literatur
statistics and the natural sciences uses the ensemble idea. Let us say that the er
ble is defined by a probability as a function of time. Then the ensemble idea enak
us to define a time-variable mean (the sum of the values found by the ensem
weighted by the probabilities) for, for example, coins that change with time.

11.3.2. Expectation and variance

A conceptual average over the ensemblegxgrectation is denoted by the symbol
E. The index for summation over the ensemble is never shown explicitly; eve
random variable is presumed to have one. Thus, the true mean at igsndefined
asmy(t) = E(x¢). The mean can vary with time:

met) = E[x(t)] (11.12)



The “variance” o2 is defined to be the power after the mean is removed, i.e.,
ox®? = E[XO-mx(t)’] (11.13)

(Conventionally,c2 is referred to as the variance, aads called the $tandard
deviation.”)

For notational convenience, it is customary to writé), o (t), andx(t) simply
asm, o, andx;, using the verbal context to specify whethmarando are time-
variable or constant. For example, the standard deviation of the seismic amplitu
on a seismic trace before correction of spherical divergence decreases with ti
since these amplitudes are expected to be “globally” smaller as time goes on.

When manipulating algebraic expressions, remember that the symbol E beha
like a summation sign, namely,

N
E = (imN—> ) %Z (11.14)
1

Note that the summation index is not given, since the sum is over the ensemble,
time. To get some practice with the expectation symbol E, we can reduce eq



tion (11.13:
02 = E[x-m)3 = EK) —2mE@X)+m2 = E?) — m?
(11.15)
Equation (1.15 says that the energy is the variance plus the squared mean.

11.3.3. Probability and independence

A random variablex can be described by probability p(x) that the amplitude
x will be drawn. In real life we almost never know the probability function, but
theoretically, if we do know it, we can compute timeanvalue using

m = EX = /xp(x)dx (11.16)

“Statistical independencgis a property of two or more random numbers. It
means the samples are drawn independently, so they are unrelated to each o
In terms of probability functions, the independence of random variabdexly is
expressed by

p(x,y) = p(x)p(y) (11.17)



From these, it is easy to show that
E(xy) = EXE(®y) (11.18)

11.3.4. Sample mean

Now let x; be a time series made up of identically distributed random number
my andoy do not depend on time. Let us also suppose that theindependently
chosen; this means in particular that for any different titnasds (t # s):

E(ixs) = EM)E(xs) (11.19)

Suppose we have a samplegboints ofx; and are trying to determine the value of
my. We could make an estimaiig, of the meamy with the formula

R 1¢
My = ﬁt;xt (11.20)

A somewhat more elaborate method of estimating the mean would be to tak
weighted average. Let; define a set of weights normalized so that

dw = 1 (11.21)



With these weights, the more elaborate estinfata the mean is

M = Y wix (11.22)

Actually (11.20 is just a special case 01{.22; in (11.20 the weights arev; =
1/n.

Further, the weights could mnvolvedon the random time series, to compute
local averages of this time series, thus smoothing it. The weights are simply a filf
response where the filter coefficients happen to be positive and cluster togetl
Figurell.6shows an example: a random walk function with itself smoothed locally

11.3.5. Variance of the sample mean

Our objective here is to calculate how far the estimated nieanlikely to be from
the true meam for a sample of lengtim. This difference is theariance of the
sample meanand is given by Am)? = an%, where

of = E[(h—m)?] (11.23)
E{[(Zwtxt)—m]z} (11.24)



Gasoline price, London vrs Paris

Figure 11.6: Random walk and itself smoothed (and shifted downward
[ancwail [NR]



Now use the fact thah=m>» w; = > wim:
2

E [ [Z wi (X — m)} ] (11.25)
t

E { [Z we (X — m)i| [Z ws(Xs — m)] } (11.26)
t S

E [Z > wrws(x —m)(xs — m)} (11.27)

t S

The step from11.26 to (11.27 follows because

2
O

aaa a2 a1a3
(a1 +ax+az)(aa+ax+az) = sumof ara; apay apas (11.28)
dza; agdz azag



The expectation symbol E can be regarded as another summation, which car
done after, as well as before, the sumd @mds, so

of = Y. wiwsE[(x —m)(xs—m)] (11.29)
t S
If t #£ s, sincex; andxs are independent of each other, the expectation; Ef(
m)(xs — m)] will vanish. If s =1, then the expectation is the variance defined by

(11.13. Expressing the result in terms of the Kronecker deita(which equals
unity if t = s, and vanishes otherwise) gives

cr,%1 = ZZwtwsaxzéts (11.30)
t s

02 = Zwtzof (11.31)
t

om = ox |[Y wf (11.32)
t



n

Forn weights, each of size/h, the standard deviation of the sample mean i

X (11.33)

This is the most important property of random numbers that is not intuitively obv
ous. Informally, the resulti(l.33 says this: given a sum of terms with random
polarity, whose theoretical mean is zero, then
y = +1+141... (11.34)
_\,—/
n terms
The sumy is a random variable whose standard deviatiosyis= /n = Ay. An
experimenter who does not know the mean is zero will report that the meais of
E(y) = ¥+ Ay, wherey is the experimental value.
If we are trying to estimate the mean of a random series that has a time-varia
mean, then we face a basic dilemma. Including many numbers in the sum in or
to make Am small conflicts with the possibility of seeing; change during the



measurement.

The “variance of the sample variancgé arises in many contexts. Suppose we
want to measure the storminess of the ocean. We measure water level as a func
of time and subtract the mean. The storminess is the variance about the mean.
measure the storminess in one minute and call it a sample storminess. We c
pare it to other minutes and other locations and we find that they are not all t
same. To characterize these differences, we needattiance of the sample vari-
ancea[fz. Some of these quantities can be computed theoretically, but the comy
tations become very cluttered and dependent on assumptions that may not be v
in practice, such as that the random variables are independently drawn and that
have a Gaussian probability function. Since we have such powerful computers,
might be better off ignoring the theory and remembering the basic principle tha
function of random numbers is also a random number. We can use simulation
estimate the function’s mean and variance. Basically we are always faced with
same dilemma: if we want to have an accurate estimation of the variance, we n¢
a large number of samples, which limits the possibility of measuring a time-varyir
variance.



EXERCISES:
1 Suppose the mean of a sample of random numbers is estimated by a triar
weighting function, i.e.,

n
m = s) (n—i)x
i=0
Find the scale factos so that Ef) = m. CalculateAm. Define a reasonable

AT. Examine the uncertainty relation.

2 A random series¢ with a possibly time-variable mean may have the mear
estimated by the feedback equation

M = (1-€e)Mi_1+bx
a. Expresgfy as a function ok, x;_1,..., and notfy_j.
b. WhatisAT, the effective averaging time?
¢. Find the scale factds so that ifm; = m, then Ef) = m.



d. Compute the random erroim = /E(h — m)2. (HINT: Amgoestar/e/2
ase — 0.)

e. Whatis (Am)2AT in this case?

11.4. SPECTRAL FLUCTUATIONS

Recall the basic model of time-series analysis, namely, random numbers pas:s
through a filter. A sample of input, filter, and output amplitude spectra is show
in Figure11.7. From the spectrum of the output we can guess the spectrum of t
filter, but the figure shows there are some limitations in our ability to do so. Let t
analyze this formally.

Observations of sea level over a long period of time can be summarized in ter
of a few statistical averages, such as the mean heiginid the variance?. Another
important kind of statistical average for use on geophysical time series ipahet
spectrum.” Many mathematical models explain only statistical averages of data al
not the data itself. To recognize certaitfall s and understand certain fundamental
limitations on work with power spectra, we first consider the idealized example
random numbers.
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Figure 11.8: Autocorrelation and spectra of random numb|rand-autd[NR]



Figure 11.8shows a signal that is a burst of noise; its Fourier transform, an
the transform squared; and its inverse transform, the autocorrelation. Here the
squared is the same as the more usual FT times its complex conjugate—becaus:
noise-burst signal is even, its FT is real.

Notice that theautocorrelation has a big spike at zero lag. This spike repre-
sents the correlation of the random numbers with themselves. The other lags
much smaller. They represent the correlation of the noise burst with itself shifte
Theoretically, the noise burst i®t correlated with itself shifted: these small fluc-
tuations result from the finite extent of the noise sample.

Imagine many copies of Figurel.8 Ensemble averaging would amount to
adding these other autocorrelations or, equivalently, adding these other spectra.
fluctuations aside the central lobe of the autocorrelation would be destroyed by
semble averaging, and the fluctuations in the spectrum would be smoothed out.
expectation of the autocorrelationis that it is an impulse at zero lag. Tke&pec-
tation of the spectrumis that it is a constant, namely,

E[S2)] = S2Z) = -const (11.35)



11.4.1. Paradox: large n vs. the ensemble average

Now for the paradox. Imagine — oo in Figure11.8 Will we see the same limit
as results from the ensemble average? Here are two contradictory points of viev

e For increasingn, the fluctuations on the nonzero autocorrelation lags ge
smaller, so the autocorrelation should tend to an impulse function. Its Fouri
transform, the spectrum, should tend to a constant.

e On the other hand, for increasingas in Figurel1.3 the spectrum does not
get any smoother, because the FTs should still look like random noise.

We will see that the first idea contains a false assumption. The autocorrelation d
tend to an impulse, but the fuzz around the sides cannot be ignored—although
fuzz tends to zero amplitude, it also tends to infinite extent, and the product of ze
with infinity here tends to have the same energy as the central impulse.

To examine this issue further, let us discover how these autocorrelations ¢
crease to zero with (the number of samples). Figufie.9 shows the autocorre-
lation samples as a function afin steps ofn increasing by factors of four. Thus
J/n increases by factors of two. Each autocorrelation in the figure was normaliz
at zero lag. We see the sample variance for nonzero lags of the autocorrela
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Figure 11.9: Autocorrelation as a function of number of data points. The randor
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dropping off as,/n. We also observe that the ratios between the values for the fir
nonzero lags and the value at lag zero roughly fif/fi. Notice also that the fluc-
tuations drop off with lag. The drop-off goes to zero at a lag equal to the samg
length, because the number of terms in the autocorrelation diminishes to zero at:
lag. A first impression is that the autocorrelation fits a triangular envelope. Mo
careful inspection, however, shows that the triangle bulges upward at wide offse
or large values ok (this is slightly clearer in Figuré1.8. Let us explain all these
observations. Each lag of the autocorrelation is defined as

n—k
SCo= ) XXk (11.36)
t=1

where ;) is a sequence of zero-meardependentandom variables. Thus, the
expectations of the autocorrelations can be easily computed:

E@ = Y EX) = nof (11.37)
1



n—k
EG) = D EM)E(en) = 0 (fork>=1)  (11.38)
1

In Figure11.9 the value at lag zero is more or less? (before normalization), the
deviation being more or less the standard deviation (square root of the variance
- On the other hand, fdt > 1, as E§) = 0, the value of the autocorrelation is
directly the deviation o, i.e., something close to its standard deviation. We nov
have to compute the variances of tqeLet us write

n—k
= Y % (whereyi(t) = XtX+k) (11.39)
t=1

So: s = (n—Kk)rhy,, whererhy, is the sample mean gk with n—k terms. Ifk 0,
E(yk) = 0, and we applyX1.33 to My, :

E(y) = —& (11.40)




The computation o&}?k is straightforward:

of = EIXC) = EXIENE) = oy, (11.41)
Thus, for the autocorrelatios:
n—k
ES) = (-Kos = (M-Kog = ?(E(So))z (11.42)
Finally, as E§) = 0, we get
J/n—k
o = JEE) = El) (11.43)

This result explains the properties observed in Figlted As n — oo, all the
nonzero lags tend to zero compared to the zero lag, sjfice k/n tends to zero.
Then, the first lagsi{ < < n) yield the ratio ¥./n between the autocorrelations and
the value at lag zero. Finally, the autocorrelations do not decrease linearli,with

because of/n —k.



We can now explain the paradox. The energy of the nonzero lags will be

2 N
Yed = Csn = @@ (14
kz£0 k=1
Hence there is a conflict between the decrease to zero of the autocorrelations anc
increasing number of nonzero lags, which themselves prevent the energy from
creasing to zero. The autocorrelation doesgiobally tend to an impulse function.
In the frequency domain, the spectri8fw) is now

1
Sw) = ﬁ(so+slc05w+chos&>+-~-) (11.45)

So E[S(w)] = (1/n)E[s0] = 02, and theaveragespectrum is a constant, independent
of the frequency. However, as tlse fluctuate more or less like Bf]/+/n, and as
their count inS(w) is increasing witn, we will observe tha8(w) will also fluctuate,
and indeed,

Sw) = CElsl:iEls] = ofto} (11.46)



This explains why the spectrum remains fuzzy: the fluctuation is independent
the number of samples, whereas the autocorrelation seems to tend to an impt
In conclusion, the expectation (ensemble average) of the spectrum is not prope
estimated by lettingg — oo in a sample.

11.4.2. An example of the bandwidth/reliability tradeoff

Letting n go to infinity does not take us to the expectaté& o2. The problem

is, as we increasa, we increase the frequency resolution but not the statistice
resolution (i.e., the fluctuation arour8). To increase the statistical resolution, we
need to simulate ensemble averaging. There are two ways to do this:

1. Take the sample af points and break it intd& equal-length segments of
n/k points each. Compute é&{w) for each segment and then averagekall
of the S(w) together. The variance of the average spectrum is equal to tl
variance of each spectrumxz\) dividedby the number of segments, and so
the fluctuation is substantially reduced.

2. Form S(w) from then-point sample. Replace each of thg2 independent
amplitudes by an average over ksearest neighbors. This could also be



done by tapering the autocorrelation.

The second method is illustrated in Figurg.1Q This figure shows a noise burst
of 240 points. Since the signal is even, the burst is effectively 480 points wide,
the autocorrelation is 480 points from center to end: the number of samples will
the same for all cases. The spectrum is very rough. Multiplying the autocorrelati
by a triangle function effectively smooths the spectrum by a sinc-squared functic
thus reducing the spectral resolutiory fIF). Notice thatA F is equal here to the
width of the sinc-squared function, which is inversely proportional to the length «
the triangle A Tauto)-

However, the first taper takes the autocorrelation width from 480 lags to 1-
lags. Thus the spectral fluctuationsS should drop by a factor of 2, since the
count of termssc in S(w) is reduced to 120 lags. The width of the next weighted
autocorrelation width is dropped from 480 to 30 lags. Spectral roughness shol
consequently drop by another factor of 2. In all cases,a®ragespectrum is
unchanged, since the first lag of the autocorrelations is unchanged. This implie
reduction in the relative spectral fluctuation proportional to the square root of tl

length of the triangle/ A Tauto)-
Our conclusion follows:
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Figure 11.10: Spectral smoothing by tapering the autocorrelatidnis constant
and specified on the top row. Successive rows sihdwincreasing whileA S de-
creases. The width of a superimposed box roughly givEsand its height roughly

givesAS. [rand-tapef[NR]



The trade-off amongesolutions of time, frequency, and spectral amplitude is
AS\?
AF AT <§> > 1 (11.47)

11.4.3. Spectral estimation

In Figure11.10we did not care about spectral resolution, since we knew theoret
cally that the spectrum was white. But in practice we do not have such foreknov
edge. Indeed, the random factors we deal with in nature rarely are white. A wide
used model for naturally occurring random functions, such as microseism, or son
times reflection seismograms, is white noise put into a filter. The spectra for .
example of this type are shown in Figut&.7. We can see that smoothing the en-
velope of the power spectrum of the output gives an estimate of the spectrum of
filter. But we also see that the estimate may need even more smoothing.



11.5. CROSSCORRELATION AND COHERENCY

With two time series we can see how crosscorrelation and coherency are relatec

11.5.1. Correlation

“Correlation" is a concept similar to cosine. A cosine measures the angle betwe
two vectors. It is given by the dot product of the two vectors divided by their mac

nitudes: x-y)
C = —= 11.48
JEX) YY) ( )
This is thesample normalized correlationwe first encountered on pa@® as a
quality measure of fitting one image to another.
Formally, thenormalized correlation is defined using andy as zero-mean,
scalar, random variables instead of sample vectors. The summation is thus an

pectation instead of a dot product:
E(xy)

VE(®)E(y?)

(11.49)



A practical difficulty arises when the ensemble averaging is simulated over
sample. The problem occurs with small samples and is most dramatically illustra
when we deal with a sample of only one element. Then the sample correlation is

¢ = Y - 41 (11.50)
X1yl

regardless of what value the random number the random number should take.
For anyn, the sample correlatiod scatters away from zero. Such scatter is callec
“bias." The topic of bias and variance of coherency estimates is a complicated o
but a rule of thumb seems to be to expect bias and varianéeobfibout ¥ ./n
for samples of siza. Bias, no doubt, accounts for many false “discoveries,” since
cause-and-effect is often inferred from correlation.

11.5.2. Coherency

The concept of Eoherency in time-series analysis is analogous to correlation. Tak:
ing % andy; to be time series, we find that they may have a mutual relationshi
which could depend on time delay, scaling, or even filtering. For example, perha
Y(2) = F(Z2)X(Z)+ N(Z), whereF(Z) is a filter andn; is unrelated noise. The



generalization of the correlation concept is to define coherency by

¢ _ ElX(E)v@] iy
T VEXXEYY) '

Correlation is a real scalar.Coherencyis a complex function of frequency;
it expresses the frequency dependence of correlation. In forming an estimate
coherency, it is always essential to simulate ensemble averaging. Note that if
ensemble averaging were to be omitted, the coherency (squared) calculation wc
give

IC? = CC = XYy (11.52)
(XX)(YY)
which states that the coherency squared is unity, independent of the data. Bec:
correlation scatters away from zero, we find that coherency squared is biased a
from zero.



11.5.3. The covariance matrix of multiple signals

A useful model ofsinglechannel time-series analysis is that random numkers
enter a filterf; and come out as a signg. A useful model ofmultiple-channel
time-series analysis—with two channels, for example—is to start with independen
random numbers in both theg(t) channel and thg,(t) channel. Then we neddur
filters, f11(t), f12(t), f21(t), and f22(t), which produce two output signals defined
by the Z-transforms

Yi(Z) = B11(Z2)X1(Z)+ B12(Z)X2(2) (11.53)

Y2(2) B21(Z)X1(Z) + B22(Z) X2(Z) (11.54)
These signals have realistic characteristics. Each has its own spectral color. E
has a partial relationship to the other which is characterized by a spectral amplitt
and phase. Typically we begin by examining ttevariance matrix. For example,

consider two time serieg; (t) andyz(t). Their Z-transforms aré&/1(Z) andYz(2).
Their covariance matrix is

[E[m/zm(zn E[Vl(l/zwz(zn] _ E({ Vi(1/2) }[Yl(z) va(2)

E[Y2(1/Z)Y1(Z)] E[Y2(1/Z)Y2(2)] Y2(1/2)
(11.55)



HereZ-transforms represent the components of the matrix in the frequency doma
In the time domain, each of the four elements in the matrixidf%5 becomes a
Toeplitz matrix, a matrix of correlation functions (see p&R.

The expectations in equatiofl(.59 are specified by theoretical assertions or
estimated by sample averages or some combination of the two. Analogously
spectralfactorization, the covariance matrix can be factored into two pddd),
whereU is an upper triangular matrix. The factorization might be done by th
well known Cholesky method. The factorization is a multichannel generalizatior
of spectral factorization and raises interesting questions about minimum-phase
are partly addressed in FGDP.

11.5.4. Bispectrum

The “bispectrum" is another statistic that is used to search for nonlinear interactio
For a Fourier transfornk (w), it is defined by

B(w1,w2) = E[F(w1)F(w2)F(w1+w2)] (11.56)

A statistic defined analogously is the “bispectral coherency." In seismology, sign:
rarely have adequate duration for making sensible bispectral estimates from ti



averages.

11.6. SMOOTHING IN TWO DIMENSIONS

In previous sections we assumed that we were using one-dimensional models,
smoothing was easy. Working in two dimensions is nominally much more costl
but some tricks are available to make things easier. Here | tell you my favori
trick for smoothingin two dimensions. You can convolve with a two-dimensional
(almost) Gaussian weighting functiohany aredgor a cost of only sixteen additions
per output point. (You might expect instead a cost proportional to the area.)

11.6.1. Tent smoothing

First recall triangular smoothing in one dimension with subroutifaggle()

. This routine is easily adapted to two dimensions. First we smoot
in the direction of the 1-axis for all values of the 2-axis. Then we do the revers
convolve on the 2-axis for all values of the 1-axis. Now recall that smoothing wit
a rectangle is especially fast, because we do not need to add all the points wit



the rectangle. We merely adapt a shifted rectangle by adding a point at one ¢
and subtracting a point at the other end. In other words, the cost of smoothing
independent of the width of the r