Next: Regularization of the angle
Up: Sava & Fomel: Angle-gathers
Previous: Introduction
The Fourier-domain stretch represented by equation (1) is equivalent to a slant stack in the
domain. Indeed, we can convert an image gather in the offset-domain (
) to one in the angle-domain (
), using a slant-stack equation of the form
| ![\begin{displaymath}
{\bf A}\left (z,\vec \mu\right ) = \int \H{z+\vec \mu\cdot\vec h}{\vec h} d\vec h,\end{displaymath}](img8.gif) |
(2) |
where
is a vector describing the direction of the stack.
Fourier transforming equation (2) over the depth
axis, we obtain
![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int\left [\int \H{z+\vec \mu\cdot\vec h}{\vec h} d\vec h\right ]e^{i k_zz} dz\end{displaymath}](img10.gif)
where the underline stands for a 1-D Fourier transform. We can continue by writing the equation
![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \int \H...
...vec \mu\cdot\vec h\right )-ik_z\vec \mu\cdot\vec h} d\vec hdz, \end{displaymath}](img11.gif)
where we can re-arrange the terms as
![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \left [...
...t\vec h\right )} dz\right ]e^{-ik_z\vec \mu\cdot\vec h}d\vec h,\end{displaymath}](img12.gif)
which highlights the relation between the 1-D Fourier-transformed angle-domain and offset-domain representation of the seismic images:
![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \underl...
...}\left (k_z,\vec h\right ) e^{-ik_z\vec \mu\cdot\vec h}d\vec h.\end{displaymath}](img13.gif)
We recognize on the right-hand side of the previous equation additional Fourier transforms over the offset axes, and therefore we can write
![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \underline{\underline{\underline {\bf H}}} \left (k_z,-\vec \mu k_z\right ),\end{displaymath}](img14.gif)
where the triple underline stands for the 3-D Fourier transform of the
offset-domain common-image gather. Finally, defining
, we
can conclude that the 1-D Fourier transforms of angle-domain gathers
are equivalent to the 3-D Fourier transforms of the offset-domain
gathers,
| ![\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \underline{\underline{\underline {\bf H}}} \left (k_z,\vec{k_h}\right ), \end{displaymath}](img16.gif) |
(3) |
subject to the stretch of the offset axis according to the simple law
| ![\begin{displaymath}
\vec \mu= -\frac{\vec{k_h}}{k_z}. \end{displaymath}](img17.gif) |
(4) |
We can recognize in equation (4) the fundamental relation between the reflection angle and the Fourier-domain quantities that are evaluated in wave-equation migration. This equation also shows that the angles evaluated by (1) are indeed equivalent to slant stacks on offset-domain
common-image gathers. Therefore, we could either compute angles for each of the two offset axes with the equations
![\begin{displaymath}
\begin{array}
{l}
\gamma_x= -\tan^{-1} \left (\frac{{k_h}_x...
...a_y= -\tan^{-1} \left (\frac{{k_h}_y}{k_z} \right ),\end{array}\end{displaymath}](img18.gif)
or compute one angle corresponding to the entire offset vector:
![\begin{displaymath}
\gamma= -\tan^{-1} \left (\frac{\vert\vec{k_h}\vert}{k_z} \right ).\end{displaymath}](img19.gif)
Next: Regularization of the angle
Up: Sava & Fomel: Angle-gathers
Previous: Introduction
Stanford Exploration Project
4/27/2000