Next: About this document ...
Up: Sava: Mixed-domain operators
Previous: Acknowledgement
- Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: SEP-100, 11-34.
-
- Biondi, B. L., 1999, 3-D Seismic Imaging: Stanford Exploration Project.
-
- Claerbout, J. F., 1985, Imaging the Earth's Interior: Blackwell Scientific Publications.
-
- Clapp, R. G., and Biondi, B., 1999, Preconditioning tau tomography with geologic constraints: SEP-100, 35-50.
-
- de Hoop, M. V., and Wu, R. S., 1996, General formulation of screen methods for the scattering of waves in inhomogeneous media: Wave Motion, submitted.
-
- de Hoop, M. V., 1996, Generalization of the Bremmer coupling series: J. Math. Phys., 3246-3282.
-
- Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpolation: Geophysics, 49, no. 2, 124-131.
-
- Gazdag, J., 1978, Wave equation migration with the phase-shift method: Geophysics, 43, no. 7, 1342-1351.
-
- Huang, L.-J., and Wu, R.-S., 1996, 3-D prestack depth migration with acoustic pseudo-screen propagators in Hassanzadeh, S., Ed., Mathematical methods in geophysical imaging IV:: Proc. SPIE: The International Society for Optical Engineering, 40-51.
-
- Huang, L., Fehler, M. C., and Wu, R. S., 1999, Extended local Born Fourier migration method: Geophysics, 64, no. 5, 1524-1534.
-
- Le Rousseau, J., and de Hoop, M., 1998, Modeling and imaging with the generalized screen algorithm: 68th Ann. Internat. Meeting, Soc. Expl. Geophys., 1937-1940.
-
- Prucha, M. L., Biondi, B. L., and Symes, W. W., 1999, Angle-domain common image gathers by wave-equation migration: SEP-100, 101-112.
-
- Ristow, D., and Ruhl, T., 1994, Fourier finite-difference migration: Geophysics, 59, no. 12, 1882-1893.
-
- Ristow, D., and Ruhl, T., 1997, 3-D implicit finite-difference migration by multiway splitting: Geophysics, 62, no. 02, 554-567.
-
- Sava, P., and Biondi, B., 2000, Wave-equation migration velocity analysis: Episode II: SEP-103, 19-47.
-
- Sava, P., and Fomel, S., 2000, Angle-gathers by Fourier Transform: SEP-103, 119-130.
-
- Sava, P., 2000, Variable-velocity prestack Stolt residual migration with application to a North Sea dataset: SEP-103, 147-157.
-
- Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step Fourier migration: Geophysics, 55, no. 4, 410-421.
-
- Vaillant, L., and Sava, P., 1999, Common-azimuth migration of a North Sea dataset: SEP-102, 1-14.
-
A
This Appendix is a step-by-step derivation of the Fourier finite-difference
equation, Equation (2), one of the most general forms of the equations
describing mixed-domain migration.
I begin with Taylor series approximations of the single square root
equations for the vertical wavenumbers corresponding to the true
slowness (s)
| ![\begin{displaymath}
k_z= \sqrt{\omega^2 { s }^2 - \left\vert \bf k_m\right\vert^...
...ight)^n
\displaystyle{\frac{1}{2} \choose n} \S^{2n} \right]
,\end{displaymath}](img43.gif) |
(18) |
and for the reference slowness (so)
| ![\begin{displaymath}
{k_z}_o= \sqrt{\omega^2 {s_o}^2 - \left\vert \bf k_m\right\v...
...\left\vert \bf k_m\right\vert}{\omega s_o}\right]^{2n} \right],\end{displaymath}](img44.gif) |
(19) |
where
are binomial coefficients
for real m and integer n.
We can use Equation (19) to replace kzo in Equation (18) and obtain an equation
relating the true depth wavenumber kz to the reference one:
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega\left(s - s_o\right)
+ \omega\sum\limit...
...left\vert \bf k_m\right\vert}{\omega s_o}\right]^{2n} \right]. \end{displaymath}](img47.gif) |
(20) |
Next we re-arrange the slowness terms of the equation
to facilitate the substitution of the ratio of the true and reference slownesses:
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega s_o\left(\frac{s}{s_o} - 1\right)
+ \o...
... \S^{2n} \left[\frac{s}{s_o} - \frac{s^{2n}}{s_o^{2n}}\right], \end{displaymath}](img49.gif) |
(21) |
which leads to the more compact relation:
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega s_o\left(p - 1\right)
+ \omega s_o\sum...
...ystyle{\frac{1}{2} \choose n} \S^{2n} \left[p - p^{2n} \right].\end{displaymath}](img50.gif) |
(22) |
If we make the change of variables
|  |
(23) |
we can write that
|  |
(24) |
Next, if we add and subtract
on the right hand side of the
preceding equation, we obtain that
|  |
(25) |
which can be simplified to
|  |
(26) |
and, furthermore, to
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega s_o\left(p - 1\right)
\left[1+ p \left...
...ystyle{\frac{1}{2} \choose n} \S^{2n} \delta_n \right)\right], \end{displaymath}](img56.gif) |
(27) |
and, finally, to
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega s_o\left(p - 1\right)
\left[1- p \left...
...ystyle{\frac{1}{2} \choose n} \S^{2n} \delta_n \right)\right]. \end{displaymath}](img57.gif) |
(28) |
If we make the reverse change of variables from p to s and so, we obtain
the general Taylor expansion form of the depth wavenumber used for the FFD
migration method:
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega\left[1- \frac{s}{s_o} \left(\sum\limits...
...hoose n} \S^{2n} \delta_n \right)\right]
\left(s - s_o\right).\end{displaymath}](img58.gif) |
(29) |
The equivalent 2nd order equation takes the form:
![\begin{displaymath}
k_z\approx {k_z}_o+ \omega\left[1
+ \frac{1}{2} \frac{1}{s...
...t \bf k_m\right\vert^4}{\omega^4}
\right]\left(s - s_o\right).\end{displaymath}](img59.gif)
We can write an analogous form for Equation (29) using a
continuous fraction expansion
| ![\begin{displaymath}
k_z= {k_z}_o+ \omega\left[1- \frac{s}{s_o} \left(\sum\limits...
...\frac{\S^2}{a_n+b_n \S^2} \right)\right]
\left(s - s_o\right).\end{displaymath}](img60.gif) |
(30) |
The equivalent 2nd order equation takes the form:
![\begin{displaymath}
k_z\approx {k_z}_o+ \omega\left[1
- \frac { \frac{1}{s s_o...
...\bf k_m\right\vert^2}{\omega^2} }
\right]\left(s - s_o\right).\end{displaymath}](img61.gif)
B
This appendix is a step-by-step derivation of the generalized screen equation.
I begin with the single square root equation for the true slowness (s)

and for the background slowness (so)

We can replace kzo in kz to get
|  |
(31) |
or, in an equivalent form,

Next, we can write a Taylor series expansion, assuming a small slowness squared
perturbation s2-so2
![\begin{displaymath}
k_z= {k_z}_o\sum\limits_{n=0}^{\infty} \left(-1 \right)^n
\...
...t[\frac{\omega^2\left(s_o^2-s^2\right)}{{k_z}_o^2} \right]
}^n.\end{displaymath}](img65.gif)
The 2nd order approximation takes the form:
![\begin{displaymath}
k_z= {k_z}_o
-\frac{1}{2} \left[\frac{\omega^2}{{k_z}_o} \ri...
...t[\frac{\omega^2}{{k_z}_o} \right]^2 \left(s_o^2-s^2 \right)^2.\end{displaymath}](img66.gif)
We can make kzo explicit for the terms of the sum and obtain
| ![\begin{displaymath}
k_z= {k_z}_o\sum\limits_{n=0}^{\infty} \left(-1 \right)^n
\...
...rt^2} \right)\left(\frac{s_o^2-s^2}{s_o^2} \right)
\right]
}^n,\end{displaymath}](img67.gif) |
(32) |
from which we can derive the generalized screen migration equation:
| ![\begin{displaymath}
k_z= {k_z}_o+ {k_z}_o\sum\limits_{n=1}^{\infty} \left(-1 \ri...
...rt^2} \right)\left(\frac{s_o^2-s^2}{s_o^2} \right)
\right]
}^n.\end{displaymath}](img16.gif) |
(33) |
Because Equation (33) becomes unstable when the denominator of the terms
in the summation vanishes, we replace these terms with another Taylor series
expansion:
| ![\begin{displaymath}
k_z= {k_z}_o+ {k_z}_o\sum\limits_{n=1}^{\infty} \left(-1 \ri...
...t]}^i \right)\left(\frac{s_o^2-s^2}{s_o^2} \right)
\right]
}^n.\end{displaymath}](img17.gif) |
(34) |
We can obtain the split-step equation through a sequence of approximations in
Equation (34): first, we limit the terms of the inner Taylor series to two
(i=1,2) and the terms of the outer series to one (n=1), therefore

which we can simplify to

Next, we approximate
and
,
and get

which reduces to the split-step equation

Next: About this document ...
Up: Sava: Mixed-domain operators
Previous: Acknowledgement
Stanford Exploration Project
9/5/2000