next up previous print clean
Next: About this document ... Up: REFERENCES Previous: REFERENCES

Euler-Lagrange solution for flattening

The Euler-Lagrange equation can be used to find the absolute time (t(x,y)) that minimizes (Fomel, 2002, personal communication)  
 \begin{displaymath}
J(t) = \int \int \left[ \left( p_x(t,x,y)-\frac{\partial t}{...
 ...(t,x,y)-\frac{\partial t}{\partial y}\right)^2 \right] \,dx\,dy\end{displaymath} (16)
where px is the dip in the x direction and py is the dip in the y direction.

This can be simplified for the 2-D case to find the absolute time (t(x)) that minimizes  
 \begin{displaymath}
J(t) = \int((p_x(t,x)-\frac{\partial t}{\partial x})^2 \,dx\end{displaymath} (17)

The Euler-Lagrange equation Farlow (1993) is used to find the function (t(x)) that minimizes the equation of this form  
 \begin{displaymath}
J(t) = \int F(x,t,t') \,dx \approx 0\end{displaymath} (18)
where the unknown t is a function of x. The Euler-Lagrange equation is  
 \begin{displaymath}
\frac{\partial F}{\partial \bar t} - \frac{d}{dx} \left[ \frac{\partial F}{\partial \bar t'}\right] = 0\end{displaymath} (19)

To apply this equation I find  
 \begin{displaymath}
\frac{\partial F}{\partial t}=2 \left[ p_x-\frac{\partial t}{\partial x}\right] \frac{\partial p_x}{\partial t}\end{displaymath} (20)
and  
 \begin{displaymath}
\frac{\partial F}{\partial t'}= - 2 \left[ p_x-\frac{\partial t}{\partial x}\right]\end{displaymath} (21)
Substituting equations ( 20) and ( 21) into equation ( 19) and simplifying, I get:  
 \begin{displaymath}
\frac{\partial^2 t}{\partial x^2} = \frac{\partial p_x}{\partial x} + \frac{1}{2} \frac{\partial {p_x}^2}{\partial t}\end{displaymath} (22)

It is straight forward to extend to the 3-D case.

boat3

 


next up previous print clean
Next: About this document ... Up: REFERENCES Previous: REFERENCES
Stanford Exploration Project
7/8/2003