Next: About this document ...
Up: REFERENCES
Previous: REFERENCES
The Euler-Lagrange equation can be used to find the absolute time (t(x,y)) that minimizes (Fomel, 2002, personal communication)
| ![\begin{displaymath}
J(t) = \int \int \left[ \left( p_x(t,x,y)-\frac{\partial t}{...
...(t,x,y)-\frac{\partial t}{\partial y}\right)^2 \right] \,dx\,dy\end{displaymath}](img34.gif) |
(16) |
where px is the dip in the x direction and py is the dip in the y direction.
This can be simplified for the 2-D case to find the absolute time (t(x)) that minimizes
|  |
(17) |
The Euler-Lagrange equation Farlow (1993) is used to find the function (t(x)) that minimizes the equation of this form
|  |
(18) |
where the unknown t is a function of x.
The Euler-Lagrange equation is
| ![\begin{displaymath}
\frac{\partial F}{\partial \bar t} - \frac{d}{dx} \left[ \frac{\partial F}{\partial \bar t'}\right] = 0\end{displaymath}](img41.gif) |
(19) |
To apply this equation I find
| ![\begin{displaymath}
\frac{\partial F}{\partial t}=2 \left[ p_x-\frac{\partial t}{\partial x}\right] \frac{\partial p_x}{\partial t}\end{displaymath}](img42.gif) |
(20) |
and
| ![\begin{displaymath}
\frac{\partial F}{\partial t'}= - 2 \left[ p_x-\frac{\partial t}{\partial x}\right]\end{displaymath}](img43.gif) |
(21) |
Substituting equations ( 20) and ( 21) into equation ( 19) and simplifying, I get:
|  |
(22) |
It is straight forward to extend to the 3-D case.
Next: About this document ...
Up: REFERENCES
Previous: REFERENCES
Stanford Exploration Project
7/8/2003