next up previous print clean
Next: APPENDIX B Up: Zhang: Migration velocity analysis Previous: References

APPENDIX A

Let

\begin{displaymath}
\tau_0 = \tau(x_r,0)={z_t \over v_t}\left({1 \over \cos \alpha} + 
{1 \over \cos \beta}\right).
\eqno(A.1)\end{displaymath}

Substituting x and z from equation (4) into equation (6), we have

\begin{displaymath}
\sqrt{(x_r-x_s-\lambda \gamma \sin \beta)^2 + 
\lambda^2 (1-...
 ... \sin^2 \beta + \lambda^2(1-\gamma^2 \sin^2 \beta)}.
\eqno(A.2)\end{displaymath}

Solving this equation for $\lambda$ yields:

\begin{displaymath}
\lambda = {v^2_m \tau^2_0 - (x_r-x_s)^2 \over 2[v_m \tau_0-(x_r-x_s)
\gamma \sin \beta]}.
\eqno(A.3)\end{displaymath}

According to the geometry shown in Figure 2,

\begin{displaymath}
x_r=x_s+z_t(\tan \alpha + \tan \beta).
\eqno(A.4)\end{displaymath}

Substituting equation (A.4) into equations (A.3) and (4), we obtain equations (7) and (8):

\begin{displaymath}
\lambda ={z_t \over \gamma \cos \beta}[1+(\gamma^2-1)
{\cos^2 ({1 \over 2}(\beta -\alpha)) 
\over \cos \alpha \cos \beta }]\end{displaymath}

and

\begin{displaymath}
\begin{array}
{lll}
x & = & x_t + z_t \tan \beta - \lambda \...
 ...a \\ z & = & \lambda \sqrt{1-\gamma^2 \sin^2 \beta}.\end{array}\end{displaymath}



Stanford Exploration Project
1/13/1998