Next: Thomsen's anisotropy parameters and
Up: DISCUSSION
Previous: DISCUSSION
For another irony, consider
the relation between group and phase velocity,
usually written
| ![\begin{displaymath}
V_{\hbox{\rm group}}^2\bigl(\phi_{\hbox{\rm group}}(\theta_{...
...ox{\rm phase}})
\over d \theta_{\hbox{\rm phase}} } \biggr)^2
.\end{displaymath}](img14.gif) |
(1) |
This equation is just the scalar part of the statement
``the group velocity vector
is the sum of the phase velocity vector (perpendicular to the wavefront)
and the sideslip velocity vector (parallel to the wavefront)''.
This equation immediately implies the inequality
| ![\begin{displaymath}
V_{\hbox{\rm group}}(\phi_{\hbox{\rm group}}) \geq
V_{\hbox{\rm phase}}(\theta_{\hbox{\rm phase}})
.\end{displaymath}](img15.gif) |
(2) |
or
``group velocities are greater than (or equal to)
associated phase velocities''.
Earlier in this paper, however, we saw that ``vertical phase velocities
are greater than (or equal to) vertical group velocities'',
or mathematically
| ![\begin{displaymath}
V_{\hbox{\rm group}}(\psi) \leq
V_{\hbox{\rm phase}}(\psi)
.\end{displaymath}](img16.gif) |
(3) |
These inequalities seem contradictory at first glance, but they are not
because they refer to different things.
Equation (2) compares the phase and group velocities
associated with the same point on a wavefront.
Equation (3) compares the phase and group velocities for
the same propagation direction (
).
The solid vertical lines in Figure
show how the phase and group velocities
for the same (vertical) propagation direction are related.
The tilted dotted line in the same figure indicates how the vertical
phase velocity also has an associated (non-vertical) group velocity.
The non-vertical group velocity associated with the vertical phase
is faster than the vertical phase, which is in turn
faster than the vertical group!
Table 3:
Velocity measurements in mm/
s for a sample of Bakken Shale,
from Vernik and Nur (in press).
Measurement |
velocity |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm P}}(0^\circ) $](img18.gif) |
3.46 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm P}}(45^\circ)$](img19.gif) |
3.86 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm P}}(90^\circ)$](img20.gif) |
4.49 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SV}}(0^\circ)$](img21.gif) |
1.99 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SV}}(45^\circ)$](img22.gif) |
2.13 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SV}}(90^\circ)$](img23.gif) |
2.02 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SH}}(0^\circ) $](img24.gif) |
2.00 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SH}}(45^\circ)$](img25.gif) |
2.33 |
|
|
|
|
![${\hbox{\rm V}}_{\hbox{\scriptsize\rm SH}}(90^\circ)$](img26.gif) |
2.62 |
|
|
|
|
Next: Thomsen's anisotropy parameters and
Up: DISCUSSION
Previous: DISCUSSION
Stanford Exploration Project
12/18/1997