Next: Using the Eikonal equation
Up: USING 3-D EIKONAL EQUATION
Previous: USING 3-D EIKONAL EQUATION
In the 3-D case, the wave equation corresponding to the ray-theoretic
interpretation of all-angle time migration is
| ![\begin{displaymath}
\frac{\partial^2 p'}{\partial x'^2} \: + \:
\frac{\partial^...
...\zeta)} \,
\frac{\partial^2 p'}{\partial t' \, \partial \zeta}\end{displaymath}](img21.gif) |
(11) |
in the 3-D time-retarded coordinate system
| ![\begin{displaymath}
\begin{array}
{lcl}
x' & = & x \\ y' & = & y \\ t' & = & t + \zeta\end{array}\end{displaymath}](img22.gif) |
(12) |
with the new time-like vertical coordinate
,
| ![\begin{displaymath}
\zeta \; = \; \int_{0}^{z} \: \frac{dz}{V \, (x,y,z)}\end{displaymath}](img23.gif) |
(13) |
Following the same scheme as for the 2-D case and using equations
(12) and (13), we finally obtain the 3-D Eikonal
equation for time migration:
| ![\begin{displaymath}
\left( \frac{\partial \tau}{\partial x} \: + \:
{\cal A} \,...
...l \tau}{\partial z} \right)^2 \; = \;
\frac{1}{V^2 \, (x,y,z)}\end{displaymath}](img24.gif) |
(14) |
with
| ![\begin{displaymath}
{\cal A} \, (x,y,z) \; = \;
- \, V \, (x,y,z) \, \frac{\partial \zeta}{\partial x}\end{displaymath}](img25.gif) |
(15) |
and
Next: Using the Eikonal equation
Up: USING 3-D EIKONAL EQUATION
Previous: USING 3-D EIKONAL EQUATION
Stanford Exploration Project
11/17/1997