Next: INTRODUCTION TO DIP
Up: PRESTACK MIGRATION
Previous: Prestack migration ellipse
Considering h in equation (6)
to be a constant,
enables us to write a subroutine for migrating constant-offset sections.
Subroutine flathyp()
is easily prepared
from subroutine kirchfast()
by
replacing its hyperbola equation with equation (6).
# Flat topped hyperbolas and constant-offset section migration
#
subroutine flathyp( adj, add, vel , h, t0,dt,dx, modl,nt,nx, data)
integer ix,iz,it,ib, adj, add, nt,nx
real t, amp, z,b, vel(nt), h, t0,dt,dx, modl(nt,nx),data(nt,nx)
call adjnull( adj, add, modl,nt*nx, data,nt*nx)
do ib= -nx, nx { b = dx * ib # b = midpt separation y-y0
do iz= 2, nt { z = t0 + dt * (iz-1) # z = zero-offset time
t = .5 * ( sqrt( z**2 +((b-h)*2/vel(iz))**2) +
sqrt( z**2 +((b+h)*2/vel(iz))**2) )
it = 1.5 + (t - t0) / dt
if( it > nt ) break
amp = (z/t)/ sqrt(t)
do ix= max0(1, 1-ib), min0(nx, nx-ib)
if( adj == 0 )
data(it,ix+ib)= data(it,ix+ib) + modl(iz,ix ) * amp
else
modl(iz,ix )= modl(iz,ix ) + data(it,ix+ib) * amp
}
}
return; end
The amplitude in subroutine flathyp()
should be improved when we have time to do so.
Forward and backward responses to impulses
of subroutine flathyp()
are found in Figures 4 and 5.
Cos.1
Figure 4
Migrating impulses on a constant-offset section
with subroutine flathyp().
Notice that shallow impulses
(shallow compared to h)
appear ellipsoidal
while deep ones appear circular.
|
| ![Cos.1](../Gif/Cos.1.gif) |
Cos.0
Figure 5
Forward modeling
from an earth impulse with subroutine flathyp().
|
| ![Cos.0](../Gif/Cos.0.gif) |
It is not easy to show that equation (5) can be
cast in the standard mathematical form of an ellipse, namely,
a stretched circle.
But the result is a simple one,
and an important one for later analysis.
Feel free to skip forward over the following verification
of this ancient wisdom.
To help reduce algebraic verbosity,
define a new y equal to the old one shifted by y0.
Also make the definitions
| ![\begin{eqnarray}
t\,v \ \ \ \ &=&\ \ \ \ 2\ A\
\\ \alpha\ \ \ \ &=&\ \ \ \ z^2 \...
...number
\\ \alpha\ \ -\ \ \beta\ \ \ \ &=&\ \ \ \ 4\ y\ h \nonumber\end{eqnarray}](img8.gif) |
(7) |
| |
| |
| |
With these definitions, (5) becomes
![\begin{displaymath}
2\ A\ \eq \ \sqrt \alpha \ \ +\ \ \sqrt \beta \end{displaymath}](img9.gif)
Square to get a new equation with only one square root.
![\begin{displaymath}
4\ A^2 \ \ -\ \ (\alpha\ +\ \beta) \ \eq \ 2\ \sqrt{ \alpha \beta }\end{displaymath}](img10.gif)
Square again to eliminate the square root.
Introduce definitions of
and
.
![\begin{displaymath}
16\ A^4 \ \ -\ \ 8\ A^2 \ [\,2\,z^2 \ +\ 2\,y^2 \ +\ 2\,h^2 ] \ \ +\ \
16\ y^2 \, h^2 \ \eq \ 0 \end{displaymath}](img14.gif)
Bring y and z to the right.
| ![\begin{eqnarray}
A^4 \ \ -\ \ A^2 \, h^2 \ \ \ \ &=&\ \ \ \ \nonumber
A^2 \, ( z...
... \ \ \ \ &=&\ \ \ \ {z^2 \over 1 \ -\ {h^2 \over A^2}}\ \ +\ \ y^2\end{eqnarray}](img15.gif) |
|
| |
| (8) |
Finally, recalling all earlier definitions and replacing y by y-y0, we
obtain the canonical form of an ellipse with semi-major axis A and
semi-minor axis B:
| ![\begin{displaymath}
{(y\ -\ y_0)^2 \over A^2} \ +\ {z^2 \over B^2} \eq 1 \ \ \ ,\end{displaymath}](img16.gif) |
(9) |
where
| ![\begin{eqnarray}
A &\eq& {v\ t \over 2} \\ B &\eq& \sqrt{A^2\ -\ h^2}\end{eqnarray}](img17.gif) |
(10) |
| (11) |
Fixing t, equation (9) is the equation for a circle with
a stretched z-axis.
The above algebra confirms that the
``string and tack'' definition of an ellipse
matches the ``stretched circle'' definition.
An ellipse in earth model space corresponds
to an impulse on a constant-offset section.
Next: INTRODUCTION TO DIP
Up: PRESTACK MIGRATION
Previous: Prestack migration ellipse
Stanford Exploration Project
12/26/2000