next up previous print clean
Next: Lateral velocity variation again Up: END OF CHAPTER FOR Previous: END OF CHAPTER FOR

Retardation (frequency domain)

It is often convenient to arrange the calculation of a wave to remove the effect of overall translation, thereby making the wave appear to ``stand still.'' It is easy enough to introduce the time shift t0 of a vertically propagating wave in a hypothetical medium of velocity $\bar v(z)$, namely,  
 \begin{displaymath}
t_0 \eq \int_0^z \ { dz \over \bar v (z) }\end{displaymath} (67)
Instead of solving equations in coordinates (t,x,z) we could solve them in the so-called retarded coordinates (t',x',z') where t'=t-t0(z), x'=x and z'=z. (For more details, see IEI sections 2.5-2.7.) A time delay t0 in the time domain corresponds to multiplication by $\exp ( i \omega t_0 )$ in the $\omega$-domain. Thus, the wave pressure P is related to the time-shifted mathematical variable Q by  
 \begin{displaymath}
P(z, \omega ) \eq 
Q(z, \omega ) \ \exp
\left( \ i \omega \int_0^z \ {dz \over \bar v (z)} \ \right)\end{displaymath} (68)
which is a generalization of equation (55) to depth-variable velocity. (Equations ([*]) and ([*]) apply in both x- and kx-space). Differentiating with respect to z gives
   \begin{eqnarray}
{\partial P \over \partial z } &=& { \partial Q \over \partial ...
 ...over \partial z} \ +\ 
{ i \omega \over \bar v (z) } \ \right) \ Q\end{eqnarray} (69)
(70)
Next, substitute ([*]) and ([*]) into Table [*].4 to obtain the retarded equations in Table [*].5.

 
Table: Retarded form of phase-shift equations.
     
$5^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq $ zero $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
$15^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq - \,i\, {\displaystyle 
 {\strut v k_x^2\over 2\omega}} \ Q$ $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
$45^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq - \,i\, {\displaystyle 
 ...
 ...over\displaystyle 
 {2\,{\omega\over v} - {\strut v k_x^2
 \over 2\omega}}} \ Q$ $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
general $\displaystyle {\strut\partial Q\over
 \partial z} \eq $ diffraction + thin lens
     


next up previous print clean
Next: Lateral velocity variation again Up: END OF CHAPTER FOR Previous: END OF CHAPTER FOR
Stanford Exploration Project
12/26/2000