Next: Lateral velocity variation again
Up: END OF CHAPTER FOR
Previous: END OF CHAPTER FOR
It is often convenient to arrange the calculation of a wave
to remove the effect of overall translation,
thereby making the wave appear to ``stand still.''
It is easy enough to introduce
the time shift t0 of a vertically propagating wave
in a hypothetical medium of velocity
, namely,
| ![\begin{displaymath}
t_0 \eq \int_0^z \ { dz \over \bar v (z) }\end{displaymath}](img173.gif) |
(67) |
Instead of solving equations in coordinates (t,x,z)
we could solve them in the so-called retarded coordinates
(t',x',z') where
t'=t-t0(z), x'=x and z'=z.
(For more details, see IEI sections 2.5-2.7.)
A time delay t0 in
the time domain corresponds to multiplication
by
in the
-domain.
Thus, the wave pressure P is related
to the time-shifted mathematical variable Q by
| ![\begin{displaymath}
P(z, \omega ) \eq
Q(z, \omega ) \ \exp
\left( \ i \omega \int_0^z \ {dz \over \bar v (z)} \ \right)\end{displaymath}](img175.gif) |
(68) |
which is a generalization of equation (55)
to depth-variable velocity.
(Equations (
) and (
) apply in both x- and
kx-space).
Differentiating with respect to z gives
| ![\begin{eqnarray}
{\partial P \over \partial z } &=& { \partial Q \over \partial ...
...over \partial z} \ +\
{ i \omega \over \bar v (z) } \ \right) \ Q\end{eqnarray}](img176.gif) |
(69) |
| (70) |
Next, substitute (
) and (
)
into Table
.4
to obtain the retarded equations in Table
.5.
Table:
Retarded form of phase-shift equations.
|
|
|
![$5^\circ$](img177.gif) |
zero |
![$+\ i\omega \left( \displaystyle {1\over v} -
{\strut 1\over\overline{v}(z)} \right) Q$](img179.gif) |
|
|
|
|
|
|
![$15^\circ$](img148.gif) |
![$\displaystyle {\strut\partial Q\over
\partial z} \eq - \,i\, {\displaystyle
{\strut v k_x^2\over 2\omega}} \ Q$](img180.gif) |
![$+\ i\omega \left( \displaystyle {1\over v} -
{\strut 1\over\overline{v}(z)} \right) Q$](img179.gif) |
|
|
|
|
|
|
![$45^\circ$](img151.gif) |
![$\displaystyle {\strut\partial Q\over
\partial z} \eq - \,i\, {\displaystyle
...
...over\displaystyle
{2\,{\omega\over v} - {\strut v k_x^2
\over 2\omega}}} \ Q$](img181.gif) |
![$+\ i\omega \left( \displaystyle {1\over v} -
{\strut 1\over\overline{v}(z)} \right) Q$](img179.gif) |
|
|
|
|
|
|
general |
diffraction |
+ thin lens |
|
|
|
Next: Lateral velocity variation again
Up: END OF CHAPTER FOR
Previous: END OF CHAPTER FOR
Stanford Exploration Project
12/26/2000