previous up next print clean
Next: Stability of the difference Up: THE BULLETPROOFING OF MUIR Previous: THE BULLETPROOFING OF MUIR

Stability of the differential equation

Let $ q^ { {\rm *} \, } $ denote the Hermitian conjugate of q. For equation (80) to be stable the energy $q^ { {\rm *} \, } q$ must be either constant or decaying during depth extrapolation.
   \begin{eqnarray}
{d\ \over dz }\ ( q^ { {\rm *} \, } q) \ \ \ &\le&\ \ \ 0
\nonu...
 ...q^ { {\rm *} \, } q_z \ +\ q_z^ { {\rm *} \, } q\ \ \ &\le&\ \ \ 0\end{eqnarray}
(82)
Substituting equation (80) into equation (82) gives
   \begin{eqnarray}
q^{\rm *}\,R\,q\ +\ q^{\rm *} R^{\rm *} \, q\ \ \ &\ge&\ \ \ 0
...
 ... q^ { {\rm *} \, } ( R\ +\ R^ { {\rm *} \, } ) q\ \ \ &\ge&\ \ \ 0\end{eqnarray}
(83)
Equation (83) shows that $ R\ +\ R^ { {\rm *} \, } $must be positive semidefinite for the differential equation to be stable.


previous up next print clean
Next: Stability of the difference Up: THE BULLETPROOFING OF MUIR Previous: THE BULLETPROOFING OF MUIR
Stanford Exploration Project
10/31/1997