Next: The kinematics of offset
Up: Three-dimensional seismic data regularization
Previous: Second-order reflection traveltime derivatives
Solving the Cauchy problem
To obtain an explicit solution of the Cauchy
problem (
-
) for
equation (
), it is convenient to apply the
following simple transform of the wavefield P:
| ![\begin{displaymath}
P(t_n,h,y)=Q(t_n,h,y)\,t_n\,H(t_n)\;.\end{displaymath}](img492.gif) |
(287) |
Here the Heavyside function H is included to take into account the
causality of the reflection seismic gathers (note that the time
tn=0 corresponds to the direct wave arrival). We can extrapolate
Q as an even function to negative times, writing the reverse of
(
) as follows:
| ![\begin{displaymath}
Q(t_n,h,y)=Q(-t_n,h,y)=P(\vert t_n\vert,h,y)/\vert t_n\vert\;.\end{displaymath}](img493.gif) |
(288) |
With the change of function (
), equation (
)
transforms to
| ![\begin{displaymath}
h \, {\partial^2 Q \over \partial y^2} = h\, {\partial^2 Q \...
...artial
h} + t_n \, {\partial Q \over {\partial t_n}}\right)
\;.\end{displaymath}](img494.gif) |
(289) |
Applying the change of variables
| ![\begin{displaymath}
\rho={t_n^2 \over 2}\;,\;\nu={h^2 \over {2\,t_n^2}}\end{displaymath}](img495.gif) |
(290) |
and Fourier transform in the midpoint coordinate y
| ![\begin{displaymath}
\widetilde{Q}(\rho,\nu,k)=\int\,Q(\rho,\nu,y)\,\exp (-iky)\,dy\;,\end{displaymath}](img496.gif) |
(291) |
I further transform equation (
) to the canonical form of a
hyperbolic-type partial differential equation with two variables:
| ![\begin{displaymath}
{\partial^2 \widetilde{Q} \over {\partial \rho \, \partial \nu}} +
k^2\,\widetilde{Q} = 0\;.\end{displaymath}](img497.gif) |
(292) |
rim
Figure 1
Domain of dependence of a point in the transformed coordinate system.
|
| ![rim](../Gif/rim.gif) |
The initial value conditions (
) and (
) in the
space are defined on a hyperbola of the form
. Now the solution
of the Cauchy problem follows directly from Riemann's method Courant (1962).
According to this method, the domain of dependence of each point
is a part of the hyperbola between the points
and
(Figure
). If we let
denote this curve, the solution takes an explicit integral form:
| ![\begin{eqnarray}
\widetilde{Q}(\rho,\nu) & = &
{1 \over 2}\, \widetilde{Q}(\rho,...
...\rho_1,\nu_1;\rho,\nu) \over {\partial \nu_1}}
\right)\,d \nu_1\;.\end{eqnarray}](img502.gif) |
|
| |
| (293) |
Here R is the Riemann's function of equation (
), which has
the known explicit analytical expression
| ![\begin{displaymath}
R(\rho_1,\nu_1;\rho,\nu)=
J_0\left(2k\,\sqrt{\left(\rho_1-\rho\right)\,
\left(\nu_1-\nu\right)}\right)\;,\end{displaymath}](img503.gif) |
(294) |
where J0 is the Bessel function of zeroth order. Integrating by
parts and taking into account the connection of the variables on the
curve
, we can simplify equation (
) to the form
| ![\begin{displaymath}
\widetilde{Q}(\rho,\nu)=
\widetilde{Q}_0(\rho,\nu)+
\widetilde{Q}_1(\rho,\nu)\;,\end{displaymath}](img504.gif) |
(295) |
where
| ![\begin{eqnarray}
\widetilde{Q}_0(\rho,\nu) & = &
{\partial \over {\partial \rho}...
...l \widetilde{Q}(\rho_1,\nu_1) \over {\partial \nu_1}}
\,d \nu_1\;.\end{eqnarray}](img505.gif) |
(296) |
| (297) |
Applying the explicit expression for the Riemann function R
(
) and performing the inverse transform of both the
function and the variables allows us to rewrite equations
(
), (
), and (
) in the original
coordinate system. This yields the integral offset continuation
operators in the
domain
| ![\begin{displaymath}
\widetilde{P}(t_n,h,k)=
H(t_n)\,\left(\widetilde{P}_0(t_n,h,k) +
t_n\,\widetilde{P}_1(t_n,h,k)\right)\;,\end{displaymath}](img507.gif) |
(298) |
where
| ![\begin{eqnarray}
\widetilde{P}_0 & = &
{\partial \over {\partial t_n}}\,
\int_{...
...}\right)\,
\left(t_n^2-t_1^2\right)}\right)\,{dt_1 \over t_1^2}\;,\end{eqnarray}](img508.gif) |
(299) |
| (300) |
| ![\begin{eqnarray}
\widetilde{P}^{(j)}_1(t_1,k) & = &
\int\,P\,^{(j)}_1(t_1,y_1)\...
...lde{P}(t_n,h,k) & = &
\int\,P(t_n,h,y)\exp (-iky)\,dy\;(j=0,1)\;.\end{eqnarray}](img509.gif) |
(301) |
| (302) |
The inverse Fourier transforms of equations (
) and
(
) are reduced to analytically evaluated integrals
Gradshtein and Ryzhik (1994) to produce explicit integral operators in the
time-and-space domain
| ![\begin{displaymath}
P(t_n,h,y)=\mbox{sign}(h-h_1)\,
{H(t_n) \over \pi}\,\left(P_0(t_n,h,y) +
t_n\,P_1(t_n,h,y)\right)\;,\end{displaymath}](img510.gif) |
(303) |
where
| ![\begin{eqnarray}
P_0(t_n,h,y) & = &
{\partial \over {\partial t_n}}\,
\iint_{\S...
..._1^2 \over t_1^2}\right)\,
\left(t_n^2-t_1^2\right)-(y-y_1)^2}}\;.\end{eqnarray}](img511.gif) |
(304) |
| (305) |
The range of integration
in (
) and (
) is
defined by the inequality
| ![\begin{displaymath}
\left({h^2 \over t_n^2}-{h_1^2 \over t_1^2}\right)\,
\left(t_n^2-t_1^2\right)-(y-y_1)^2 \gt 0\;.\end{displaymath}](img512.gif) |
(306) |
Equations (
), (
), and (
)
coincide with (
), (
), and
(
) in the main text.
Next: The kinematics of offset
Up: Three-dimensional seismic data regularization
Previous: Second-order reflection traveltime derivatives
Stanford Exploration Project
12/28/2000