Next: Interpolation in Stolt migration
Up: Popovici, Blondel, & Muir:
Previous: Popovici, Blondel, & Muir:
Downward continuation and imaging in the isotropic
case (Gazdag, 1978) can be written as
| ![\begin{displaymath}
M(z,k_x)=\int d\omega e^{i k_z z} P(\omega,k_x),\end{displaymath}](img1.gif) |
(1) |
where
| ![\begin{displaymath}
k_z = -{\rm sign} (\omega) \sqrt{{\omega^2 \over v^2}- k_x^2}.\end{displaymath}](img2.gif) |
(2) |
In equation (1),
represents the
Fourier transform of the seismic field p(t,x) recorded at
the surface, following Claerbout's (1985) sign convention
![\begin{displaymath}
P(\omega,k_x)=
\int dt \; e^{i\omega t} \int dx e^{-ik_xx} p(t,x),\end{displaymath}](img4.gif)
and v represents half the velocity, as
used in the exploding reflectors model.
We can rewrite equation (1) as time migration replacing
the depth steps by equivalent time steps
:
| ![\begin{displaymath}
M(\tau,k_x)=\int d\omega e^{i k_{\tau} \tau} P(\omega,k_x).\end{displaymath}](img6.gif) |
(3) |
where we define
![\begin{displaymath}
\left \{
\begin{array}
{lcl}
\tau & = & {z \over v}
\\ \\ k_...
...\rm sign}(\omega)\sqrt{\omega^2- v^2 k_x^2}.\end{array}\right .\end{displaymath}](img7.gif)
For a constant velocity medium, Stolt (1978) transforms the integral
in
using a Fourier transform, which can be computed rapidly
via a Fast Fourier Transform (FFT) algorithm
| ![\begin{displaymath}
M(\tau,k_x)=\int dk_{\tau} e^{i k_{\tau} \tau} J(k_{\tau},k_x)
P(\omega(k_{\tau},k_x),k_x),\end{displaymath}](img9.gif) |
(4) |
where
represents the Jacobian of the transformation
from
to
![\begin{displaymath}
J(k_{\tau},k_x)={{d\omega} \over {dk_{\tau}}} = {{k_{\tau}} \over
{\sqrt{k_{\tau}^2+v^2k_x^2}}}\end{displaymath}](img12.gif)
and
represents the initial data
as function of the new variable
.
Next: Interpolation in Stolt migration
Up: Popovici, Blondel, & Muir:
Previous: Popovici, Blondel, & Muir:
Stanford Exploration Project
11/16/1997