Next: 3-D TRAVELTIME MAPS
Up: Popovici : FD Traveltime
Previous: An insight into the
In 3-D the eikonal equation is
where
![\begin{displaymath}
\left \{ \begin{array}
{l}
u={\partial{t(x,y,z)} \over \part...
...\ \\ w={\partial{t(x,y,z)} \over \partial z}\end{array} \right.\end{displaymath}](img24.gif)
For a spherical-coordinates system
| ![\begin{displaymath}
{w^2+{v^2 \over r^2}+{u^2 \over {r^2{\sin \phi}^2}} }=s^2\end{displaymath}](img25.gif) |
(9) |
where
![\begin{displaymath}
\left \{ \begin{array}
{l}
w={\partial{t(r,\theta,\phi)} \ov...
...al{t(r,\theta,\phi)} \over \partial \theta} \end{array} \right.\end{displaymath}](img26.gif)
The cross derivative equation (4) is transformed into
the spherical coordinates system
| ![\begin{displaymath}
\left \{ \begin{array}
{l}
{\partial u \over \partial r}= {\...
...partial r}= {\partial w \over \partial \phi}\end{array} \right.\end{displaymath}](img27.gif) |
(10) |
The finite-difference equivalent of equation (5) is
the system
| ![\begin{displaymath}
\left \{ \begin{array}
{l}
u(r+\Delta r,\theta,\phi)=u(r,\th...
...\over \Delta \phi}
{\Delta w(r,\theta,\phi)}\end{array} \right.\end{displaymath}](img28.gif) |
(11) |
which is used to advance the stencil for a new radial increment.
Once the values of the functions
and
are known on the spherical
front with constant radius (
),
the third function
can be calculated using the eikonal equation
| ![\begin{displaymath}
w(r+\Delta r,\theta,\phi)={ \sqrt{s^2(r+\Delta r,\theta,\phi...
...Delta r,\theta,\phi) \over {{(r+\Delta r)}^2 \sin ^2 \phi}} }}.\end{displaymath}](img33.gif) |
(12) |
The value of the traveltime is found by integration:
![\begin{displaymath}
t(r+\Delta r,\theta,\phi)=t(r,\theta,\phi)+{\Delta r \over 2}
[w(r+\Delta r,\theta,\phi)+w(r,\theta,\phi)].\end{displaymath}](img34.gif)
In equation (11), the Engquist-Osher scheme is applied twice, once for
calculating the values of
across three points
of consecutive values of
, and second for calculating
the values of
across three consecutive values
of
.The computational front advances in spherical shells, and on
each shell the computations advance a circle at a
time.
The angle
is the horizontal angle while
the angle
is the vertical angle.
The Engquist-Osher scheme is applied along each
three consecutive points on the circle with constant vertical
angle
to determine
from the equation
.For each circle of constant vertical angle
the
Engquist-Osher scheme is applied for three points
(
),
and (
), which are
perpendicular on the circle in the
coordinates.
The scheme is completely vectorizable.
Next: 3-D TRAVELTIME MAPS
Up: Popovici : FD Traveltime
Previous: An insight into the
Stanford Exploration Project
12/18/1997