previous up next print clean
Next: 3-D TRAVELTIME MAPS Up: Popovici : FD Traveltime Previous: An insight into the

3-D ALGORITHM

In 3-D the eikonal equation is

 
u2+v2+w2=s2 (8)

where

\begin{displaymath}
\left \{ \begin{array}
{l}
u={\partial{t(x,y,z)} \over \part...
 ...\ \\ w={\partial{t(x,y,z)} \over \partial z}\end{array} \right.\end{displaymath}

For a spherical-coordinates system  
 \begin{displaymath}
{w^2+{v^2 \over r^2}+{u^2 \over {r^2{\sin \phi}^2}} }=s^2\end{displaymath} (9)
where

\begin{displaymath}
\left \{ \begin{array}
{l}
w={\partial{t(r,\theta,\phi)} \ov...
 ...al{t(r,\theta,\phi)} \over \partial \theta} \end{array} \right.\end{displaymath}

The cross derivative equation (4) is transformed into the spherical coordinates system  
 \begin{displaymath}
\left \{ \begin{array}
{l}
{\partial u \over \partial r}= {\...
 ...partial r}= {\partial w \over \partial \phi}\end{array} \right.\end{displaymath} (10)
The finite-difference equivalent of equation (5) is the system  
 \begin{displaymath}
\left \{ \begin{array}
{l}
u(r+\Delta r,\theta,\phi)=u(r,\th...
 ...\over \Delta \phi}
{\Delta w(r,\theta,\phi)}\end{array} \right.\end{displaymath} (11)
which is used to advance the stencil for a new radial increment. Once the values of the functions $u(r,\theta,\phi)$ and $v(r,\theta,\phi) $ are known on the spherical front with constant radius ($r+\Delta r$), the third function $w(r,\theta,\phi)$can be calculated using the eikonal equation  
 \begin{displaymath}
w(r+\Delta r,\theta,\phi)={ \sqrt{s^2(r+\Delta r,\theta,\phi...
 ...Delta r,\theta,\phi) \over {{(r+\Delta r)}^2 \sin ^2 \phi}} }}.\end{displaymath} (12)
The value of the traveltime is found by integration:

\begin{displaymath}
t(r+\Delta r,\theta,\phi)=t(r,\theta,\phi)+{\Delta r \over 2}
[w(r+\Delta r,\theta,\phi)+w(r,\theta,\phi)].\end{displaymath}

In equation (11), the Engquist-Osher scheme is applied twice, once for calculating the values of $\Delta w$ across three points of consecutive values of $\theta$, and second for calculating the values of $\Delta w$ across three consecutive values of $\phi$.The computational front advances in spherical shells, and on each shell the computations advance a circle at a time. The angle $\theta$ is the horizontal angle while the angle $\phi$ is the vertical angle. The Engquist-Osher scheme is applied along each three consecutive points on the circle with constant vertical angle $\phi$ to determine $\Delta u$ from the equation $\Delta u = {\Delta r \over \Delta \theta} {\Delta w}$.For each circle of constant vertical angle $\phi$ the Engquist-Osher scheme is applied for three points ($\phi - \Delta \phi$), $\phi$ and ($ \phi + \Delta \phi$), which are perpendicular on the circle in the $(r,\theta,\phi)$ coordinates. The scheme is completely vectorizable.


previous up next print clean
Next: 3-D TRAVELTIME MAPS Up: Popovici : FD Traveltime Previous: An insight into the
Stanford Exploration Project
12/18/1997